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A fast approach for overcomplete sparse
decomposition based on smoothed `0 norm

G. Hosein Mohimani1, Massoud Babaie-Zadeh1* Member and Christian Jutten2 Fellow

Abstract— In this paper, a fast algorithm for overcomplete
sparse decomposition, called SL0, is proposed. The algorithm is
essentially a method for obtaining sparse solutions of underde-
termined systems of linear equations, and its applications include
underdetermined Sparse Component Analysis (SCA), atomic
decomposition on overcomplete dictionaries, compressed sensing,
and decoding real £eld codes. Contrary to previous methods,
which usually solve this problem by minimizing the `1 norm
using Linear Programming (LP) techniques, our algorithm tries
to directly minimize the `0 norm. It is experimentally shown that
the proposed algorithm is about two to three orders of magnitude
faster than the state-of-the-art interior-point LP solvers, while
providing the same (or better) accuracy.

Index Terms— Sparse decomposition, compressed sensing,
Sparse Component Analysis (SCA), atomic decomposition, over-
complete signal representation, sparse source separation, Blind
Source Separation (BSS).

I. INTRODUCTION

F INDING SPARSE solutions of Under-determined Sys-
tems of Linear Equations (USLE) is of signi£cant impor-

tance in signal processing and statistics. It is used, for example,
in underdetermined Sparse Component Analysis (SCA) and
source separation [1], [2], [3], [4], atomic decomposition on
overcomplete dictionaries [5], [6], compressed sensing [7], [8],
decoding real £eld codes [9], image deconvolution [10], [11],
image denoising [12], electromagnetic imaging and Direction
of Arrival (DOA) £nding [13]. Despite recent theoretical
developments [14], [15], [16], [17], the computational cost of
the methods has remained as the main restriction, especially
for large systems (large number of unknowns/equations). In
this article, a new approach is proposed which provides a con-
siderable reduction in complexity. To introduce the problem in
more details, we will use the context of Sparse Component
Analysis (SCA). The discussions, however, may be easily
followed in other contexts and applications.

SCA can be viewed as a method to achieve separation of
sparse sources. Suppose that m source signals are recorded
by a set of n sensors, each of which records a combination
of all sources. In linear instantaneous (noiseless) model, it
is assumed that x(t) = As(t) in which x(t) and s(t) are
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the n× 1 and m× 1 vectors of source and recorded signals,
respectively, and A is the n ×m (unknown) mixing matrix.
The goal of Blind Source Separation (BSS) [18], [19] is then
to £nd s(t) only by observing x(t). The general BSS problem
is impossible for the case m > n. However, if the sources
are sparse (i.e., not a totally blind situation), then the problem
can be solved in two steps [1], [2]: £rst estimating the mixing
matrix, and then estimating the sources assuming A being
known. For sparse sources, the £rst step – which can become
very tricky for large m – may be accomplished by means of
clustering [1], [2], [20], [21]. The second step requires that
for each sample (t0) the sparse solution of the USLE x(t0) =
As(t0) be found [1], [2], [22], [23]. Note also that the sparsity
of the sources is not necessarily in the time domain: if T{.}
is a linear ‘sparsifying’ transformation, then T{x} = AT{s}.
Due to linearity of T , both the linearity of the mixing and the
statistical independence properties of sources are preserved in
the transformed domain. Hence, SCA may be applied in the
transformed domain.

In the atomic decomposition viewpoint [5], the signal vector
x = [x(1), . . . , x(n)]T is composed of the samples of a
‘single’ signal x(t), and the objective is to represent it as
a linear combination of m, n × 1 signal vectors {ai}mi=1.
After [24], the vectors ai, 1 ≤ i ≤ m are called atoms and
they collectively form a dictionary over which the signal is
to be decomposed. We may write x =

∑m
i=1 siai = As,

where A , [a1, . . . ,am] is the n × m dictionary (matrix)
and s , (s1, . . . , sm)T is the m × 1 vector of coef£cients.
A dictionary with m > n is called overcomplete. Although,
m = n (e.g. Discrete Fourier Transform) is suf£cient to
obtain such a decomposition, using overcomplete dictionaries
has a lot of advantages in many diverse applications (refer
for example to [6] and the references in it). In all these
applications, we would like to use as small as possible number
of atoms to represent the signal. Again, we have the problem
of £nding sparse solutions of the USLE As = x.

To obtain the sparsest solution of As = x, we may
search for a solution with minimal `0 norm, i.e., minimum
number of nonzero components. It is usually stated in the
literature [6], [9], [4] that searching the minimum `0 norm
is an intractable problem as the dimension increases (because
it requires a combinatorial search), and it is too sensitive to
noise (because any small amount of noise completely changes
the `0 norm of a vector). Consequently, researchers consider
other approaches. One of the most successful approaches
is Basis Pursuit (BP) [5], [15], [4], [25] which £nds the
minimum `1 norm (that is, the solution of As = x for which
∑

i |si| is minimized). Such a solution can be easily found
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by Linear Programming (LP) methods. The idea of Basis
Pursuit is based on the observation that for large systems
of equations, the minimum `1 norm solution is also the
minimum `0 norm solution [14], [15], [5]. By using fast LP
algorithms, speci£cally interior-point LP solvers, large-scale
problems with thousands of sources and mixtures become
tractable. However, it is still very slow, and in the recent years
several authors have proposed improvements for BP, to speed
up the algorithm and to handle the noisy case [16], [6], [10],
[11]. Another family of algorithms is Iterative Re-weighted
Least Squares (IRLS), with FOCUSS [13] as an important
member. These are faster than BP, but their estimation quality
is worse, especially if the number of non-zero elements of
the sparsest solution is not very small. Another approach is
Matching Pursuit (MP) [24], [26], [1] which is very fast, but
is a greedy algorithm and does not provide good estimation of
the sources. The approach presented in [27] is also very fast,
but adjusting its parameters is not easy.

Contrary to previous approaches, the method we present in
this paper is based on direct minimization of the `0 norm.
We will see that our method performs typically two to three
orders of magnitude faster than BP (based on interior-point
LP solvers), while resulting in the same or better accuracy. We
have already brie¤y reported the basics of this approach in [28]
and its complex version in [29]. However, in this paper, we are
going to present a highly more complete description of this
approach and consider, mathematically and/or experimentally,
its convergence properties and the effects of its parameters.

The paper is organized as follows. The next section intro-
duces the basic principles of our approach. The £nal algorithm
is then stated in Section III. In Section IV, convergence
properties of the algorithm is discussed. Finally, Section V
provides some experimental results of our algorithm and its
comparison with BP.

II. BASIC PRINCIPLES OF OUR APPROACH

A. The Main Idea

The problems of using `0 norm (that is, the need for a
combinatorial search for its minimization, and its too high
sensibility to noise) are both due to the fact that the `0 norm
of a vector is a discontinuous function of that vector. Our
idea is then to approximate this discontinuous function by
a suitable continuous one, and minimize it by means of a
minimization algorithm for continuous functions (e.g. steepest
descent method). The continuous function which approximates
‖s‖0, the `0 norm of s, should have a parameter (say σ) which
determines the quality of the approximation.

For example, consider the (one-variable) family of func-
tions:

fσ(s) , exp (−s2/2σ2), (1)

and note that:

lim
σ→0

fσ(s) =

{
1 ; if s = 0
0 ; if s 6= 0

, (2)

or approximately:

fσ(s) ≈
{

1 ; if |s| ¿ σ
0 ; if |s| À σ

. (3)

Then, by de£ning:

Fσ(s) =
m∑

i=1

fσ(si), (4)

it is clear from (2) and (3) that ‖s‖0 ≈ m− Fσ(s) for small
values of σ, and the approximation tends to equality when σ →
0. Consequently, we can £nd the minimum `0-norm solution
by maximizing Fσ(s) (subject to As = x) for a very small
value of σ. Note that the value of σ determines how smooth
the function Fσ is: the larger value of σ, the smoother Fσ (but
worse approximation to `0-norm); and the smaller value of σ,
the closer behavior of Fσ to `0-norm.

Note that for small values of σ, Fσ is highly non-smooth,
and contains a lot of local maxima, and hence its maximization
is not easy. On the other hand, for larger values of σ, Fσ is
smoother and contains less local maxima, and its maximization
is easier (we will see in the next subsection that there is no
local maxima for large enough σ’s). Consequently, our idea
is to use a ‘decreasing’ sequence for σ: for maximizing Fσ
for each value of σ (using e.g. gradient algorithms), the initial
value of the maximization algorithm is the maximizer of Fσ
for the previous (larger) value of σ. If we gradually decrease
the value of σ, for each value of σ the maximization algorithm
starts with an initial solution near to the actual maximizer of
Fσ (this is because σ and hence Fσ have only slightly changed
and consequently the maximum of the new Fσ is probably
close to the maximum of the previous Fσ), and hence we
hope to escape from getting trapped into local maxima and
reach to the actual maximum for small values of σ, which
gives the minimum `0-norm solution1.

Note that the basic idea holds not only for Gaussian family
of functions fσ given in (1), but also for any family of
functions fσ which approximates the Kronecker delta function,
i.e., satis£es (2) and (3). For example, it also holds for the
family of ‘triangular’ functions:

fσ(s) =







1 ; if |s| ≥ σ
(σ + s)/σ ; if −σ ≤ s ≤ 0
(σ − s)/σ ; if 0 ≤ s ≤ σ

, (5)

and for the family of ‘truncated hyperbolic’ functions:

fσ(s) =

{
1 ; if |s| ≥ σ
1− (s/σ)2 ; if |s| ≤ σ

, (6)

and also for the family of functions:

fσ(s) = σ2/(s2 + σ2). (7)

B. Initialization

Up to now, the behavior of the function fσ was discussed
for small values of σ. It is also interesting to consider the
behavior for very large values of σ.

More speci£cally, it can be shown that “for suf£ciently large
values of σ, the maximizer of Fσ(s) subject to As = x is the
minimum `2-norm solution of As = x, i.e., the solution given
by the pseudo-inverse of A”. Here, we give only a justi£cation

1This technique for optimizing a non-convex function is usually called
Graduated Non-Convexity (GNC) [30].
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• Initialization:
1) Let ŝ0 be equal to the minimum `2 norm solution of As = x,

obtained by pseudo-inverse of A.
2) Choose a suitable decreasing sequence for σ, [σ1 . . . σJ ] (see

Remarks 5 and 6 of the text).
• For j = 1, . . . , J :

1) Let σ = σi.
2) Maximize (approximately) the function Fσ on the feasible set
S = {s |As = x} using L iterations of the steepest ascent
algorithm (followed by projection onto the feasible set):

– Initialization: s = ŝj−1.
– For ` = 1 . . . L (loop L times):

a) Let δ , [s1 exp (−s21/2σ
2), . . . , sn exp (−s2n/2σ

2)]T .
b) Let s← s− µδ (where µ is a small positive constant).
c) Project s back onto the feasible set S:

s← s−A
T (AA

T )−1(As− x).

3) Set ŝj = s.

• Final answer is ŝ = ŝJ .

Fig. 1. The £nal SL0 algorithm.

to this property for the case of Gaussian family of functions
introduced in (1) by using Lagrange multipliers, and we leave
the formal proof to Section IV-B.

Using the method of Lagrange multipliers, for maximizing
Fσ(s) =

∑m
i=1 fσ(si) =

∑m
i=1 exp (−s2i /2σ2) subject to

As = x, we set the derivative of the Lagrangian L(s,λ) =
Fσ(s) − λT (As − x) with respect to s and λ equal to
zero, which gives the following Karush-Kuhn-Tucker (KKT)
system of m+ n nonlinear equations of m+ n unknowns (m
components of s, and n components of λ):

{

[s1e
−s21/2σ

2

, . . . , sme
−s2m/2σ

2

]T −ATλ1 = 0

As− x = 0
(8)

where λ1 , −σ2λ.
On the other hand, the minimum `2 norm solution of As =

x may be found by minimizing 1
2s

T s subject to As = x.
Using Lagrange multipliers, this minimization results in the
system of equations:

{
[s1, . . . , sm]T −ATλ = 0

As− x = 0
(9)

Comparing systems (8) and (9), we see that for σ → ∞
(or where σ À max{s1, . . . , sm}), these two systems of
equations are identical, and hence the maximizer of Fσ(s)
is the minimum `2-norm solution of As = x.

III. THE FINAL ALGORITHM

The £nal algorithm, which we call SL0 (Smoothed `0), is
obtained by applying the main idea of the previous section on
the Gaussian family (1), and is given in Fig. 1.

Remark 1. The internal loop (steepest ascent for a £xed
σ) is repeated a £xed and small number of times (L). In
other words, for increasing the speed, we do not wait for the
(internal loop of the) steepest ascent algorithm to converge.
This may be justi£ed by the gradual decrease in the value
of σ, and the fact that for each value of σ, we do not need
the exact maximizer of Fσ . We just need to enter the region

near the (global) maximizer of Fσ for escaping from its local
maximizers. See also Remarks 3 to 5 of Section IV-A.

Remark 2. Steepest ascent consists of iterations of the
form s ← s + µj∇Fσ(s). Here, the step-size parameters µj
should be decreasing, i.e., for smaller values of σ, smaller val-
ues of µj should be applied. This is because for smaller values
of σ, the function Fσ is more ‘¤uctuating’, and hence smaller
step-sizes should be used for its maximization. In fact, we may
think about changing the value of σ in (1) and (4) as looking
at the same curve (or surface) at different ‘scales’, where the
scale is proportional to σ. For having equal (i.e., proportional)
steps of the steepest ascent algorithm in these different scales,
it is not dif£cult to show2 that µj should be proportional to
σ2. Note that in Fig. 1, instead of µj , only a constant µ is
appeared. The reason is that by letting µj = µσ2 for some
constant µ, we have s← s+(µσ2)∇Fσ = s−µδ, where δ ,
−σ2∇Fσ = [s1 exp (−s21/2σ2), . . . , sn exp (−s2n/2σ2)]T .

Remark 3. According to the algorithm, each iteration
consists of an ascent step si ← si − µsi exp(−s2i /2σ2), 1 ≤
i ≤ m, followed by a projection step. If for some values of
i we have |si| À σ, then the algorithm does not change the
value of si in that ascent step; however it might be changed
in the projection step. If we are looking for a suitable large
µ (to reduce the required number of iterations), a suitable
choice is to make the algorithm to force all those values of
si satisfying |si| . σ toward zero. For this aim, we should
have µ exp(−s2i /2σ2) ≈ 1, and because exp(−s2i /2σ2) . 1
for |si| . σ, the choice µ & 1 seems reasonable.

Remark 4. The algorithm may work by initializing ŝ0 (the
initial estimation of the sparse solution) to an arbitrary solution
of As = x. However, the discussion of Section II-B shows that
the best initial value of ŝ0 is the minimum `2 norm solution
of As = x, which corresponds to σ →∞. In another point of
view, one may think about the minimum `2 norm solution as a
rough estimate of the sparse solution, which will be modi£ed
in the future iterations of the algorithm. In fact, calculating
minimum `2 norm is one of the earliest approaches used for
estimating the sparsest solution and is called the Method Of
Frames (MOF) [5].

Remark 5. Having initiated the algorithm with the
minimum `2 norm solution (which corresponds to σ = ∞),
the next value for σ (i.e., σ1) may be chosen about two to
four times of the maximum absolute value of the obtained
sources (maxi |si|). To see the reason, if we take for example
σ > 4maxi |si|, then exp(−s2i /2σ2) > 0.96 ≈ 1 for all
1 ≤ i ≤ m, and comparison with (3) shows that this value of
σ acts virtually like in£nity for all the values of si, 1 ≤ i ≤ m
(the next remark, too, provides another reason through another
viewpoint to the algorithm).

For the next values of σ, we have used σj = c σj−1, j ≥ 2,
where c is usually chosen between 0.5 and 1. Its effect is
experimentally studied in Section V).

Remark 6. Equation (4) seems to simply count the “in-

2To see this, suppose that s1 = rσ1 in Fσ1 corresponds to s2 = rσ2

in Fσ2 . Then µ1∇Fσ1 (s1)/µ2∇Fσ2 (s2) = σ1/σ2 results in µ1/µ2 =
σ2
1/σ

2
2 .
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active” elements of s. However, instead of hard-thresholding
“inactive ≡ |si| < σ ; active ≡ |si| > σ”, criterion (4) uses a
soft-thresholding, for which σ is the rough threshold.

Remark 7. In applications where the zeros in the sparsest
s are exactly zero, σ can be decreased arbitrarily. In fact, in
this case, its minimum value is determined by the desired
accuracy, as will be discussed in Theorem 1. For applications
in which inactive elements of s are small but not exactly zero
(say that the ‘source’ vector is noisy), the smallest σ should be
about one to two times of (a rough estimation of) the standard
deviation of this noise. This is because, while σ is in this
range, (3) shows that the cost function treats small (noisy)
samples as zeros (i.e., for which fσ(si) ≈ 1). However, below
this range, the algorithm tries to ‘learn’ these noisy values, and
moves away from the true answer (according to the previous
remark, the soft threshold should be such that all these noisy
samples be considered inactive). Restricting σi to be above
the standard deviation of the noise, provides the robustness of
this approach to noisy sources (or mixtures), which was one
of the dif£culties in using the exact `0 norm.

IV. THEORETICAL ANALYSIS OF THE ALGORITHM

A. Convergence Analysis

In this section, we try to answer two questions for the
noiseless case (the noisy case will be considered in Section IV-
C): a) Does the basic idea of Section II results in convergence
to the actual minimizer of the `0 norm (assumed to be unique
by [13], [15])? and b) If yes, how much should we decrease
σ to achieve a desired accuracy?

Note that the algorithm of Fig. 1 has two loops: the external
loop which corresponds to the basic ideas of Section II for
£nding the sparsest solution, and the internal loop which is a
simple steepest ascent algorithm for maximizing Fσ(s) for a
£xed σ. In the analysis of this section, it is assumed that the
maximization of Fσ(s) has been exactly done for a £xed σ
(the maximization algorithm has not got trapped into local
maxima). Note that we had proposed the gradual decrease
in σ to escape from getting trapped into local maxima when
maximizing Fσ for a £xed σ. A theoretical study to £nd the
series σj , j = 1, . . . J , which guaranties the convergence is
very tricky (if possible) and is not considered in this paper.
However, it will be experimentally addressed in the next
section.

Assuming the maximization of Fσ for £xed σ’s is perfectly
done, we show here that the estimation given by the algorithm
converges to the unique minimizer of the `0 norm. In other
words, we prove that the sequence of ‘global’ maximizers of
Fσ’s will converge to the sparsest solution (which is the basic
idea of Section II), and try to answer both above questions.

Before stating the convergence theorem (Theorem 1), we
state three lemmas. Recall that null(A) = {s|As = 0}.

Lemma 1: Assume that the matrix A = [a1,a2, · · · ,am] ∈
Rn×m (where ai represents the i-th column) has the property
that all of its n×n sub-matrices are invertible, which is called
the Unique Representation Property (URP) in [13]3. If m−n

3URP of A also guaranties that the sparsest solution is unique [13], [15].

elements of s ∈ null(A) converge to zero, then all of its
elements (and hence s) will converge to zero, too.

Proof: Without loss of generality, assume that all the
columns of A are normalized, i.e. ‖ai‖ = 1, 1 ≤ i ≤ m
(throughout the paper, ‖ · ‖ stands for the `2 or Euclidean or
Frobenius norm of a vector or matrix). Then, we have to show:

∀β > 0, ∃α > 0, such that ∀s ∈ null(A) :

m− n elements of s have absolute values
less than α⇒ ‖s‖ ≤ β

(10)

Let s = (s1, s2, · · · , sm)T be in null(A) and assume that the
absolute values of at least m − n elements of it are smaller
than α. Let Iα be the set of all indices i, for which |si| > α.
Consequently, |Iα| ≤ n, where |X| represents the cardinality
(i.e., number of elements) of a set X . Then we write:

m∑

i=1

siai = 0⇒
∑

i∈Iα

siai +
∑

i/∈Iα

siai = 0⇒

‖
∑

i∈Iα

siai‖ = ‖
∑

i/∈Iα

siai‖ ≤
∑

i/∈Iα

‖siai‖ =
∑

i/∈Iα

|si|
︸︷︷︸

≤α

‖ai‖
︸︷︷︸

1

≤
∑

i/∈Iα

α = (m− |Iα|)α ≤ mα

(11)

Let Â be the sub-matrix of A containing only those
columns of A that are indexed by the elements of Iα. Thus
Â has at most n columns, and the columns of Â are linearly
independent, because of the URP of A. Therefore, there exists4

a left inverse Â−1 for Â. Let s̄ and s̃ denote those sub-vectors
of s which are, and which are not indexed by Iα, respectively.
Then:
∑

i∈Iα

siai =Âs̄⇒ ‖s̄‖ = ‖(Â−1)(
∑

i∈Iα

siai)‖

≤ ‖Â−1‖ · ‖
∑

i∈Iα

siai‖ ≤ ‖Â−1‖(mα)
(12)

‖s̃‖ ≤∑i/∈Iα
|si| ≤ (m− |Iα|)α ≤ mα

‖s̄‖ ≤ ‖Â−1‖mα

}

⇒

‖s‖ ≤ ‖s̃‖ + ‖s̄‖ ≤ (‖Â−1‖ + 1)mα

(13)

Now, let M be the set of all submatrices Â of A, consisting
of at most n columns of A. Then M is clearly a £nite set (in
fact |M| < 2m). Let5

M = max{‖Â−1‖ | Â ∈M}, (14)

then
‖s‖ ≤ (‖Â−1‖ + 1)mα ≤ (M + 1)mα. (15)

M is a constant and its value depends only on the matrix A.
Therefore, for each β it suf£ces to choose α = β/m(M +1).

4Not that Â is not necessarily a square matrix and hence is not necessarily
invertible. But it has a left inverse, which is not necessarily unique. In this
case Â−1 is just ‘one’ of these inverses. For example, since Â is tall and
full-rank, its pseudoinverse is one of these inverses.

5Note that the calculation of M is dif£cult in the cases where m and n are
large. Calculation of the exact value of M requires a computation complexity
larger than

(m
n

)
which can be impractical for large values of m and n.
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The above proof (calculations (11) to (15)) results also in
the following corollary:

Corollary 1: If A ∈ Rn×m satis£es URP, and s ∈ null(A)
has at most n elements with absolute values greater than α,
then ‖s‖ < (M + 1)mα, where M is as de£ned in (14).

Lemma 2: Let a function fσ(s) have the properties fσ(0) =
1 and ∀s, 0 ≤ fσ(s) ≤ 1, and let Fσ(s) be de£ned as in (4).
Assume A satis£es the URP, and let S , {s |As = x}.
Assume that there exists a (sparse) solution s0 ∈ S for which
‖s0‖0 = k ≤ n/2 (such a sparse solution is unique [13], [15]).
Then, if for a solution ŝ = (ŝ1, . . . , ŝm)T ∈ S:

Fσ (̂s) ≥ m− (n− k), (16)

and if α > 0 is chosen such that the ŝi’s with absolute values
greater than α satisfy fσ(ŝi) ≤ 1

m , then:

‖ŝ− s0‖ < (M + 1)mα, (17)

where M is as de£ned in (14).
Proof: Let Iα be the set of all indices i for which |ŝi| >

α, and denote its number of elements by |Iα|. Then:

Fσ (̂s) =

m∑

i=1

fσ(ŝi)

=
∑

i/∈Iα

fσ(ŝi)
︸ ︷︷ ︸

≤1
︸ ︷︷ ︸

≤m−|Iα|

+
∑

i∈Iσ

fσ(ŝi)
︸ ︷︷ ︸

< 1
m

︸ ︷︷ ︸

<m· 1
m
=1

< m− |Iα|+ 1.

Combining this result with (16), we obtain:

m− (n− k) ≤ Fσ (̂s) < m− |Iα|+ 1

⇒ |Iα| < n− k + 1⇒ |Iα| ≤ n− k.

Consequently, at most n−k elements of ŝ have absolute values
greater than α. Since s0 has exactly k non-zero elements, we
conclude that ŝ−s0 has at most (n−k)+k = n elements with
absolute values greater than α. Moreover, (̂s− s0) ∈ null(A)
(because A(̂s − s0) = x − x = 0), and hence Corollary 1
implies (17).

Corollary 2: For the Gaussian family (1), if (16) holds for
a solution ŝ, then:

‖ŝ− s0‖ < (M + 1)mσ
√
2 lnm. (18)

Proof: For Gaussian family (1), the α of the above lemma
can be chosen as α = σ

√
2 lnm, because for |ŝi| > σ

√
2 lnm:

fσ(ŝi) = exp

{

− ŝ2i
2σ2

}

< exp

{

−σ
2 · 2 lnm
2σ2

}

=
1

m
.

Moreover, this family satis£es the other conditions of the
lemma.

Lemma 3: Let fσ , Fσ , S and s0 be as in Lemma 2, and let
sσ be the maximizer of Fσ(s) on S. Then sσ satis£es (16).

Proof: We write:

Fσ(s
σ) ≥ Fσ(s

0) (because sσ is the maximizer)
≥ m− k (see below) (19)
≥ m− (n− k) (because k ≤ n

2 ).

The second inequality was written because s0 has m−k zeros,
and hence in the summation (4) there are m−k ones, and the
other terms are non-negative.

Note that Lemma 3 and Corollary 2 prove together that for
the Gaussian family (1), argmaxAs=x Fσ(s) → s0 as σ →
0. This result can, however, be stated for a larger class of
functions fσ , as done in the following Theorem.

Theorem 1: Consider a family of univariate functions fσ ,
indexed by σ, σ ∈ R+, satisfying the set of conditions:

1) limσ→0 fσ(s) = 0 ; for all s 6= 0
2) fσ(0) = 1 ; for all σ ∈ R+

3) 0 ≤ fσ(s) ≤ 1 ; for all σ ∈ R+, s ∈ R
4) For each positive values of ν and α, there exists σ0 ∈

R+ that satis£es:

|s| > α⇒ fσ(s) < ν ; for all σ < σ0. (20)

Assume A satis£es the URP, and let S, Fσ and s0 be as de£ned
in Lemma 2, and sσ = (sσ1 , . . . , s

σ
m)T be the maximizer of

Fσ(s) on S. Then:
lim
σ→0

sσ = s0. (21)

Proof: To prove (21), we have to show that:

∀β > 0 ∃σ0 > 0, ∀σ < σ0 ‖sσ − s0‖ < β. (22)

For each β, let α = β/m(M + 1), where M is as de£ned in
(14). Then for this α and ν = 1

m , condition 4 of the theorem
gives a σ0 for which (20) holds. We show that this is the σ0 we
were seeking for in (22). Note that ∀σ < σ0, (20) states that for
sσi ’s with absolute values greater than α we have fσ(sσi ) <

1
m .

Moreover, Lemma 3 states that sσ satis£es (16). Consequently,
all the conditions of Lemma 2 have been satis£ed, and hence
it implies that ‖sσ − s0‖ < (M + 1)mα = β.

Remark 1. The Gaussian family (1) satis£es conditions
1 through 4 of Theorem 1. In fact, conditions 1, 2 and 3 are
obvious. To see condition 4, it is suf£cient to choose σ20 =
−α2/(2 ln ν) if ν < 1, or to choose any arbitrary σ20 ∈ R+ if
ν ≥ 1. Families of functions de£ned by (5), (6) and (7) also
satisfy the conditions of this theorem.

Remark 2. Using Corollary 2, where using Gaussian
family (1), to ensure an arbitrary accuracy β in estimation
of the sparse solution s0, it suf£ces to choose:

σ <
β

m
√
2 lnm(M + 1)

,

and do the optimization of Fσ subject to As = x.

Remark 3. Consider the set of solutions ŝσ in S, which
might not be the absolute maxima of functions Fσ on S, but
satisfy the condition

Fσ (̂s
σ) ≥ m− (n− k). (23)

By following a similar approach to the proof of Theorem 1,
it can be proved that limσ→0 ŝ

σ = s0. In other words, for
the steepest ascent of the internal loop, it is not necessary to
reach the absolute maximum. It is just required to achieve a
solution in which Fσ is large enough (see also Remark 1 of
Section III).
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Remark 4. The previous remark proposes another version
of SL0 in which there is no need to set a parameter L: Repeat
the internal loop of Fig. 1 until Fσ(s) exceeds m− n/2 (the
worst case of the limit given by (23)) or m − (n − k) if k
is known a priori (note that (19) implies the maximizer of
Fσ(s) for a £xed σ surely exceeds both of these limits). The
advantage of such a version is that if it converges, then it is
guaranteed that the estimation error is bounded as in (18), in
which σ is replaced with σJ . It has however two disadvantages:
£rstly, it slows down the algorithm because exceeding the limit
m− (n− k) for each σ is not necessary (it is just suf£cient);
and secondly, because of the possibility that the algorithm runs
into an in£nite loop because Fσ(s) cannot exceed this limit
(this occurs if the chosen sequence of σ has not been resulted
in escaping from local maxima).

Remark 5. As another consequence, Lemma 1 provides
an upper bound on the estimation error ‖ŝ − s0‖, only by
having an estimation ŝ (which satis£es Aŝ = x): Begin by
sorting the elements of ŝ in descending order and let α be the
absolute value of the (

⌊
n
2

⌋
+1)’th element. Since s0 has at most

n/2 non-zero elements, ŝ − s0 has at most n elements with
absolute values greater than α. Moreover, (̂s− s0) ∈ null(A)
and hence Corollary 1 implies that ‖ŝ − s0‖ ≤ (M + 1)mα,
where M is as de£ned in (14). This result is consistent with
the heuristic “if ŝ has at most n/2 ‘large’ components, the
uniqueness of the sparsest solution insures that ŝ is close to
the true solution”.

B. Relation to minimum norm 2 solution

In section II-B, it was stated and informally justi£ed (for
the Gaussian family (1)) that for very large σ’s, the maximizer
of the function Fσ subject to As = x is the minimum `2-norm
solution of As = x. This result can be more accurately proved,
and also generalized to a wider class of functions:

Theorem 2: Consider a family of one variable functions
fσ(·), parameterized by σ ∈ R+, satisfying the set of con-
ditions:

1) All functions fσ are scaled versions of some analytical
function f , that is, fσ(s) = f(s/σ)

2) ∀s ∈ R, 0 ≤ f(s) ≤ 1
3) f(s) = 1⇔ s = 0
4) f ′(0) = 0
5) f ′′(0) < 0

Assume that the matrix A is full-rank and let ŝ ,
argminAs=x ‖s‖ = AT (AAT )

−1
x be the minimum `2-norm

solution of the USLE As = x. Then:

lim
σ→∞

argmax
As=x

Fσ(s) = ŝ.

Proof: Let sσ = (sσ1 , . . . , s
σ
m)T = argmaxAs=x Fσ(s).

Then, we have to show that limσ→∞ sσ = ŝ = (ŝ1, . . . , ŝm)T .
First we show that:

lim
σ→∞

sσ

σ
= 0. (24)

Since sσ is the maximizer of Fσ , we have:

Fσ(s
σ) ≥ Fσ (̂s), (25)

and hence:

lim
σ→∞

Fσ(s
σ) ≥ lim

σ→∞
Fσ (̂s) =

m∑

i=1

lim
σ→∞

f(ŝi/σ) = m

⇒
m∑

i=1

lim
σ→∞

f(sσi /σ) = Fσ(s
σ) ≥ m. (26)

On the other hand, assumption 2 implies that for all 1 ≤ i ≤
m, 0 ≤ limσ→∞ f(sσi /σ) ≤ 1. Combining this with (26), we
have:

lim
σ→∞

f(sσi /σ) = 1 ; for 1 ≤ i ≤ m. (27)

This result, combined with assumption 3 (that is, f−1(1) =
0) and the continuity of f implies that for all 1 ≤ i ≤ m,
limσ→∞ sσi /σ = 0; from which (24) is deducted.

Now, let γ = −1
2 f

′′(0) > 0. Then we can write

f(s) = 1− γs2 + g(s),

where:
lim
s→0

g(s)

s2
= 0. (28)

Then:

Fσ(s) = m− γ

σ2

m∑

i=1

s2i +
m∑

i=1

g(si/σ).

Consequently, (25) can be written as:

γ

σ2

m∑

i=1

(sσi )
2 −

m∑

i=1

g(sσi /σ) ≤
γ

σ2

m∑

i=1

(ŝi)
2 −

m∑

i=1

g(ŝi/σ)

⇒ ‖sσ‖2 − ‖ŝ‖2 ≤ σ2

γ

m∑

i=1

g(sσi /σ)−
σ2

γ

m∑

i=1

g(ŝi/σ)

=
1

γ

m∑

i=1

g(sσi /σ)

(sσi /σ)
2
(sσi )

2 − 1

γ

m∑

i=1

g(ŝi/σ)

(ŝi/σ)2
(ŝi)

2

≤ 1

γ
|
m∑

i=1

g(sσi /σ)

(sσi /σ)
2
(sσi )

2|+ 1

γ
|
m∑

i=1

g(ŝi/σ)

(ŝi/σ)2
(ŝi)

2|

≤ 1

γ
(
m∑

i=1

|g(s
σ
i /σ)

(sσi /σ)
2
|)‖sσ‖2 + 1

γ
(
m∑

i=1

|g(ŝi/σ)
(ŝi/σ)2

|)‖ŝ‖2,

where for the last inequality, we have used the inequality:

|
∑

i∈I,j∈J

xiyj | ≤
∑

i∈I

|xi|
∑

j∈J

|yj |.

Finally:

‖sσ‖2 ≤ ‖ŝ‖2
1 + 1

γ (
∑m

i=1 |
g(ŝi/σ)
(ŝi/σ)2

|)
|1− 1

γ (
∑m

i=1 |
g(sσi /σ)

(sσi /σ)
2 |)|

,

lim
σ→∞

ŝi/σ = 0⇒ lim
σ→∞

g(ŝi/σ)

(ŝi/σ)2
= 0 (from (28)),

lim
σ→∞

sσi /σ = 0⇒ lim
σ→∞

g(sσi /σ)

(sσi /σ)
2
= 0 (from (28)),

⇒ lim
σ→∞

‖sσ‖2 ≤ ‖ŝ‖2. (29)

Noting that ŝ is the minimum `2-norm solution of As = x,
‖sσ‖2 ≥ ‖ŝ‖2, and hence limσ→∞ ‖sσ‖2 ≥ ‖ŝ‖2. Combining
this with (29), we have:

lim
σ→∞

‖sσ‖2 = ‖ŝ‖2. (30)
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On the other hand, since ŝ is the minimum `2-norm solution of
As = x, it is perpendicular to any vector contained in null(A).
This is because ∀v ∈ null(A),Av = 0, and hence vT ŝ =
vTAT (AAT )−1x = (Av)T (AAT )−1x = 0. Consequently,
ŝ is perpendicular to sσ − ŝ. Therefore:

‖sσ‖2 = ‖ŝ‖2 + ‖sσ − ŝ‖2
⇒ lim

σ→∞
‖sσ‖2 = ‖ŝ‖2 + lim

σ→∞
‖sσ − ŝ‖2.

Combining this with (30) we have limσ→∞ ‖sσ − ŝ‖2 = 0,
and hence limσ→∞ sσ = ŝ.

Remark 1. The Gaussian family (1) satis£es the condi-
tions 1 through 5 of Theorem 2. Therefore, for this family
of functions, the minimum `2-norm solution is the optimal
initialization. Family of functions de£ned by (7) also satis£es
the conditions of this theorem, contrary to those de£ned in (5)
and (6) which are not analytic.

C. The noisy case

As shown in the proof of Theorem 1, in the noiseless case,
a smaller value of σ results in a more accurate solution and
it is possible to achieve solutions as accurate as desired by
choosing small enough values of σ. However, this is not the
case in the presence of additive noise6, that is, if x = As+n.
In fact, noise power bounds maximum achievable accuracy.
We state a theorem in this section, which can be considered
as an extension of Theorem 1 to the noisy case.

First, we state the following lemma, which can be consid-
ered as a generalization to Lemma 1.

Lemma 4: Let A satisfy the conditions of Lemma 1, and
assume that the vector s has m − n elements with absolute
values less than α, and ‖As‖ < ε. Then ‖s‖ < β, where

β = (M + 1)(mα+ ε),

and M is as de£ned in (14).

Note that in this lemma, instead of condition As = 0, we
have a relaxed condition ‖As‖ < ε. Lemma 1 is the special
(noiseless) case of this lemma where ε→ 0.

Proof: Let Iα, Â, s̃, s̄ and M be de£ned as in the proof
of Lemma 1. Then

‖
m∑

i=1

siai‖ < ε⇒ ‖
∑

i∈Iα

siai +
∑

i/∈Iα

siai‖ < ε⇒

‖
∑

i∈Iα

siai‖ < ‖
∑

i/∈Iα

siai‖ + ε ≤
∑

i/∈Iα

‖siai‖ + ε =

∑

i/∈Iα

|si|‖ai‖ + ε ≤
∑

i/∈Iα

α+ ε = (m− |Iα|)α+ ε ≤ mα+ ε.

Therefore, by repeating the calculations of (12) and (13), we
obtain ‖s‖ < (M + 1)(mα+ ε).

6The ‘noise’ in this context has two meanings: 1) the noise in the source
vector s means that the inactive elements of s are not exactly equal to zero;
and 2) the (additive) noise in the sensors means that x is not exactly equal to
As. In the theorems of this section, only the second type of noise has been
considered, and it is assumed that the £rst type does not exist. In other words,
the inactive elements of s are assumed to be exactly zero.

Theorem 3: Let Sε = {s| ‖As − x‖ < ε}, where ε is an
arbitrary positive number, and assume that the matrix A and
functions fσ satisfy the conditions of Theorem 1. Let s0 ∈ Sε
be a sparse solution, and assume that fσ satis£es the extra
conditions:

1) There exists γ > 0 such that

| d
ds
fσ(s)| < γ/σ ; for all σ > 0 and all s

2) For each positive values of ν and σ0, there exists an
α > 0 that satis£es:

|s| > α⇒ fσ(s) < ν ; for all σ < σ0

Let M and k be de£ned as in Theorem 1. Then under the
condition k < n/2, by choosing

σ0 =
mγε‖AT (AAT )−1‖

(n− 2k)
, (31)

and optimizing Fσ0
, the sparse solution can be estimated with

an error smaller than

(M + 1)(mα+ ε),

where α is the value for which the condition 2 holds for σ0
and ν = 1/m.

Proof: Let n , As0 − x. Then, s0 ∈ Sε means that
‖n‖ < ε. By de£ning ñ , AT (AAT )−1n, we have:

x = As0 + n = As0 +Añ = A(s0 + ñ) = As̃,

where s̃ , s0+ñ. Let sσ be the maximizer7 of Fσ on As = x,
as de£ned in Theorem 1. When working with `0-norm, no
matter how much small is ε and how much sparse is s0, s̃ is
not necessarily sparse. However, as will be discussed, because
Fσ is continuous and ‖n‖ is small, the value of Fσ at s̃ is
close to its value at s0 (and thus, is large). In fact:

Fσ (̃s) = Fσ(s
0 + ñ) ' Fσ(s

0) +∇Fσ(s0) · ñ.
By de£ning g(t) , Fσ(s

0 + ñt), we have g(0) = Fσ(s
0) and

g(1) = Fσ(s
0 + ñ) = Fσ (̃s). Using the mean value theorem,

there exists a 0 ≤ t ≤ 1 such that:

|Fσ (̃s)− Fσ(s
0)| = |g(1)− g(0)| ≤ (1− 0)g′(t)

= ∇Fσ(s0 + ñt) · ñ ≤ ‖∇Fσ(s0 + ñt)‖ · ‖ñ‖
We write:
{
∀s | ddsfσ(s)| < γ/σ ⇒ ‖∇Fσ(s0 + ñt)‖ < mγ/σ
‖ñ‖ = ‖AT (AAT )−1n‖ < ‖AT (AAT )−1‖ε

}

⇒

|Fσ (̃s)− Fσ(s
0)| < mγε‖AT (AAT )−1‖/σ

Let choose σ0 according to (31). Then:
{
|Fσ0

(̃s)− Fσ0
(s0)| < n− 2k

Fσ0
(s0) ≥ m− k

⇒ Fσ0
(̃s) > m− (n− k)

The vector s0 does not necessarily satisfy As = x, however
we have chosen s̃ to be the projection of s0 onto the subspace
As = x. Hence, s̃ satis£es As = x and since sσ0 is the
maximizer of Fσ0

on As = x, Fσ0
(sσ0) > m − (n − k).

7Note that, sσ is not necessarily maximizer of Fσ on the whole Sε.
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Consequently, by choosing α as the value for which the
condition 2 holds for ν = 1/m and σ0, and following the same
steps as in the proof of Theorem 1, we conclude that at most
n − k elements of sσ0 can have absolute values greater than
α. Then, since s0 has at most k nonzero elements, (s0 − sσ0)
has at most n elements with absolute values greater than α.
Noticing ‖A(s0 − sσ0)‖ = ‖As0 − x‖ < ε, we see that
(s0 − sσ0) satis£es the conditions of Lemma 4, and hence:

‖s0 − sσ0‖ ≤ (M + 1)(mα+ ε). (32)

Remark 1. A few calculations show that the Gaussian
families (1) satis£es the condition 1 of the theorem for γ =
exp(−1/2) and the condition 2 for α = −σ0

√

2 ln(ν). Family
of functions de£ned by (7) also satisfy the conditions of this
theorem.

Remark 2. Note that for Gaussian family of functions
and under the condition k < n/2, accuracy of the solution is
proportional to the noise power8. In fact, we have accuracy of
at least C · ε, where:

C =
(exp(−1/2)m2

√
2 lnm ‖AT (AAT )−1‖
n− 2k

+ 1
)
(M + 1).

If ε→ 0, by choosing σ0 according to (31), sσ0 converges to
s0.

Remark 3. According to Theorem 3, in contrast to the
noiseless case, it is not possible here to achieve arbitrarily
accurate solutions. Accuracy is bounded by the noise power,
and to guaranty an error estimation less than β using Theorem
3, it is required to satisfy ε < β/C.

V. EXPERIMENTAL RESULTS

In this section, the performance of the presented approach
is experimentally veri£ed and is compared with BP (and
with FOCUSS for the £rst experiment). The effects of the
parameters, sparsity, noise, and dimension on the performance
are also experimentally discussed.

In all of the experiments (except in Experiment 3), sparse
sources are arti£cially created using a Bernoulli-Gaussian
model: each source is ‘active’ with probability p, and is
‘inactive’ with probability 1−p. If it is active, each sample is
a zero-mean Gaussian random variable with variance σ2on; if
it is not active, each sample is a zero-mean Gaussian random
variable with variance σ2off , where σ2off ¿ σ2on. Consequently,
each si is distributed as:

si ∼ p · N (0, σon) + (1− p) · N (0, σoff), (33)

where p denotes the probability of activity of the sources,
and sparsity implies that p¿ 1. σoff models the noise in the
sources, that is, small values of the sparse sources in their
inactive case. This parameter is mostly meaningful in SCA
applications, in which, usually the sources in their inactive
states are not exactly zero. However, in sparse decomposition
applications σoff can be usually set to zero, that is, most
elements of the dictionary are absent in the decomposition.

8Optimal choice of σ0 is also proportional to the noise power.

TABLE I
PROGRESS OF SL0 FOR A PROBLEM WITH m = 1000, n = 400 AND

k = 100 (p = 0.1).

itr. # σ MSE SNR (dB)
1 1 4.84 e−2 2.82
2 0.5 2.02 e−2 5.19
3 0.2 4.96 e−3 11.59
4 0.1 2.30 e−3 16.44
5 0.05 5.83 e−4 20.69
6 0.02 1.17 e−4 28.62
7 0.01 5.53 e−5 30.85

algorithm total time (sec) MSE SNR (dB)
SL0 0.227 5.53 e−5 30.85

LP (`1-magic) 30.1 2.31 e−4 25.65
FOCUSS 20.6 6.45 e−4 20.93

In our simulations, σon is always £xed to 1. The effect of
σoff is investigated only in the £rst experiment. In all the other
experiments it is set to zero.

Each column of the mixing matrix is randomly generated
using the normal distribution and then is normalized to unity.
Then, the mixtures are generated using the noisy model:

x = As+ n, (34)

where n is an additive white Gaussian noise (modeling sensor
noise, or decomposition inaccuracy) with covariance matrix
σnIn (where In stands for the n× n identity matrix).

To evaluate the estimation quality, Signal-to-Noise Ratio
(SNR) and Mean Square Error (MSE) are used. SNR (in dB)
is de£ned as 20 log(‖s‖/‖s− ŝ‖) and MSE as (1/m)‖s− ŝ‖2,
where s and ŝ denote the actual source and its estimation,
respectively.

Using (33), the number of active sources has a binomial
distribution with average mp. In the experiments, we will use
the parameter k = mp, instead of p.

Experiment 1. Performance analysis
In this experiment, we study the computational cost of

the presented method, and compare its performance with `1-
magic [25] as one of the fastest implementations of interior-
point LP, and with FOCUSS9. In rest of the paper, by LP we
mean `1-magic implementation of the interior point LP.

The values used for the £rst part of the experiment are m =
1000, n = 400, p = 0.1, σoff = 0, σon = 1, σn = 0.01 and
the sequence of σ is £xed to [1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01].
µ is £xed to 2.5. For each value of σ the gradient-projection
loop (the internal loop) is repeated three times, i.e., L = 3
(in¤uence of L is discussed in part of experiment 2; in all
other experiments µ and L are £xed to 2.5 and 3).

We use the CPU time as a measure of complexity. Although
it is not an exact measure, it gives a rough estimation of
the complexity, for comparing SL0 and LP algorithms. Our
simulations are performed in MATLAB7 environment using
an AMD Athlon sempron 2400+, 1.67GHz processor with
512MB of memory, and under Microsoft Windows XP op-
erating system.

Table I shows the gradual improvement in the output SNR
after each iteration, for a typical run of SL0. Moreover, for

9For FOCUSS, we have used the MATLAB code available at
http://dsp.ucsd.edu/˜jfmurray/software.htm



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 2007 9

0 200 400 600 800 1000
−2

0

2

0 200 400 600 800 1000
−2

0

2

0 200 400 600 800 1000
−2

0

2

0 200 400 600 800 1000
−2

0

2

Fig. 2. Evolution of SL0 toward the solution: m = 1000, n = 400 and
k = 100(p = 0.1). From top to bottom, £rst plot corresponds to the actual
source, second plot is its estimation at the £rst level (σ = 1), third plot is its
estimation at the second level (σ = 0.5), while the last plot is its estimation
at third level (σ = 0.2).

this run, the total time and £nal SNR have been shown for
SL0, for LP, and for FOCUSS. It is seen that SL0 performs
two orders of magnitude faster than LP, while it produces a
better SNR (in some applications, it can be even three orders
of magnitudes faster: see Experiment 6). Figure 2 shows the
actual source and it’s estimations at different iterations for this
run of SL0.

The experiment was then repeated 100 times (with the
same parameters, but for different randomly generated sources
and mixing matrices) and the values of SNR (in dB) ob-
tained over these simulations were averaged. These averaged
SNR’s for SL0, LP, and FOCUSS were respectively 30.85dB,
26.70dB, and 20.44dB; with respective standard deviations
2.36dB, 1.74dB and 5.69dB. The minimum values of SNR
for these methods were respectively 16.30dB, 18.37dB, and
10.82dB. Among the 100 runs of the algorithm, the number
of experiments for which SNR>20dB was 99 for SL0 and LP,
but only 49 for FOCUSS.

In the second part of the experiment, we use the same
parameters as in the £rst part, except σoff = 0.01 to model
the noise of the sources in addition to AWG noise modeled
by σn. The averaged SNR’s for SL0, LP, and FOCUSS were
respectively 25.93dB, 22.15dB and 18.24; with respective
standard deviations 1.19dB, 1.23dB and 3.94dB.

Experiment 2. Dependence on the parameters
In this experiment, we study the dependence of the perfor-

mance of SL0 to its parameters. The sequence of σ is always
chosen as a decreasing geometrical sequence σj = cσj−1, 1 ≤
j ≤ J , which is determined by the £rst and last elements, σ1
and σJ , and the scale factor c. Therefore, when considering the
effect of the sequence of σ, it suf£ces to discuss the effect of
these three parameters on the performance. Reasonable choice
of σ1, and also approximate choice of µ have already been
discussed in Remarks 2 to 5 of Section III. Consequently, we
are mainly considering the effects of other parameters.

The general model of the sources and the mixing system,
given by (33) and (34), has four essential parameters: σon,
σoff , σn, and p. We can control the degree of source sparsity
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Fig. 3. Performance of SL0 as function of c for the case m = 1000 and
n = 400 (SNR’s are averaged over 100 runs of the algorithm). σ1 is £xed to
1 (large enough) and σJ is £xed to 0.01 (small enough). In (a) k is £xed to
100 and effect of noise is investigated. In (b) σn is £xed to 0.01 and effect
of sparsity factor is analyzed.

and the power of the noise by changing10 k = mp and σn.
We examine the performance of SL0 and its dependence to
these parameters for different levels of noise and sparsity.
In this and in the followings, except Experiment 6, all the
simulations are repeated 100 times with different randomly
generated sources and mixing matrices and the values of the
SNR’s (in dB) obtained over these simulations are averaged.

Figures 3 represents the averaged SNR (as the measure of
performance) versus the scale factor c, for different values of
k = mp and σn. It is clear from Fig. 3(a) that SNR increases
when c increases form zero to one. However, when c exceeds
a critical value (0.5 in this case), SNR remains constant and
does not increase anymore.

Generally, the optimal choice of c depends on the applica-
tion. When SNR is the essential criterion, c should be chosen
large, resulting in a more slowly decreasing sequence of σ, and
hence in a higher computational cost. Therefore, the choice
of c is a trade-off between SNR and computational cost.
However, as seen in the £gures, when c approaches to unity,
SNR does not increase in£nitely. In Fig. 3(a), the optimal value
of c, i.e. the smallest value of c that achieves the maximum

10Note that the sources are generated using the model (33). Therefore, for
example k = 100 does not necessarily mean that exactly 100 sources are
active.
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Fig. 4. Performance of SL0 versus σJ for m = 1000 and n = 400 (SNR’s
are averaged over 100 runs of the algorithm). σ1 is £xed to 1 (large enough)
and c is £xed to 0.8 (near enough to one). In (a) k is £xed to 100 and effect
of noise is investigated. In (b) σn is £xed to 0.01 and effect of sparsity factor
is analyzed.

SNR, is approximatively c = 0.5. However, it is clear from
Fig. 3(b) that the optimal choice of c depends on the sparsity,
but not on the noise power. Exact calculation of the optimal c
might be very hard. To guarantee an acceptable performance,
it suf£ces to choose c greater than its optimal value.

From [15], we know that k < n/2 is a theoretical limit for
sparse decomposition. However, most of the current methods
cannot approach this limit (see Experiment 3). In Fig. 3(b),
k = 190 ' 200 = n/2 is plotted, and it is clear that by
choosing c larger than 0.9 an acceptable performance can be
achieved (however, with a much higher computational cost).

In Fig. 4, SNR is plotted versus − ln(σJ) (where σJ is
the last and smallest σ) for different values of k and σn.
In Fig. 4(a), for the noiseless case, SNR increases linearly,
by increasing in − ln(σJ). Although not directly clear from
the £gure, calculation of the obtained values of the £gure
better shows this linear relationship. This con£rms the results
of Theorem 1 (accuracy is proportional to the £nal value of
σ). In the noisy case, SNR increases £rst, and then remains
constant. As was predicted by Theorem 3, in the noisy case
the accuracy is bounded and might not be increased arbitrarily.

Generally, the optimal choice of σJ depends on the applica-
tion. In applications in which SNR is highly more important
than the computational load, σJ should be chosen small,
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)

Fig. 5. Averaged SNR (on 100 runs of the algorithm) versus L for the case
m = 1000 and n = 400, k = 100 and σn = 0.01

resulting in a larger sequence of σ, and hence a higher
computational cost. However, excessively small choice of σJ
(smaller than the optimal choice) does not improve SNR (in
fact SNR is slightly decreased. Recall also the Remark 6 of
Section III). It is clear from Fig. 4 that the optimal choice of
σJ depends on the noise power, but not on the sparsity. Exact
calculation of the optimal σJ might be very hard. To guarantee
an acceptable performance, it suf£ces to choose σJ less than
its optimal value.

From this experiment it can be concluded that, although
£nding optimal values of the parameters for optimizing the
SNR with the least possible computational cost may be very
hard, the algorithm is not very sensitive to the parameters, and
it is not dif£cult to choose a sequence of σ (i.e., c and σJ ).

Finally, to study the effect of L (number of iterations of the
internal steepest ascent loop), the parameters are £xed to the
values used at the beginning of Experiment 1, and the averaged
SNR (over 100 runs of the algorithm) is plotted versus L in
Fig. 5. It is clear from this £gure that the £nal SNR achieves its
maximum for a small L, and no longer improves by increasing
it, while the computation cost is directly proportional to L.
Hence, as it was said in Remark 1 of Section III and Remark 3
of Section IV-A, we generally £x L to a small value, say
L = 3.

Experiment 3. Effect of sparsity on the performance
How much sparse a source vector s should be to make

its estimation possible using our algorithm? Here, we try to
answer this question experimentally. As mentioned before,
there is the theoretical limit of n/2 on the maximum number of
active sources to insure the uniqueness of the sparsest solution.
But, practically, most algorithms cannot achieve this limit [15],
[13].

To be able to measure the effect of sparsity, instead of gen-
erating the sources according to the model (33), we randomly
activate exactly k elements out of m elements. Figure 6 then
shows the output SNR versus k, for several values of c, and
compares the results with LP. Note that SL0 outperforms LP,
specially in cases where k ' n/2 = 200.

It is obvious from the £gure that all methods work well
if k is smaller than a critical value, and they start breaking
down as soon as k exceeds this critical value. Figure 6 shows
that the break-down value of k for LP and for SL0 with
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Fig. 7. Averaged SNR’s (over 100 runs of the algorithm) versus the noise
power σn for different values of σJ , and for LP. The parameters are m = 100,
n = 400, k = 100, σ1 = 1, and c = 0.8.

c = 0.5 is approximately 100 (half of the theoretical limit
n/2 = 200). For c = 0.8 and c = 0.95, this break-down
value is approximately 150 and 180. Consequently, with our
algorithm, it is possible to estimate less sparse sources than
with LP algorithm. It seems also that by pushing c toward 1,
we can push the breaking-down point toward the theoretical
limit n/2; however, the computational cost might become
intolerable, too.

Experiment 4. Robustness against noise
In this experiment, the effect of the noise variance, σn, on

the performance is investigated for different values of σJ and
is compared with the performance of LP. Figure 7 depicts
SNR versus σn for different values of σJ for both methods.
The £gure shows the robustness of SL0 against small values
of noise. In the noiseless case (σn < .02), LP performs better
(note that σoff = 0, and in SL0, σ is decreased only to 0.005).
In the noisy case, smoothed-`0 achieves better SNR. Note that
the dependence of the optimal σJ to σn is again con£rmed by
this experiment.
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Fig. 8. Effect of scale on performance (SNR’s are averaged over 100 runs
of the algorithm). σn = 0.01, c = 0.8, σ1 = 1, σJ = 0.01, and SL0 is
compared with LP. In (a) m is £xed to 1000 and SNR is plotted versus n
for different values of k. In (b) SNR is plotted versus log(m) for different
values of k, while n is £xed to d0.4me.

Experiment 5. Number of sources and sensors
In this experiment, we investigate the effect of the system

scale (i.e., the dimension of the mixing matrix, m and n) on
the performance and justify the scalability of SL0.

First, to analyze the effect of the number of mixtures (n),
by £xing m to 1000, SNR is plotted versus n, for different
values of k in Fig. 8(a). It is clear from this £gure that both
methods perform poorly while 2k > n (note that the sparsest
solution is not necessarily unique in this case). SL0 performs
better as soon as n exceeds 2k (the theoretical limit for the
uniqueness of the sparsest solution).

Then, to analyze the effect of scale, n is £xed to d0.4me,
and SNR is plotted versus log(m) for different values of k
in Fig. 8(b). From this £gure it is obvious that SL0 and LP
perform similarly for small values of k (k ' 10), but SL0
outperforms LP for larger values of k (k ' 100).

Experiment 6. Computational Cost in BSS applications
In BSS and SCA applications, the model (34) is written as

x(t) = As(t) + n(t), 1 ≤ t ≤ T , where T is the number of
samples. In matrix form, this can be written as X = AS+N,
where X, S, and N are respectively n×T , m×T and n×T
matrices, where each column stands for a time sample.

For solving this problem with LP, the system x(t) =
As(t) + n(t) should be individually solved for each value
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Fig. 9. Average computation time per sample of SL0, as a function of T ,
number of (time) samples, for the case m = 1000, n = 400 and k = 100.
σn is chosen 0.01 and the sequence of σ is £xed to [1, 0.5, 0.2, 0.1, 0.05,
0.02, 0.01], the same parameter used in £rst experiment.

of 1 ≤ t ≤ T . This trivial approach can also be used with
SL0. However, since all the steps of SL0 presented in Fig. 1
are in matrix form, it can also be directly run on the whole
matrices X and S. Because of the speed of the current matrix
multiplication algorithms11, this results in an increased speed
in the total decomposition process.

Figure 9 shows the average computation time per sample of
SL0 for a single run of the algorithm, as a function of T for the
case m = 1000, n = 400 and k = 100. The £gure shows that
by increasing T , average computation time £rst increases, then
decreases and reach to a constant. For T = 1, the computation
time is 266ms (this is slightly different with the time of the
£rst experiment, 227ms, because these are two different runs).
However, for T = 10000, the average computation time per
sample decreases to 38ms. In other words, in average, SL0
£nds the sparse solution of a linear system of 400 equations
and 1000 unknowns just in 38ms (compare this with 30s for
`1-magic, given in Experiment 1).

VI. CONCLUSIONS

In this paper, we showed that the smoothed `0 norm can be
used for £nding sparse solutions of an USLE. We showed also
that the smoothed version of the `0 norm not only solves the
problem of intractable computational load of the minimal `0

search, but also results in an algorithm which is highly faster
than the state-of-the-art algorithms based on minimizing the
`1 norm. Moreover, this smoothing solves the problem of high
sensitivity of `0 norm to noise. In another point of view, the
smoothed `0 provides a smooth measure of sparsity.

The basic idea of the paper was justi£ed by both theoretical
and experimental analysis of the algorithm. In the theoretical
part, Theorem 1 shows that SL0 is equivalent to `0-norm for

11Let A, s and S be n × T , m × 1 and m × T matrices, respectively.
In MATLAB, the time required for the multiplication AS is highly less than
T times of the time required for the multiplication As. This seems to not
be due to the MATLAB’s interpreter, but a property of Basic Linear Algebra
Sub-programs (BLAS). BLAS is a free set of highly optimized routines for
matrix multiplications, and is used by MATLAB for its basic operations. This
property does not exist in MATLAB 5.3 which was not based on BLAS.

a large family of functions fσ . Theorem 2 gives a strong
assessment for using `2-norm solution for initialization. This
theorem also suggests that the minimal `2 norm can be seen
as a rough estimation of the sparse solution (like Method
Of Frames), which will be modi£ed in the future iterations.
Theorem 3 justi£es the robustness of SL0 against noise.

Other properties of the algorithm were studied experimen-
tally. In particular, we showed that (1) the algorithm is highly
faster than the state-of-the-art LP approaches (and it is even
more ef£cient in SCA applications), (2) choosing suitable
values for its parameters is not dif£cult, (3) contrary to
previously known approaches it can work if the number of
non-zero components of s is near n/2 (the theoretical limit for
the uniqueness of the sparse solution), and (4) the algorithm
is robust against noise.

Up to now, we have no theoretical result for determining
how much ‘gradual’ we should decrease the sequence of σ,
and it remains an open problem for future works. Some open
questions related to this issue are: Is there any sequence of σ
which guaranties escaping from local maxima for the Gaussian
family of functions Fσ given in (1)? If yes, how to £nd this
sequence? If not, what happens with other families of functions
Fσ? Moreover, is there any (counter-)example of A, s and x

for which we can prove that for any sequence σ the algo-
rithm will get trapped into a local maximum? These issues,
mathematically dif£cult but essential for proving algorithm
convergence, are currently investigated. However, Experiment
2 showed that it is fairly easy to set some parameters to achieve
a suitable performance. Moreover, for an estimation ŝ of the
sparsest source (obtained by any method), we provided in
Remark 5 of Section IV-A an upper bound for the estimation
error.

In addition, future works include better treatment of the
noise in the model (34) by taking it directly into account
in the algorithm (e.g. by adding a penalty term to Fσ).
Moreover, testing the algorithm on different applications (such
as compressed sensing) using real-world data is under study
in our group.
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