A D E D)/A Nios Il Hardware

® Development

Introduction

Altera Corporation
October 2007

This tutorial introduces you to the system development flow for the
Nios II processor. This tutorial is a good starting point if you are new to
the Nios II processor or the general concept of building embedded
systems in FPGAs. In this tutorial you build a Nios Il hardware system
and create a software program to run on the Nios II system.

Building embedded systems in FPGAs is a broad subject, involving
system requirements analysis, hardware design tasks, and software
design tasks. This tutorial guides you through the basics of each topic,
with special focus on the hardware design steps. Where appropriate, the
tutorial refers you to further documentation for greater detail.

If you are interested only in software development for the Nios II
processor, see the Software Development Tutorial available in the Nios II
IDE help system.

When you complete this tutorial, you will understand the Nios II system
development flow, and you will be able to create your own custom Nios II
system.

Example Design

The example design you build in this tutorial demonstrates a small
Nios II system for control applications, which displays character I/O
output and blinks LEDs in a binary counting pattern. This Nios II system
can also communicate with a host computer, allowing the host computer
to control logic inside the FPGA.

The example Nios II system contains the following;:

Nios II/s processor core

On-chip memory

Timer

JTAG UART

8-bit parallel I/O (PIO) pins to control LEDs
System identification component

1-1

Introduction

Nios Il Hardware Development Tutorial

Figure 1-1 is a block diagram showing the relationship between the host
computer, the target board, the FPGA, and the Nios II system.

Figure 1-1. Tutorial Example Design

Target Board

Altera FPGA vee
Nios Il System
Debug
5 Contol | njos s (et 8
._g Core |Data -] PIO
g w
©]
(O] c
E JTAG § System
10-pin Character | UART o =
JTAG 110 =
Header g }
— Timer] Og'f\:a'p
)

Other
Logic

Clock
Oscillator

As shown in Figure 1-1, other logic can exist within the FPGA alongside
the Nios II system. In fact, most FPGA designs with a Nios II system also
include other logic. A Nios II system can interact with other on-chip logic,
depending on the needs of the overall system. For the sake of simplicity,
the example design in this tutorial does not include other logic in the
FPGA.

Software and Hardware Requirements

This tutorial requires you to have the following software:

B Altera Quartus Il software version 7.1 or later — The software must be
installed on a Windows or Linux computer that meets the Quartus II
minimum requirements.

B Nios II Embedded Design Suite version 7.1 or later

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Introduction

Altera Corporation
October 2007

Design files for the example design — A hyperlink to the design files
appears next to this document on the Nios II literature page. Visit
www.altera.com/literature/lit-nio2.jsp.

You can build the example design in this tutorial whether you own a
development board or not. This tutorial allows you to choose from the
following target board options:

No board - If you do not have a target board, you can still use the
tutorial, but you will not witness the example design running on
hardware. Instead, you simulate software running on the Nios II
instruction set simulator (ISS).

Nios development board —If you have an Altera Nios II development
kit, use the board included in the kit. In this case, you also must have
the DC power supply and download cable provided with the kit,
such as the USB-Blaster™ cable. The following Altera kits are
supported:

e Nios II Development Kit, Stratix® IT Edition

e Nios II Development Kit, Stratix Edition
e Nios II Development Kit, Stratix Professional Edition
e Nios II Development Kit, Cyclone™ II Edition
e Nios II Development Kit, Cyclone Edition
e For information on Nios II development kits, visit www.altera.com/
devkits.
B Custom board — You can use this tutorial with any board that meets

the following requirements:

e The board must have an Altera FPGA.

e The FPGA must meet the following density requirements,
depending on the device family:

* Any Stratix III or Stratix II device

e Stratix EP1510 device or larger

* Any Cyclone III or Cyclone II device
* Cyclone EP1C12 device or larger

e An oscillator must drive a constant clock frequency to an FPGA
pin. The maximum frequency limit depends on the speed grade
of the FPGA. Frequencies of 50 MHz or less should work for
most boards; higher frequencies might work.

e Theboard musthavea 10-pin header connected to the dedicated
JTAG pins on the FPGA to provide a communication link to the
Nios II system.

e FPGA I/O pins can optionally connect to 8 (or fewer) LEDs to
provide a visual indicator of processor activity.

e Youmust have an Altera USB-Blaster download cable, revision
B or higher. Prior cables might exhibit communication errors

Introduction Nios Il Hardware Development Tutorial

when connecting to the Nios II processor. Revised cables have a
clearly marked revision label; earlier cables do not.

OpenCore Plus Evaluation

You can perform this tutorial, even on hardware, without a license. With
Altera's free OpenCore Plus evaluation feature, you can perform the
following actions:

B Simulate the behavior of a Nios II processor within your system

B Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily

B Generate time-limited device programming files for designs that
include Nios II processors

B Program a device and verify your design in hardware

You only need to purchase a license for the Nios II processor when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

e® For more information on OpenCore Plus, refer to AN 320: OpenCore Plus
Evaluation of Megafunctions.

1-4 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Nios Il System Development Flow

Nios Il 8ystem This section discusses the complete design flow for creating a Nios II

system and prototyping it on a target board. Figure 1-2 shows the Nios II
Develo pme nt system development flow.

Flow

Figure 1-2. Nios Il System Development Flow

Analyze System
Requirements

3 \4 /_\v
Nios Il Custom
Cores > Define & Generate < Instruction

& System in SOPC Builder Cusﬁom
Standard o
Peripherals Pe[lg hi(e:ral
u _g/
N
Mee—
— Altera
Hardware
Integrate SOPC Develop P Abstraction
Custom Builder System Software < Layer
IRETETEE "] into Quartus 11 with the @
Modules) Nios Il IDE Peripheral
Project Drivers
¥_/
\ 4 - >
— =
Assign Pin
g User C/C++
Locations, \4 Application
Re uiren?ents Sodotand
a?'\d Other Run/Debug Custom
Design Software Using Libraries
Camietis ISS in Nios Il ~—
\ 4
Compile Hardware
Design for Target
Board v
Download
Software
A4 Executable
to Nios Il
Download FPGA
§ —> System on
DeS|anot:Larget Target Board

Run/Debug Software
on Target Board

4

Refine Software
and Hardware

Altera Corporation 1-5
October 2007

Nios Il System Development Flow

Nios Il Hardware Development Tutorial

The Nios II development flow consists of three types of development:
hardware design steps, software design steps, and system design steps,
involving both hardware and software. For simpler Nios II systems, one
person might perform all steps. For more complex systems, separate
hardware and software designers might be responsible for different steps.
System design steps involve both the hardware and software, and might
require input from both sides. In the case of separate hardware and
software teams, it is important to know exactly what files and
information must be passed between teams at the points of intersection in
the design flow.

The design steps in this tutorial focus on hardware development, and
provide only a simple introduction to software development. For further
details on the software development process, Altera recommends that
you read the Software Development Tutorial available from the Nios II IDE
help system after you complete this tutorial.

The Software Development Tutorial and complete IDE reference are
included in the Nios II IDE help system. To open the Nios II IDE help
system, click Help Contents on the Help menu. To see the tutorials, click
Nios II IDE Help in the Contents pane, and then click Tutorials.

Analyzing System Requirements

The development flow begins with predesign activity which includes an
analysis of the application requirements, such as:

What computational performance does the application require?
How much bandwidth or throughput does the application require?
What types of interfaces does the application require?

Does the application require multithreaded software?

Based on the answers to these questions, you can determine the concrete
system requirements, such as:

Which Nios II processor core to use: smaller or faster?

What components does the design require? How many of each kind?

Which real-time operating system (RTOS) to use, if any?

Where can hardware acceleration logic dramatically improve system

performance? For example:

e Could adding a DMA component eliminate wasted processor
cycles copying data?

e Could a custom instruction replace the critical loop of a DSP
algorithm?

e Could the Nios II C-to-Hardware (C2H) Acceleration Compiler
improve performance?

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial

Nios Il System Development Flow

Altera Corporation
October 2007

Answers to these questions involve both the hardware and software
teams.

Defining and Generating the System in SOPC Builder

After analyzing the system hardware requirements, you use the SOPC
Builder tool which is included in the Altera Quartus II software. Using
SOPC Builder you specify the Nios II processor core(s), memory, and
other components your system requires. SOPC Builder automatically
generates the interconnect logic to integrate the components in the
hardware system.

You can select from a list of standard processor cores and components
provided with the Nios Il Embedded Design Suite. You can also add your
own custom hardware to accelerate system performance. You can add
custom instruction logic to the Nios II core which accelerates CPU
performance, or you can add a custom component which offloads tasks
from the CPU. This tutorial covers adding standard processor and
component cores, but does not cover adding custom logic to the system.

The primary outputs of SOPC Builder are the following:

B SOPC Builder System File (.ptf) — This file stores the hardware
contents of the SOPC Builder system. The Nios II IDE requires the
SOPC Builder System File to compile software for the target
hardware.

B Hardware description language (HDL) files — These files are the
hardware design files which describe the SOPC Builder system. The
Quartus II software uses the HDL files to compile the overall FPGA
design into an SRAM Object File (.sof).

For further details on the Nios II processor, see the Nios II Processor
Reference Handbook. For further details on SOPC Builder and developing
custom components, see the Quartus II Handbook Volume 4: SOPC Builder.
For further details on custom instructions, see the Nios II Custom
Instruction User Guide.

Quartus Il Hardware Development Tasks

After you generate the Nios II system using SOPC Builder, you integrate
it into the overall Quartus II project. Using the Quartus II software, you
perform all tasks required to create the final FPGA hardware design.

As shown in Figure 1-1 on page 1-2, most FPGA designs include logic
outside the Nios II system. You can integrate your own custom hardware
modules into the FPGA design, or you can integrate other ready-made

Nios Il System Development Flow

Nios Il Hardware Development Tutorial

intellectual property (IP) design modules available from Altera or third
party IP providers. This tutorial does not cover adding other logic outside
the Nios II system.

Using the Quartus II software, you also assign pin locations for I/O
signals, specify timing requirements, and apply other design constraints.
Finally, you compile the Quartus II project to produce an SRAM Object
File to configure the FPGA.

You download the SRAM Object File to the FPGA on the target board
using an Altera download cable, such as the USB-Blaster. After
configuration, the FPGA behaves as specified by the hardware design,
which in this case is a Nios II processor system.

For further information on using the Quartus II software, see the Quartus
II Tutorial in the Quartus II help system, and both Introduction to the
Quartus II Software and the Quartus II Handbook, available at
www.altera.com/literature/lit-qts.jsp.

Nios Il IDE Software Development Tasks

Using the Nios II IDE, you perform all software development tasks for
your Nios II processor system. After you generate the system with SOPC
Builder, you can begin designing your C/C++ application code
immediately with the Nios I IDE. Altera provides component drivers
and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware
details. In addition to your application code, you can design and reuse
custom libraries in your Nios II IDE projects.

If you do not have a target board for software development, you can run
and debug your code with the Nios II instruction set simulator (ISS). The
ISS simulates the processor, memory, and stdin/stdout/stderr
streams, which allows you to verify program flow and algorithm
correctness. As soon as you have a target board with an Altera FPGA
configured with the Nios II system, you can download your software to
the board using an Altera download cable, such as the USB-Blaster.

To create a new Nios II C/C++ application project, the Nios II IDE
requires the SOPC Builder System File. You also need the SRAM Object
File to configure the FPGA before running and debugging the application
project on target hardware.

The IDE can produce several outputs, listed below. Not all projects
require all of these outputs.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Nios Il System Development Flow

B system.h file - system.h defines symbols for referencing the
hardware in the system. The IDE automatically creates this file when
you create a new project.

B Executable and Linkable Format File (.elf) — An Executable and
Linkable Format File is the result of compiling a C/C++ application
project, which you can download directly to the Nios II processor.

B Memory initialization files (.hex) — Some on-chip memories can
power up with predefined memory contents. The IDE generates
initialization files for on-chip memories that support initialization of
contents.

B Flash programming data — The IDE includes a flash programmer,
which allows you to write your program to flash memory. The flash
programmer adds appropriate boot code to allow your program to
boot from flash memory. You can also use the flash programmer to
write arbitrary data to flash memory.

This tutorial focuses only on downloading the Executable and Linkable
Format File directly to the Nios II system.

«® For complete details on developing software for the Nios II processor,
see the Nios II Software Developer’s Handbook and the Nios II IDE help
system.

Running and Debugging Software on the Target Board

The Nios I IDE provides complete facilities for downloading software to
a target board, and running or debugging the program on hardware. The
IDE debugger allows you to start and stop the processor, step through
code, set breakpoints, and analyze variables as the program executes.

«® For details on running and debugging Nios II programs, see the Software
Development Tutorial available from the Nios II IDE help system.

Varying the Development Flow

The development flow is not strictly linear. This section describes
common variations.

Refining the Software and Hardware

After running software on the target board, you might discover that the
Nios II system requires higher performance. In this case, you can return
to software design steps to make improvements to the software
algorithm. Alternatively, you can return to hardware design steps to add
acceleration logic. If the system performs multiple mutually exclusive

Altera Corporation 1-9
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

Creating the
Example Design

tasks, you might even decide to use two (or more) Nios II processors that
divide the workload and improve the performance of each individual
processor.

Iteratively Creating a Nios Il System

A common technique for building a complex Nios II system is to start
with a simpler SOPC Builder system, and iteratively add to it. At each
iteration you can verify that the system performs as expected. You might
choose to verify the fundamental components of a system, such as the
processor, memory, and communication channels, before adding more
complex components. When developing a custom component or a
custom instruction, first integrate the custom logic into a minimal system
to verify that it works as expected; later you can integrate the custom logic
into a more complex system.

The Nios I Embedded Design Suite provides several working Nios II
reference designs, which you can use as a starting point for your own
designs. After installing the Nios II Embedded Design Suite, see the
directory <Nios II EDS install path>/examples/verilog or the directory
<Nios II EDS install path>/examples/vhdl.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the
Nios II system, using tools such as the ModelSim RTL simulator.
Hardware simulation is useful for certain cases, including the following:

B To verify the cycle-accurate performance of a Nios II system before
target hardware is available.

B To verify the functionality of a custom component or a Nios II
custom instruction before trying it on hardware.

A hardware simulation step is not shown in Figure 1-2 on page 1-5. If
you are building a Nios II system based on the standard components
provided with the Nios Il Embedded Design Suite, the easiest way to
verify functionality is to download the hardware and software directly to
a development board.

For details on performing hardware simulation for Nios II system, see
AN351: Simulating Nios II Embedded Processor Designs.

This section guides you through the Nios II development flow to create a
working example design. You perform the following steps:

1. “Install the Design Files” on page 1-11.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

“Analyze System Requirements” on page 1-12.

“Start the Quartus II Software and Open the Tutorial Example
Design Project” on page 1-12.

“Create a New SOPC Builder System” on page 1-14.
“Define the System in SOPC Builder” on page 1-15.

“Integrate the SOPC Builder System into the Quartus II Project” on
page 1-28.

“Download Hardware Design to Target FPGA” on page 1-33.
“Develop Software Using the Nios II IDE” on page 1-34.

“Run the Program” on page 1-38.

Install the Design Files

Before you proceed, you must install the Quartus II software and the
Nios Il Embedded Design Suite. You must also download tutorial design
files from the Altera web site. The design files provide a ready-made
Quartus Il project to use as a starting point. The design files are associated
with the link to this document on the Nios II literature page at
www.altera.com/literature/lit-nio2.jsp.

Perform the following steps to set up the design environment:

1.

Locate the zipped design files on the Altera web site. A different set
of design files exists for each Altera Nios development board.

Download the design files by performing one of the following steps:

a. If you have a Nios development board, download the files that
match your development board.

b. If you have a custom board, download the files that most
closely match your board. For example, if your board has a
StratixII device, download the StratixII design files
(NiosII_stratixII_2s60_es.zip).

c. If you do not have a board, you can use any of the design files.

Unzip the contents of the zip file to a directory on your computer.
Do not use spaces in the directory path name.

Creating the Example Design Nios Il Hardware Development Tutorial

The remainder of this tutorial refers to this directory as the <Design
Files Directory>.

Analyze System Requirements

This section describes the system requirements for the tutorial example
design. The goals for the design are the following;:

B Demonstrate a simple Nios II processor system that you can use for
control applications.

B Build a practical, real-world system, while providing an educational
experience.

B Demonstrate the most common and effective techniques to build
practical, custom Nios II systems.

B Build aNios Il system that works on any board with an Altera FPGA.
The entire system must use only on-chip resources, and not rely on
the target board.

B The design should conserve on-chip logic and memory resources so
it can fit in a wide range of target FPGAs.

These goals lead to the following design decisions:

B The Nios II system uses only the following inputs and outputs:
e One clock input, which can be any constant frequency.
e Eight optional outputs to control LEDs on the target board.

B The design uses the following components:

Nios II/s core with 2 Kbytes of instruction cache

20 Kbytes of on-chip memory

Timer

JTAG UART

Eight output-only parallel I/O (PIO) pins

System ID component

For complete details on these and other components, see the Quartus II
Handbook Volume 5: Embedded Peripherals.

Start the Quartus Il Software and Open the Tutorial Example
Design Project

To start, you open the Quartus II project for the tutorial example design.
This Quartus II project serves as an easy starting point for the Nios II
development flow. The Quartus II project contains all settings and design
files required to create the SRAM Object File.

To open the Quartus II project, perform the following steps:

1. Start the Quartus II software.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

On Windows computers, click Start, point to Programs, Altera,
Quartus II <version>, and then click Quartus Il <version>. On Linux
computers, type quartus ata shell command-prompt, assuming the
Quartus II program directory is in the search path.

On the File menu, click Open Project. Be careful not to mistake
Open for Open Project. The Open Project dialog box appears.

Browse to <Design Files Directory>.

Select the file nios2_quartus2_project.qpf and click Open. The
Quartus II software opens the project.

If the Quartus II software does not automatically display the Block
Diagram File (.bdf) nios2_quartus2_project.bdf (see Figure 1-3),
perform the following steps:

a. On the File menu, click Open. The Open dialog box appears.

b. Browse to <Design Files Directory>.

c. Select the file nios2_quartus2_project.bdf and click Open.

Figure 1-3 shows the Block Diagram File nios2_quartus2_project.bdf.

Figure 1-3. Example Design Block Diagram File

& nios2_quartus2_project.bdf

Niosll Quartusll Project -- Nios Il, Cyclone 1C20

This is the top lewel for the HA tutorial
on the Niosll Cyclone 1C20 Developmert Board.

Targeted for the Niosll Cyclone 1C20 development board.

\u:lg | PLOGLOCRINFUTI] = it o

W HUTET " LEG 7. 0]

The Block Diagram File contains an input pin for the clock input and eight
output pins to drive LEDs on the board. Next, you create a new SOPC
Builder system, which you ultimately connect to these pins.

Altera Corporation
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

Create a New SOPC Builder System

You use SOPC Builder to generate the Nios II processor system, adding
the desired components, and configuring how they connect together.
Perform the following steps to create a new SOPC Builder system:

1. On the Tools menu in the Quartus II software, click SOPC Builder.
SOPC Builder starts and displays the Create New System dialog
box.

2. Type first nios2_systemas the System Name.

3. Select either Verilog or VHDL as the Target HDL. If you do not
have a preference, accept the default. Later when you generate the
system, SOPC Builder outputs design files in the language you
select.

4. Click OK. The SOPC Builder GUI appears, displaying the System
Contents tab.

Figure 1-4 shows the SOPC Builder GUI in its initial state.

Figure 1-4. SOPC Builder GUI

'™ Altera SOPC Builder - first_nios2_system.sopc (C:\alteralhardware_tutorial_1c20\first_nios2_system.sopc)
File Edcit Module System “iew Tools Help

System Contents ‘ System Generation

13 Altera SOPC Builder Target Clock Settings

i1 Gresle ew comporert A — e Souce e T o
- Bricges and Adapters clk External 50.0 | O

- Memory Mapped

Streaming

erface Protocals

gacy Components

+-Memories and Memary Controllers
Pefipherals

PLL

Use .. Module Mame Description Clock Baze End

A v [addressmap | [Fiter

@ Into: Vour system is ready to generste

) ()

1-14 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Define the System in SOPC Builder

You use SOPC Builder to define the hardware characteristics of the Nios II
system, such as which Nios II core to use, and what components to
include in the system. SOPC Builder does not define software behavior,
such as where in memory to store instructions or where to send the
stderr character stream.

In this section, you perform the following steps:

1. Specify target FPGA and clock settings.

2. Add the Nios II core, on-chip memory, and other components.
3. Specify base addresses and interrupt request (IRQ) priorities.
4. Generate the SOPC Builder system.

The SOPC Builder design process does not need to be linear. The design
steps in this tutorial are presented in the most straightforward order for a
new user to understand. However, you can perform SOPC Builder design
steps in a different order.

Specify Target FPGA and Clock Settings

The Target and Clock Settings sections of the System Contents tab
specify the SOPC Builder system's relationship to other devices in the
system. Perform the following steps:

1. Select the Device Family that matches the Altera FPGA you are
targeting.

2. Double-click the clock frequency in the MHz column for c1k. Type
the clock frequency as shown in Table 1-1, and press Enter. c1k is
the default clock input name for the SOPC Builder system. The
frequency you specify for c1k must match the oscillator that drives

the FPGA.
Table 1-1. Clock Frequency for Target Boards
Target Board Frequency
Nios Development Board (all versions), 50
or no board
Custom board Same as oscillator on board
Altera Corporation 1-15

October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

Next, you begin to add hardware components to the SOPC Builder
system. As you add each component, you configure it appropriately to
match the design specifications.

Add the On-Chip Memory

Processor systems require at least one memory for data and instructions.
This example design uses one 20 Kbyte on-chip memory for both data
and instructions. To add the memory, perform the following steps:

1. Inthe list of available components (on the left-hand side of the
System Contents tab), expand Memories and Memory Controllers,
expand On-Chip, and then click On-Chip Memory (RAM or
ROM).

2. Click Add. The On-Chip Memory (RAM or ROM) MegaWizard
interface appears.

3. In the Block Type list, select M4K.

4. In the Total memory size box, type 20 and select Kbytes to specify a
memory size of 20 Kbytes (see Figure 1-5).

5. Do not change any of the other default settings.

1-16 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-5. On-Chip Memory MegaWizard

'™ On-Chip Memory (RAM or, ROM) - onchip_mem_1

“ On-Chip Memory
. (RAM or ROM
Hagecors \(fersinn 7.1)

Mermary type

(5) RAM (Writable) () ROM (Read-only)

[]Duakpart access

Inttizlize metmary content

Memory will be intislized from onchip_mem_1 hex

Size
Tatsl memary size:

|:| Minirmize memory block usage (may impact fimax)

Read latency
Mor-default memary initialization

[[] Enable non-detautt inftialization file

User-created intialization file: l:l hex

6. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the on-chip memory named onchip_mem now
appears in the table of available components.

«® For further details on on-chip memory, you can click Documentation in
the On-Chip Memory (RAM or ROM) MegaWizard interface.

'~ This documentation feature is available in the MegaWizard
interface for each component.

Add the Nios Il Processor Core

In this section you add the Nios II/s core and configure it to use 2 Kbytes
of on-chip instruction cache memory. For educational purposes, the
tutorial example design uses the Nios II/s "standard" core, which

Altera Corporation 1-17
October 2007

Creating the Example Design

Nios Il Hardware Development Tutorial

provides a balanced trade-off between performance and resource
utilization. In reality, the Nios II/s core is more powerful than necessary
for most simple control applications.

Perform the following steps to add a Nios II/s core to the system:
1. In the list of available components, select Nios II Processor.

2. Click Add. The Nios II Processor MegaWizard interface appears,
displaying the Nios II Core page.

3. Specify the following settings (see Figure 1-6):

Nios II Core: Nios II/s

Hardware Multiply: None

Hardware Divide: Off

Reset Vector: Memory: onchip_mem Offset: 0x0
Exception Vector: Memory: onchip_mem Offset: 0x20

Figure 1-6. Nios Il MegaWizard — Nios Il Core Page

'® Nios |l Processor - cpu

k3

Magators’

Core Mios Il

Select a Hios Il core:

Nios II Processor

Version 7.1

B

% Advanced Features » JTAG Debug Module)

ONios /e @Nios /s ONios IIF

. RISC
Nios Il 32-bit
Selector Guide
Family: Cyclone

Teystem; 50.0 MHz

cpuid: 0

Performance at S0.0 MHZ Up to 5 DMIPS
Logic: Usage E00-700 LEs
Memory Ussage Twwo Mdks (or equiv.)

RISC

32-hit

Instruction Cache
Branch Prediction
Hardware Multiphy
Hardware Divide

Up ta 22 DMIPS
1200-1400 LE=
Tweo Mdks + cache

Hardweare Muttiphy: |None

v | O Hardears Divide

RISC

32-hit

Instruction Cache:
Branch Prediction
Hardvware Muttiphy
Hardweare Divide
Barrel Shifter

Data Cache
Mymamic Branch Prediction
Up ta 49 DMIPS
14001800 LEs
Three Mdks + cache

Reset Vector: Mermory: |unchip_m5"|

v | Otfset ‘ 020

|0x00000000

Exception Yector: Memory: |nm:hip e

~|oftset [0

0x00000020

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

4. Click Caches and Memory Interfaces. The Caches and Memory
Interfaces page appears.

5. Specify the following settings (see Figure 1-7):
e Instruction Cache: 2 Kbytes

e Enable Bursts: Off
e Include tightly coupled instruction master port(s): Off

Figure 1-7. Nios Il MegaWizard — Caches and Memory Interfaces page

B Nios |l Processor - cpu gl

Nios II Processor

Version 7.1

Documentation

> AdvancedFeatures > JTAGDebugModule > Custom Instructions

Caches and Memaory Interfaces

Instruction Master

Instruction Cache: |5

D Enahble Bursts (Burst Size: 32 bytes)

Hel

Diata Master

Data Cache:

[Incluce tightly coupled instruction master port(s)

Data Cache Line Size: l:l

(Burst Size: 32 bytes) Help

I I

Altera Corporation
October 2007

6. Do not change any settings on the Advanced Features, JTAG
Debug Module, or Custom Instructions pages.

7. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the Nios II core named cpu now appears in the
table of available components.

For further details on configuring the Nios II core, see the Instantiating
the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.

Creating the Example Design

Nios Il Hardware Development Tutorial

(AR

SOPC Builder automatically connects the instruction and data
master ports on the Nios II core to the memory slave port (see
Figure 1-8). When building a system, always verify that SOPC
Builder's automatic connections are appropriate for your system
requirements.

Figure 1-8. System Contents Tab with the Nios Il Core and On-Chip Memory

Target Clock Seftings
Device Farily Platne: Souroe MHz Pipeline i
External
Use Can... Module Mame Description Clock Base Erd
onchip_mem On-Chip Memory (RAM or ROM)
31 \valon Slave clk 0x00000000 |Dx00004£ff
B cpu Mios Il Processor
instruction_master dwvalon Master clk
data_tmaster Avalon Master IerQ O IeRQ
fan_debug_mocdule Byalon Slave 0x00008800 Dx%osfff
-«

«® For further details on connecting memory to Nios II systems, see the

Building Memory Subsystems Using SOPC Builder chapter of the Quartus II
Handbook Volume 4: SOPC Builder.

Add the JTAG UART

The JTAG UART provides a convenient way to communicate character
data with the Nios II processor through the USB-Blaster download cable.
Perform the following steps to add the JTAG UART:

1.

1-20

In the list of available components, expand Interface Protocols,
expand Serial, and then click JTAG UART.

Click Add. The JTAG UART MegaWizard interface appears.

Do not change the default settings (see Figure 1-9).

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-9. JTAG UART MegaWizard

'8 JTAG UART - jtag uart

“ JTAG UART
; Version 7.1

Configuration | » Simulation

Write FIFD (Data fram Avalon to JTAG)

|:| Construct using registers instead of memory blocks

Read FIFO (Data from JTAG to Avalon)

|:| Construct using registers instead of memory blocks

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the JTAG UART named jtag_uart now appears in
the table of available components.

'~ SOPC Builder automatically connects the data master port on
the Nios II core to the JTAG UART slave port. (The instruction
master port does not connect to the JTAG UART, because the
JTAG UART is not a memory device and cannot feed
instructions to the Nios II processor.) When building a system,
always verify that SOPC Builder's automatic connections are
appropriate for your system requirements.

e For further details on the JTAG UART, see the JTAG UART Core chapter
of the Quartus I Handbook Volume 5: Embedded Peripherals.

Add the Interval Timer

Most control systems use a timer component to enable precise calculation
of time. To provide a periodic system clock tick, the Nios Il HAL requires
a timer.

Perform the following steps to add the timer:

Altera Corporation 1-21
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

1. Inthe list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click Interval Timer.

2. Click Add. The Interval Timer MegaWizard interface appears.
3. In the Presets list, select Full-featured.

4. Do not change any of the other default settings (see Figure 1-10).

Figure 1-10. Interval Timer MegaWizard

B |nterval Timer - timer

Interval Timer
; Version 7.1

Timeout period

Period: | 4 Hms "

Hardware options

Bresets: | EEEIE

Registars

Qutput signals

5. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the interval timer named timer now appears in
the table of available components.

6. Right-click timer and click Rename.

7. Type sys_clk_timer and press Enter.

1-22 Altera Corporation

October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

I = It is a good habit to give memorable names to hardware
components. Nios II programs use these symbolic names to
access the component hardware. Therefore, your choice of
component names can make Nios II programs easier to read and
understand.

e For further details on the timer, see the Timer Core chapter of the Quartus
II Handbook Volume 5: Embedded Peripherals.

Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading
software compiled for a different Nios II system. If the system includes
the system ID peripheral, the Nios II IDE prevents you from
downloading programs compiled for a different system.

Perform the following steps to add the system ID peripheral:

1. Inthe list of available components, expand Peripherals, expand
Debug and Performance, and then click System ID Peripheral.

2. Click Add.... The System ID Peripheral MegaWizard interface
appears. The system ID peripheral has no user-configurable options
(see Figure 1-11).

Figure 1-11. System ID Peripheral MegaWizard

1B System ID Peripheral - sysid
“ System ID Peripheral
Megotor VEISiON 7.1
Parameter

Settings

System ID: 433566277
Time stamp: 11781534035
A unigue 1D is assigned every time the system is generated.

3. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the system ID peripheral named sysid now
appears in the table of available components.

«® For further details on the system ID peripheral, see the Systemn ID Core
chapter of the Quartus Il Handbook Volume 5: Embedded Peripherals.

Altera Corporation 1-23
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

Add the PIO

PIO signals provide an easy method for Nios II processor systems to
receive input stimuli and drive output signals. Complex control
applications might use hundreds of PIO signals which the Nios II
processor can monitor. This example design uses eight PIO signals to
drive LEDs on the board.

Perform the following steps to add the PIO. Perform these steps even if
your target board doesn't have LEDs.

1. Inthe list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click PIO (Parallel I/O).

2. Click Add. The PIO (Parallel I/O) MegaWizard interface appears.
3. Do not change the default settings (see Figure 1-12). The

MegaWizard interface defaults to an 8-bit output-only PIO, which
exactly matches the needs for the example design.

Figure 1-12. PIO MegaWizard

B pI0 (Parallel I/0) - pio

“ PIO (Parallel I/0)
3 Version 7.1

Simulation >

S Input Options

Wiith

Direction
O Bidirectional riristste) ports
() Input ports: only
() Both input and output parts

(=) Cutput ports only

1-24

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the PIO named pio now appears in the table of
available components.

5. Right-click pio and click Rename.
6. Type led pio and press Enter.

L=~ Nios I software uses this name to access the component. You
must name the PIO led_pio, or else tutorial programs written
for this Nios II system will fail to work in later steps.

For further details on the PIO, see the PIO Core chapter of the Quartus II
Handbook Volume 5: Embedded Peripherals.

Specify Base Addresses and Interrupt Request Priorities

At this point, you have added all the necessary hardware components to
the system. Now you must specify how the components interact to form
a system. In this section, you assign base addresses for each slave
component, and assign interrupt request (IRQ) priorities for the JTAG
UART and the timer.

SOPC Builder provides the Auto-Assign Base Addresses command
which makes assigning component base addresses easy. For many
systems, including this example design, Auto-Assign Base Addresses is
adequate. However, you can adjust the base addresses to suit your needs.
Below are some guidelines for assigning base addresses:

B Nios II processor cores can address a 31-bit address span. You must
assign base address between 0x00000000 and 0x7FFFFFFF.

B Nios II programs use symbolic constants to refer to addresses. Do not
worry about choosing address values that are easy to remember.

B Address values that differentiate components with only a one-bit
address difference produce more efficient hardware. Do not worry
about compacting all base addresses into the smallest possible
address range, because this can create less efficient hardware.

B SOPC Builder does not attempt to align separate memory
components in a contiguous memory range. For example, if you
want an on-chip RAM and an off-chip RAM to be addressable as one
contiguous memory range, you must explicitly assign base
addresses.

SOPC Builder also provides an Auto-Assign IRQs command which

connects IRQ signals to produce valid hardware results. However,
assigning IRQs effectively requires an understanding of how software

1-25

Creating the Example Design

Nios Il Hardware Development Tutorial

responds to them. Because SOPC Builder does not deal with software
behavior, it cannot make educated guesses about the best IRQ
assignment.

The Nios IT HAL interprets low IRQ values as higher priority. The timer
component must have the highest IRQ priority to maintain the accuracy

of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following
steps:

1.

On the System menu, click Auto-Assign Base Addresses to make
SOPC Builder assign functional base addresses to each component
in the system. The Base and End values in the table of active
components might change, reflecting the addresses that SOPC

Builder reassigned.
2. Click the IRQ value for the jtag_uart component to select it.
3. Type 16 and press Enter to assign a new IRQ value.

Figure 1-13 shows the state of the SOPC Builder System Contents tab
with the complete system.

Figure 1-13. System Contents Tab with Complete System

Target Clock Settings

MName Source MHz Pipeline add

External

Use Con Module Marne Description Clock Base End I

|

E onchip_mem

=1
' B cpu
imstruction_master
' data_master
B Jtawy_clebuc_tnocule
[E jtag_uart
avalon_jtag_slave
B sys_clk_timer
=1

B sysid
cortrol_slave

=1

On-Chip Memory (RaM or ROM)
Axalon Slave

Mios Il Processor
Acwalon Master
Avalon Master
Awalon Slave

JTAG UART

Axalon Slave
Interval Timer
Acwalon Slave
System ID Peripheral
Avalon Slave

PIO (Parallel i)
Avalon Slave

clk

ik

clk

ik

ik

0x00008000

IRQ 0

000010800

0x00011030

0x00011000

000011038

0x00011020

0x0000cfEf

IRD 21

0x000L0fff

0x00011037

0x0001101f

0x0001103f

0x000110Z £

1-26

Generate the SOPC Builder System

You are now ready to generate the SOPC Builder system. Perform the
following steps:

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

1. Click the System Generation tab.

2. Turn off Simulation. Create simulator project files., which saves
time because this tutorial does not cover the hardware simulation
flow.

3. Click Generate. The system generation process begins.
The generation process can take several minutes. When it completes,

the System Generation tab displays a message "Info: System
generation was successful." (see Figure 1-14).

Figure 1-14. Successful System Generation

B Altera SOPC Builder, - first_nios2_system.sopc (C:\alterathardware_tutorjal 1c20_design_files\first_nios2_system.sopc)

File Edt Module System View Toolz Mozl Help

System Conterts || System Generalion |

Options
System module logic will be created in Yerilog

D Sitnulation . Create project simulator files

Mios || Toaks
Mios || IDE

Info: Aftera or its authorized distributors. Please refer ta the
Infor applicable aureement for further details.
Infor Processing started: Wed May 02 17:56:49 2007
@ Info: Command: quartus_sh -t first_nios2_system_setup_guartus tcl
@ Infor Evaluation of Tol script first_nios2_system_setup_guartus tol was successful
(@ Info: Guartus I Shell was successful. 0 srrors, 0 warnings
Infor Allocsted 42 megabytes of memory during processing
Infor Processing ended: Wed May 02 17:56:50 2007
Info: Elapsed time: 00:00:01
2007 D502 17:56:51 () Completed generation for system: first_nios2_system
2007 05.02 17:56:51 (*) THE FOLLOWING S¥STEM ITEMS HAWE BEEN GEMER A TED:
SOPC Builder dstabase | Cfatteramardvware_tutorial_1c20_design_files/first_nios2_system ptf
System HOL Model © Ci/alterahardware_tutorial_1c20_design_filesifirst_nios2_system v
System Generation Script | C falterahardyeare_tutorial_1 c20_design_files/first_nios2_system_generation_script
#2007 .05.02 17:56:91 (%) SUCCESS: SYSTEM GEMERATION COMPLETED
@ Info: System generation was successful. N
< | »

@ Info: Your system is ready to generate

Exit Help 4 Prev [Generste

4. Click Exit to return to the Quartus II software.

Congratulations! You have finished creating the Nios II processor system.
You are ready to integrate the system into the Quartus Il hardware project
and use the Nios II IDE to develop software.

Altera Corporation 1-27
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

1-28

For further details on generating systems with SOPC Builder, see the
Quartus II Handbook Volume 4: SOPC Builder. For details on hardware
simulation for Nios II systems, see AN351: Simulating Nios II Embedded
Processor Designs.

Integrate the SOPC Builder System into the Quartus Il Project

In this section you perform the following steps to complete the hardware
design:

B Instantiate the SOPC Builder system module in the Quartus II
project.

B Assign FPGA pins.

B Compile the Quartus II project.

B Verify timing.

I'=" Youcan skip ahead to “Develop Software Using the Nios I IDE”
on page 1-34 if you do not have a target board. Alternatively,
you can read this section to familiarize yourself with more of the
hardware design flow. However, the steps in this section do not
affect the outcome of the tutorial if you do not have a target
board.

For further information on using the Quartus II software, see the Quartus
II Tutorial in the Quartus II help system, and both Introduction to the
Quartus II Software and the Quartus II Handbook, available at
www.altera.com/literature/lit-qts.jsp.

Instantiate the SOPC Builder System Module in the Quartus Il Project

SOPC Builder outputs a design entity called the system module. The
tutorial example design uses the Block Diagram File method of design
entry, so you instantiate a system module symbol first_nios2_system into
the Block Diagram File.

[=~ How you instantiate the system module depends on the design
entry method of the overall Quartus II project. For example, if
you were using Verilog HDL for design entry, you would
instantiate the Verilog module first_nios2_system defined in
the file first_nios2_system.v.

To instantiate the system module in the Block Diagram File, perform the
following steps:

1. Double click in the empty space between the input and output pins.
The Symbol dialog box appears.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Under Libraries:, expand Project.

Click first_nios2_system. The Symbol dialog box displays the
first_nios2_system symbol.

Click OK. You return to the Block Diagram File schematic. The
first_nios2_system symbol tracks with your mouse pointer.

Position the symbol so the inputs on the symbol align with the wires
on the left-hand side of the Block Diagram File.

Click the left mouse button to drop the symbol in place.

If your target board has LEDs that the Nios II system can drive,
perform the following step to connect the LEDG[7..0] output pins to
the first_nios2_system.

Click and drag LEDG]I7..0] to connect it with the port
out_port_from_the_led_pio[7..0] on the first_nios2_system
symbol.

Figure 1-15 shows the completed Board Design File schematic using the
LED pins.

Figure 1-15. Completed Board Design File Schematic

& nios2_quartus2_project. bdf

— ok

first_nios2_system

!ﬁL {PLO_CLOCKINPUTH]

reset_n

D grer_c—gemr

Altera Corporation
October 2007

If you are targeting a custom board that does not have LEDs, you
must delete the LEDGJ7..0] pins. To delete the pins, perform the
following steps:

a. Click the output symbol LEDG[7..0] to select it.

b. Press Delete.

To save the completed Block Diagram File, click Save on the File
menu.

1-29

Creating the Example Design

Nios Il Hardware Development Tutorial

1-30

Assign FPGA pins

If you are targeting a custom board, you must assign a specific target
device and then assign FPGA pin locations to match the pinouts of your
board.

1= Skip ahead to section “Compile the Quartus II Project and Verify

Timing” on page 1-32, if you are targeting a Nios development
board. The provided Quartus II project files already contain
appropriate assignments for Nios development boards.

You must know the pin layout for the custom board to complete this
section. You also must know other requirements for using the board,
which are beyond the scope of this document. Refer to the documentation
for your board.

To assign the device, perform the following steps:

1.

On the Assignments menu, click Device. The Settings dialog box
appears.

In the Family list, select the FPGA family that matches your board.

Click No if a dialog box asks, "Device family selection has changed.
Do you want to remove all location assignments?"

Under Target Device select Specific device selected in 'Available
devices' list.

Under Available devices select the exact device that matches your
board.

Click No if a dialog box asks, "Altera recommends removing all
location assignments when changing the device. Do you want to

remove all location assignments?"

Click OK to accept the device assignment.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-16 shows an example of the Settings dialog box assigning a
Cyclone device.

Figure 1-16. Assigning a Device in the Quartus Il Settings Dialog Box

Select the family and device you want to taiget for compilation.

Family: |Cyclune ﬂ Show in ‘Available devices' list
. . Package: Ay -
Device and Pin Options...
Fin count: Any -
Target device
" futo devics selected by the Fitter Speed gade: |Any =l
+ Specific device selected in ‘Available devices' ist [Show advanced devices
e r

Avvailable devices:

‘ Harme Corev... | LEs Memor... | FLL ‘ ~
EP1C1200240C6 184 12060 239616 2

EP1C120240C7 1.8v 12060 233616 2

EP1C120240CE 1.5v 12060 239616 2

EF1C12024007 1.8v 12060 239616 2

EP1C20F324C6 1.5v 20060 294912 2

EF1C20F324C7 184 20060 294m2 2

EF1C20F324C8 1.8v 20060 294mz2 2

EP1C20F32417 1.5v 20060 294912 2

EF1C20F400CE 1.5 20060 294912 2

EP1C20F400CT 1.5 20060 294912 2

FP1C2NF4NNTa 1 Ew 2NRN 294912 2 bt
Migration compatibility

0 migration devices selected W

To assign the FPGA pin locations, perform the following steps:

1. On the Assignments menu, click Pins. The Quartus II Pin Planner
appears. The Quartus II project has many ready-made assignments
appropriate for a Nios development board, which you must
reassign to suit your board.

2. Inthe Node Name column, locate PLD_CLOCKINPUT/[1]. You
might need to expand the PLD_CLOCKINPUTI1..1] category to
make PLD_CLOCKINPUTI1] visable.

3. Inthe PLD_CLOCKINPUTI[1] row, double-click in the Location
cell. A list of available pin locations appears.

4. Select the appropriate FPGA pin that connects to the oscillator on
the board (see Figure 1-17).

Altera Corporation 1-31
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-17. Assigning Pins with the Quartus Il Pin Planner

|
Grouns =
= MNamed: [-
[} @\ = Mode Mame Direction Location I/ Bank Wref
"
j:Enc ? 2] LEDG[7..0] Cubput Group
B B PLD_CLOCKINPUT[L..1] |Input Group i
= =] Z [PD_CLOCKINPUT[L] |Input - BL_HL P
= <<new nodes > ~
= . = PIN_KE OBank1 Dedicated Clock CLKILYDSCLELN
= s EI PIN_K14 1f0 Bank 3 Dedicated Clock CLE3/LYDSCLEZN
ﬁﬂ g PIN_K15 1f0 Bank 3 Row If0 LVDS80p
FIN_K18 1f0 Bank 3 Row If0 LVDS80n W
= B & PIN_K13 jOBank3 RawI/D VREF1E3
= o 3 | PIN_L4 1j0 Bank 1 Row If0 ASDO
H M B PIN_LE 1j0 Bank 1 Row If0 FLL1_QUTp b
’_) ﬂ This cell specifies the pin number, IfQ bank, or edge location to which you want to assign the pin,
2| Named |i j <« Edit M| | Filter: ‘F‘ins all j
% | | Mode Narne: | Direction Location | I1/0 Bank | ref Group

5. If you connected the LED pins in the Board Design File schematic,
repeat steps 2 to 4 with LEDGJ7..0] to assign appropriate pin
locations for each of the LED outputs pins: LEDGI[0], LEDGI1],
LEDG]I2], LEDGI3], LEDGI[4], LEDGI5], LEDGI[6], LEDGI7].

6. On the File menu, click Save to save the assignments.

7. Close the Pin Planner.

Depending on the board, you might have to make more
assignments for the project to function correctly. You can
damage the board if you fail to account for the board design.
Consult with the maker of the board to ensure that the following
conditions will not damage the board:

CAUTION

B After power-up all unused I/O pins on the FPGA enter a high-
impedance state.

B The IO banks are configured for the 3.3V LVTTL I/O standard. The
board must supply 3.3V to the FPGA's VCCIO pins.

B The LEDGI[7..0] outputs drive 3.3V.

«® For further details on making assignments in the Quartus II software, see
the Quartus II Handbook Volume 2: Design Implementation and Optimization.

Compile the Quartus Il Project and Verify Timing
At this point you are ready to compile the Quartus II project and verify

that the resulting design meets timing requirements.

1-32 Altera Corporation

October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

You must compile the hardware design to create an SRAM Object File that
you can download to the board. After the compilation completes, you
must analyze the timing performance of the FPGA design to verify that
the design will work in hardware.

Perform the following steps:
1. On the Processing menu, click Start Compilation.

2. The Quartus II Status utility window displays progress. The
compilation process can take several minutes. When compilation
completes, a dialog box displays the message "Full compilation was
successful.”

3. Click OK. The Quartus II software displays the Compilation Report
window.

4. Expand the Timing Analyzer category of the Compilation Report
window.

5. Click Summary.

6. Check the frequency listed in the Actual Time cell associated with
PLD_CLOCKINPUTI1]. This is the maximum frequency (Fyiax)
that this FPGA design is capable of running.

Il=7 Ifthe Actual Time frequency for PLD_CLOCKINPUTI[1] is less
than the oscillator frequency on the board, this design will not
operate in hardware. You must make Quartus II timing
assignments to optimize the clock, or reduce the oscillator
frequency driving the FPGA.

Congratulations! You have finished integrating the Nios II system into
the Quartus II project. You are ready to download the SRAM Object File
to the target board.

For further details on meeting timing requirements in the Quartus II
software, see the Quartus II Handbook Volume 1: Design and Synthesis.

Download Hardware Design to Target FPGA

In this section you download the SRAM Object File to the target board.
Perform the following steps:

1. Connect the board to the host computer with the download cable,
and apply power to the board.

1-33

Creating the Example Design Nios Il Hardware Development Tutorial

2. On the Tools menu in the Quartus II software, click Programmer.
The Programmer window appears and automatically displays the
appropriate configuration file (nios2_quartus2_project.sof).

3. Click Hardware Setup in the top-left corner of the Programmer
window to verify your download cable settings. The Hardware
Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected
hardware list. If the appropriate download cable does not appear in
the list, you must first install drivers for the cable.

5. Click Close.

6. Turn on Program/Configure for nios2_quartus2_project.sof (see
Figure 1-18).

7. Click Start. The Progress meter sweeps to 100% as the Quartus II
software configures the FPGA.

Figure 1-18. Quartus Il Programmer Window

W nios 2_quartus?_project.cdf
USE-Blaster [USE-0]

éa Hardware Setup.
Mode:

Progiess:

Wi Sran

ﬂl Auto Detect

[1T86 El

Program/
Configure

File Device Usercode

hios2_quartus2_project. sof EP1C20F400 003CEFS7 FFFFFFFF

Werify

1-34

At this point, the Nios II system is configured and alive in the FPGA, but
it does not yet have a program in memory to execute.

Develop Software Using the Nios Il IDE

In this section you start the Nios Il integrated development environment
(IDE) and compile a simple C language program. This section presents
only the most basic software development steps to demonstrate software
running on the hardware system you created in previous sections.

For a complete tutorial on using the Nios II IDE to develop programs,
see the Software Development Tutorial available from the IDE help system.

In this section you perform the following actions:

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Create a new Nios II C/C++ application project (see page 1-35).
Compile the project (see page 1-36).

To perform this section, you must have the SOPC Builder System File you
created in “Define the System in SOPC Builder” on page 1-15.

Create a New Nios Il C/C++ Application Project

In this section you create a new Nios II C/C++ Application Project.
Perform the following steps:

1.

10.

Altera Corporation
October 2007

Start the Nios II IDE. On Windows computers, click Start, point to
Programs, Altera, Nios II EDS <version>, and then click Nios IT
IDE <version>. On Linux computers, run the executable file <Nios II
EDS install path>/bin/nios2-ide.

If the Workspace Launcher dialog box appears, click OK to accept
the default workspace location.

If you are not already in the Nios II C/C++ perspective, point to
Open Perspective on the Window menu, and then either click

Nios II C/C++, or click Other and then click Nios II C/C++.

On the File menu, point to New, and then click Nios II C/C++
Application to open the New Project wizard.

Click Browse under Select Target Hardware. The Select Target
Hardware dialog box opens.

Browse to <Design Files Directory>.
Select first_nios2_system.ptf.

Click Open. You return to the New Project wizard, and the SOPC
Builder System and CPU fields are now filled in.

Select Count Binary in the Select Project Template list. The Name
field automatically updates to count_binary_0 (see Figure 1-19).

Click Finish.

1-35

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-19. Nios Il IDE New Project Wizard

. New Project

Nios II C/C+ + Application)
Click Finish ko create application with a default system library as &

Cilalterathardware_tutorial_1c20isoftwaretcount_binary_0

Mame: | count_binary_0

[specify Location
| |

Select Target Hardware,

SOPC Builder System: | Cihaltera\hardware_tutorial_1c204first_nios2_swstem.ptf v| [Browse...]

CPL: | cpu_0 L3 |

Select Project Template

Blank Project ~ Description
Board Diagnostics Displays a running count of 000 ta Oxff
Custom Instruckion Tukorial Details
Dhryst
HeﬁisFrD::standing Count Binary exercises the push-button, LCD, LED, and
Hello LED seven-segment display peripherals, Count Binary
Hella MicraCj05-1 displays a running count: of 0x00 ko Oxff on oukput
Hello World peripherals, while responding ko input on the
Hello World Small push-buttons, This example runs with or without the
Host File System MicroC/O5-I1 RTOS and supports hardware systems
Menary Test that do not include all the peripherals listed, Z
Micro JO5-11 Message Box v
@ Mext =] [Finish] [Cancel

The Nios II IDE creates and displays these new projects in the Nios I C/
C++ Projects view on the left-hand side of the workbench:

B count_binary_0 - Your C/C++ application project

B count_binary_0_syslib - A board support package that encapsulates
the details of the Nios II system hardware

B altera.components - Links to source code for all Altera-provided
components, for use during debug sessions

Compile the Project

In this section you compile the project to produce an executable software
image. For the example tutorial design, you must first adjust the project
settings to minimize the memory footprint of the software, because your
Nios II hardware system contains only 20 Kbytes of memory.

1-36 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial

Creating the Example Design

Altera Corporation
October 2007

Perform the following steps:

1.

Right-click count_binary_0 and click System Library Properties.
The Properties dialog box for count_binary_0_syslib opens.

Click the System Library page. The System Library page contains
all settings related to how the program interacts with the underlying
hardware. Therefore, the settings here reflect names you specified
when creating the Nios I hardware in section “Define the System in
SOPC Builder” on page 1-15.

Change the following settings to reduce the size of the compiled
executable (see Figure 1-20).

a.

b.

C.

d.

Turn on Program never exits.
Turn off Support C++.
Turn off Clean exit (flush buffers).

Turn on Small C library.

. For further details on the system library see the Nios II

Software Developer's Handbook.

1-37

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-20. System Library Properties

. Properties for count_binary_0_syslib

Info

Builders

CJ/C++ Build
C/C++ Docume

CiC++ Indexer

System Library

C/C++ File Types

Project References
Refactoring History

System Library

Target Hardware

SOPC Builder System: |
nikation |

CPL:

Syskem Library Contents

RTOS: |n0ne (single-threaded) w |
stdout; | jtag_uart w |
skderr: | jtag_uart w |
skdin: | jtag_uart w |
System clock timer: |sys_c|k_timer w |
Timestamp Eirmer: |n0ne w |
IMax file descriptors: | 32 |
Program never exits [clean exit (Flush buffers)

[5upport C++ [(reduced device drivers
[CJLightweight device driver APT Small C library

[CILink with prafiling library [IModelsim anly, no hardware support
[Junimplemented instruction handler [Irun time stack checking

Software Components. ..

1-38

4. Click OK to close the Properties dialog box and return to the IDE
workbench.

5. Right-click the count_binary_0 project in the Nios II C/C++ Projects
view and click Build Project.

The Build Project dialog box appears, and the IDE begins compiling the
project. When compilation completes, a "Build completed" message
appears in the Console view.

Run the Program

In this section you run the program to see the compiled code execute. You
can run the program on target hardware, on the Nios II instruction set
simulator (ISS), or both.

Older versions of count_binary.h need a small modification to
keep the code from hanging on some newer devices and

terminating in the ISS. Be sure line 18 looks like this:

define LCD_ PRINTF(lcd, args...) /* Do Nothing */

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Run the Program on Target Hardware

In this section you download the program to target hardware and execute

it.

'~ If you do not have a target board, skip ahead to “Run the
Program on the ISS” on page 1-40. To proceed, you must have
completed the steps in “Download Hardware Design to Target
FPGA” on page 1-33.

To download the software executable to the target board, perform the
following steps:

1. Right-click the count_binary_0 project, point to Run As, and then
click Nios IT Hardware. The IDE downloads the program to the
FPGA on the target board and starts execution.

If you get a dialog box warning that the IDE needs to finish
indexing the altera.components project before you can
proceed, wait a few seconds for it to finish. The source code
is indexed for debug purposes.

When the target hardware starts executing the program, the Console
view displays character I/O output (see Figure 1-21). If you
connected LED:s to the Nios Il system in “Integrate the SOPC Builder
System into the Quartus II Project” on page 1-28, then the LEDs blink
in a binary counting pattern.

2. Click Terminate (the red square) on the toolbar at the upper-right
hand corner of the Console view to terminate the run session. When
you click Terminate, the IDE disconnects from the target hardware
and leaves the Nios II processor running.

Figure 1-21. Console View Displaying Nios Il Hardware Output

Problems | Properties SERate =0 4 % BEL | B-=08
<kerminated: count_binary_0 Mios 1T HW configuration [Mios I Hardware] Nios IT Terminal Window (5/17/05 12,57 PM)
niosZ-terminal: connected to hardware target using JTAG UART on cakle ~
niosZ-termwinal: "UIB-Blaster [USB-0]", device 1, instance 0O

niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)

TR TEATAATAATAATAATRATRAT
* Hello from Nios IT! *
* Counting from 00 to ££ +

R ERTTRTIRE AT RATAATAAT

oo, ©i, o0z, 03, 04, 05, 06, 07, 08, 03, 0Os, Oh, Oz, 04, 0Oe, Of,

Altera Corporation 1-39
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

You can make edits to the count_binary.c program in the IDE and repeat
these two steps to witness your changes executing on the target board. If
you rerun the program, buffered characters from the previous run session
might display in the Console view before the program begins executing.

«o Forinformation on running and debugging programs on target
hardware, see the Software Development Tutorial available from the Nios II
IDE help system.

Run the Program on the ISS

In this section you run the count_binary_0 program on the Nios II ISS.
Perform the following steps:

1. Right-click the count_binary_0 project, point to Run As, and then
click Nios II Instruction Set Simulator.

= If you get a dialog box warning that the IDE needs to finish
indexing the altera.components project before you can
proceed, wait a few seconds for it to finish. The source code
is indexed for debug purposes.

When the ISS starts executing the program, the Console view
displays character I/O output from the program (see Figure 1-22).
The count output appears very slowly because there are delay loops
in the code.

2. Click the Terminate button (the red square) on the toolbar at the
upper-right hand corner of the Console view to terminate the ISS
session.

Figure 1-22. Console View Displaying Instruction Set Simulator Output

Problems | Properties Bk

] B & || E -0
ount_binary_0 Mios II 155 configuration [Mios IT Instruction Set Simulator] Mios IT Instruction Set Simulatesges17i05 12:24 PM)
Warning : JCPC Builder system component sysid is not supported simulat,ur. -

Simulation way be incorrect if your software attempts to access it

Warning : SOPC Builder system component led pio is not supported by the simulato
r. Zimulation may ke incorrect if your software stbtempts to access 1t

TR AT AT AT AT AREAALAAT
* Hello from Nios II! *
* Counting from 00 co ££f *

AR R AR E AR T ARG R AE R AT RTANL

oo, o1, o0z, 03, 04, 05, 08, 07, 08, 0%, Os, Ob, Oc, 0d, 0=, Of,

You can make edits to the count_binary.c program in the IDE and repeat
these two steps to witness your changes executing on the ISS.

1-40 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Taking the Next Step

Taking the Next
Step

Altera Corporation
October 2007

For information on running and debugging programs on the ISS, see the
Software Development Tutorial available from the Nios II IDE help system.

Congratulations! You have completed building a Nios II hardware
system and running software on it. Through this tutorial, you have
familiarized yourself with the steps for developing a Nios II system:

Analyzing system requirements

Defining and generating Nios II system hardware in SOPC Builder
Integrating the SOPC Builder system into a Quartus II project
Compiling the Quartus II project and verifying timing

Creating a new project in the Nios II IDE

Compiling the project

Running the software on the ISS and target hardware

The following documents provide next steps to further your
understanding of the Nios II processor:

Nios II Software Developer’s Handbook — This handbook provides
complete reference on developing software for the Nios II processor.
Software Development Tutorial available in the Nios II IDE help system
— This tutorial teaches in detail how to use the Nios II IDE to develop,
run, and debug new Nios I C/C++ application projects.

Nios II IDE Help System — The help system in the IDE provides
complete reference on features of the IDE. To open the help system,
click Help Contents on the Help menu, then click the Nios I IDE
Help book in the Contents pane.

Nios II Processor Reference Handbook — This handbook provides
complete reference for the Nios II processor hardware.

Quartus 11 Handbook Volume 4: SOPC Builder — This volume provides
complete reference on using SOPC Builder, including topics such as
building memory subsystems and creating custom components.
Quartus II Handbook Volume 5: Embedded Peripherals — This handbook
contains details on the components provided free as part of the
Nios I Embedded Design Suite.

For a complete list of all documents available for the Nios II processor,
visit the Nios II literature page at www.altera.com/literature/lit-nio2.jsp.

