Appendix C

Tutorial 2 — Implementing Circuits In
Altera Devices

In this tutorial we describe how to use the physical desigiston Quartus Il. In addition to the modules
used in Tutorial 1, the following Quartus Il modules are ddiinced: Fitter, Floorplan Editor, and Timing
Analyzer. To illustrate the procedures involved, we wilstimplement thexample_verilog project created
in Tutorial 1 in a MAX 7000 CPLD.

C.1 Implementing a Circuit in a MAX 7000CPLD

SelectFile | Open Project and browse to the directorgesignstyle2, which contains the Verilog design
example used in Tutorial 1. As depicted in Figure C.1, saletxample_verilog project (Quartus Il project
files have the filename extensiagpf) and clickOpen.
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Figure C.1. Opening thecample_verilog project.

C.1.1 Selecting a Chip

In Tutorial 1 we used the Compiler to perform the synthesisrations, which generated the information
needed for functional simulation. Now, we will implemengtldesign in a CPLD and then use timing
simulation.



To specify which chip to use, seleétssignments | Device to open the window shown in Figure C.2.
To select the MAX 7000 CPLD family, click on the pull-down meim the box labeledramily and select
MAX7000S. TheS at the end of the name refers to the members of the MAX 700Qydhdt are in-system
programmable. Methods of CPLD programming are discuss&hapter 3, in section 3.6.4. Note that in
some cases Quartus Il will display the message “Device fasg@lection has changed. Do you want to
remove all pin assignments?” Clides to close this pop-up box.
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Figure C.2. Selecting a MAX7000S device.

In the Target device box you can specify that Quartus Il should automaticallyesel device during
compilation. The ability to have a chip chosen automatjcall sometimes convenient for the designer.
However, in this case we wish to select a specific chip, s& ditSpecific device selected in 'Available
devices'’ list.

The available chips in the MAX 7000S family are displayedha box labeled\vailable devices. One
available chip is the EPM7128SLC84-7 (if this device is ristield, change th8peed Grade item in the
Filter box toAny). The meaning of the chip name is as follows: The EPM7 meaidttle chip is a member
of the MAX 7000 family, and the 128 gives the number of macliede the chip. The designator LC84
indicates an 84-pin PLCC package; this type of package ithes! in section 3.6.3. The7 gives thespeed
grade. We discuss speed grades in Appendix E. As indicated in €iGu2, click on the EPM7128SLC84-7
device, then clickOK to close theSettings window. We have chosen this chip because it is provided on an
Altera development board that is discussed in Appendix D.



C.1.2 Compiling the Project

In Appendix B we ran just the synthesis tools in Quartus llusing the comman@rocessing | Start |
Start Analysis & Synthesis. Now, we wish to run not only the synthesis tools, but alsoralmer of other
tools that implement the circuit in the target device. Tooke all the needed tools, seleRtocessing |
Start Compilation, or use the toolbar icon that looks like a solid purple triand his runs in sequence four
of the modules in Figure B.16: Synthesis, Fitter, Assemlaled Timing Analyzer. As we saw in Tutorial 1,
the compilation progress through each Quartus Il modulésigalyed in the Status window on the left side
of the Quartus Il display. After the Analysis & Synthesis ratedconverts the Verilog code into a circuit
that comprises macrocells, the Fitter module choosesitosabn the device for these macrocells.

When compilation is finished, the compilation report digpldin Figure C.3 is produced. As we said
in Tutorial 1, there is a lot of useful information in this mp Click on the small + symbol to expand the
Fitter section of the report, and then click on the Fitter &@ns section to reach the display in Figure C.4.
Scroll through this part of the report to see the logic exgitas implemented by our circuit. At the bottom
of the report the outpuf is given as

f = OUTPUT(ALL6);

This means thaf appears on an output pin, and that output is defined by the égiression called A1L6,
which is realized as indicated near the top of the Fitter Eguna section in Figure C.4. These expressions
properly implement our logic functiofi = x1xs + Tozs.

C.1.3 Performing Timing Simulation

Timing simulation is done by using the same procedure thadeseribed in Tutorial 1 for functional sim-
ulation. SelecAssignments | Settings and click on theSimulator item, as shown in Figure B.24. Open
the drop-down list next t&imulation mode and change this setting froFunctional to Timing.
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Figure C.3. The compilation summary.
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Figure C.4. The Fitter Equations section.

Use the input waveforms farl, 2, andx3 that were drawn with the Waveform Editor in Tutorial 1 as
inputs for the timing simulation. SeleBrocessing | Start Simulation to run the simulation. When it is
completed, the simulation report is displayed. Part of thmort is shown in Figure C.5. Seleé¢tew | Fit
in Window to see the complete time range of the waveforms. Compare thageforms to those shown
in Figure B.25. The timing simulation produces the samelteas the functional simulation in Tutorial 1
except that the times at which changed wccur are now determined by the timing characteristics ef th
EPM7128SLC84-7 chip.

We can use the vertical reference line in the display to deter the exact time wheji changes value.
To do this selecView | Snap to Transition, so that your mouse pointer will align perfectly with an edge
any waveform. Click and drag the vertical reference lineh point wheref first changes to 1, as shown
in the figure. The box labeledlaster Time Bar now displays 27.5 ns, meaning that it takes 7.5 ns for the
change ine3, which occurs at 20 ns, to cause a changk irhis result is a reflection of the7 speed grade
of the chip, which is specified as having a delay from an inpwatrt output pin of 7.5 ns.
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Figure C.5. The Timing Simulation Report.

C.1.4 Using the Floorplan Editor

In addition to examining the equations in the compilatioporg, another way to view the implementation
results is to use the Floorplan Editor. Seléssignments | Timing Closure Floorplan to open the win-
dow shown in Figure C.6. Another way to open this window isltokcon the corresponding icon in the
toolbar. To make the window look like the one in the figure, &ynbe necessary to change the setting in the
Floorplan tool by selectinyfiew | Interior Cells, which causes the macrocells in the device to be displayed.
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Figure C.6 shows some of the macrocells in the EPM7128SLIC&4%p. As we describe in Appendix E, the
macrocells are organized into logic array blocks (LABs)gevweheach LAB contains 16 macrocells. To see
larger or smaller views of the LABS, click on the magnify lauts in the vertical toolbar; left-click to enlarge
the image and right-click to reduce it. To display differeattions of the chip, use the window scroll bars.
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Figure C.6. The Timing Closure Floorplan display.

The Floorplan Editor uses different colors to indicate roaelis that are used in a circuit and macrocells
that are unused. For our small example three pins are usetthdaihree inputs to the circuit, and one
macrocell provides the circuit output. Adjust the displaytisat the macrocell that produces the outpist
visible, as depicted in Figure C.7. Click on this macrocels¢lect it. The Floorplan Editor can draw lines
that indicate which other macrocells the selected madreeebnnected to by choosingiew | Routing
| Show Node Fan-In. It is also possible to see what logic function is implemdritethe selected node
by selectingView | Equations. As seen in the figure, this choice displays the logic expwassfrom the

compilation report in the bottom part of the Floorplan windo

Instead of displaying the macrocells, the floorplan tool als@rnatively display a picture of the pins on
the chip package. To change to this view, seléetw | Package Top. This leads to the display in Figure
C.8. To close the report file equation viewer, select ayénv | Equations to toggle off this feature.
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Figure C.7. Viewing node fan-in and equations.
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The Floorplan tool is not essential in the CAD flow describbdwve. It just provides a graphical view of
the information contained in the compilation report. Welwé#scribe a different use of the Floorplan tool
in Appendix D, in which it will be used to modify the implematibn results produced by the Compiler,
instead of just displaying them.

We have now completed the implementation of ékample_verilog project in a MAX 7000 chip. Close
the project.

C.2 Implementing a Circuit in a Cyclone FPGA

The CAD flow used to implement a circuit in a Cyclone FPGA isshee as that used for the MAX 7000
CPLD. We show in Chapter 4 that multilevel logic synthesisiiseffective optimization strategy when
targeting designs to lookup table-based FPGAs. Figure give$s Verilog code for a seven-variable logic
function used to illustrate the benefits of multilevel syadis. In this section we will create a new design
project, namedxample_verilog2, which represents the Verilog code in that figure.

Create a new project in a directory nametbrial 2\ multilevel, and use the namexample_verilog2 for
both the project name and the name of the top-level entitiecBthe Cyclone family and let the compiler
choose a specific device.

Create a Verilog design file callemkample_verilog2 that comprises the code from Figure 4.54, as dis-
played in Figure C.&. Compile the project. After successful compilation, in doenpilation report expand
theFitter section and click offritter Equations. At the bottom of this section in the report, the outgus
specified as

f = OUTPUT(ALL3);

As shown in Figure C®the logic expression foA1L3 implementsf in a multilevel logic form. The
first level of logic is specified as

Al1L2 = xgxomw7 + Tﬁ(wl + 1’21’7)

We show in Appendix E that the logic cell in the Cyclone FPGA i$-input lookup table (LUT) that can
implement any four-input function. Since the expressioavabhas four inputs, it can be realized in one
logic cell in the device. This cell provides an input to thetrdevel expression

A1L3 = A1L2(x3 + x425)

This expression also has four inputs, and can thereforedbized in a single cell. Thug; is implemented
as two cascaded logic cells. The reader is encouraged tfy ¥hat the expression foA1L3 properly
implements the function specified in Figure &.9

Having implemented the design in the Cyclone device, perfartiming simulation (as explained in
section C.1.3) to gain a feeling for the timing characterssof the Cyclone device. Once a project has been
compiled for the target device, it can be downloaded intoip bly using Quartus Il. The procedure for
programming a chip is described in Appendix D.



Eﬁ example_verilog2.¥ [_ O]

module example verilogs (x1, =2, =3, x4, x5, #*6, x7, f);
input =1, =2, =3, =4, =5, =6, =7:
output f:

assign £ = (%1 & x3 & ~®6) | (%1 & x4 & x5 & ~x6) |
(%2 & %3 & x7) | (%2 & x4 & x5 & x7);]

endmodule

[« 4

(a) The Verilog source code.
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(b) The Fitter Equation report.

Figure C.9. Thexample_verilog2 source code and implementation.

C.3 Implementing an Adder using Quartus Il

In section 5.5 we show how aftbit ripple-carry adder can be specified in Verilog code.his section we
show how the ripple-carry adder can be implemented usingumatus 1l system. Create a new project,
adder 16, in a directorytutorial2\addern. We will implement the adder circuit in a Cyclone FPGA. Thus,
in the New Project Wizard window shown in Figure B.7, seléet Cyclone family. Choos¥es under the
guestionDo you want to assign a specific device, and click theNext button. In the wizard’s screen that
comes next choose the EP1C6F256CY7 (if this device is netlisthange th&peed Grade item in the
Filter box to Any).

C.3.1 The Ripple-Carry Adder Code

Verilog code for the-bit adder is given in Figure C.10. It takes the carry-in sigoarryin, plus twon-bit
numbers X andY’, as inputs and produces thebit output sum,S, and carry-out signatarryout. The code
uses the parameter, so that the adder can be parameterized to work for any vdlue lo this examplen
is set to 16. In the code the vectOris used to represent the intermediate carries betweenabessin the
adder. Afor loop is used to create full-adders that comprise the ripple-carry adder.

Type the code in Figure C.10 into the Text Editor, as explaineSection B.4.2, and save the file in the
tutorial2\addern directory using the namadder 16.v. Compile the circuit. The compilation report is shown
in Figure C.11.



module adderl6 (carryin, X, Y, S, carryout);

parameter n = 16;
input carryin;
input [N—21:0] X,Y;
output [n—1:0] S;
output carryout;
reg [n—1:0] S;

reg [n:0] C;

reg carryout;
integer Kk;

always@(X or Y or carryin)

begin
CI0] = carryin;
for (k=0; k<=n-1; k=k+1)
begin

SIK] = X[K] " Y[K] " C[K];

Clk+1] = (X[K] & Y[K]) | (C[K] & X[K]) | (C[K] & Y[K]);

end
carryout = Cin];
end

endmodule

Figure C.10. Verilog code for a ripple-carry adder.
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Figure C.11. The compilation report summary.

C.3.2 Simulating the Circuit

To test the correctness of the circuit, we will perform tigngimulation. For brevity only a few test vectors
will be used, but in a real design situation more extensigtirtg would be required.
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Open the Waveform Editor window. Udgdit | End Time to set the desired simulation to run from
0 to 250 ns. Choose the grid lines to be placed at 25-ns irgervéis is done by selectingdit | Grid
Size, which leads to the window in Figure C.12. Set the period te$@nd clickOK. SelectView | Fit in
Window to display the entire simulation range in the window.

—Base grid on

) Clock setfings:

E]

& Time pariod:
Feriod: ISD.D Ins j
Fhase: ID.D Ins j

Dty cycla (36): |50 =

oK I Cancel |

Figure C.12. Setting the spacing of grid lines.

SelectEdit | Insert Node or Bus, and then open the Node Finder utility to reach the windowigufe
C.13. Set the filter t®ins: all and clickList, which displays the input and output nodes as depicted in the
figure. Scroll down the list of displayed nodes until you feearryin. Select this node by clicking on it and
then clicking the> sign. Next select th& input. Note that this input can be selected either as nodgs th
correspond to the individual bits (denoted by bracketedauits) or as a 16-bit vector, which is a more
convenient form. Then, select the inptitand outputsS and carryout. This produces the image in the
figure. ClickOK.

MNode Finder
Marned: Ii j Filter: IPins: all j Cusztomize... I List | ak. I
Laak ir: |Iadder1EI J ¥ Include subentities Stap | Cancel I
Modes Found: Selected Nodes:

Mame | Assignments | Type | Cﬂ I Mame | Assignments | Type

[l Unassigned Input Group U B |adder16|carrvin Unassigned Input

w=[0] Unassigned Input u ¥ |adder16]x Unassigned Input Group

m=y[1] Unassigned Input u ¥ |adder 16|y Unassigned Input Group

=[] Unassigned Input u T |adderia|s Unassigned Output Grow

=[3] Unassigned Input U £ |adder16|carryout  Unassigned Qubput

y[4] Unassigned Input U

(5] Unassigned Input u _>|

m=yla] lUnassigned Input u

(7] Unassigned Input U LI

(3] lUnassigned Input u

y[9] Unassigned Input U _<I

m=y[10] Unassigned Input u iI

m=y11] lUnassigned Input u

m=y[12] Unassigned Input U

m=y13] lUnassigned Input u

[ 14] Unassigned Input U

m[15] Unassigned Input u

B carryin Unassigned Input L

Farryout  Unassigned Cutpuk U=

| _>|J | | 2
v

Figure C.13. The Node Finder window.

10



The Waveform Editor window now looks like the image in Fig@el4. VectorsX, Y, andS are initially
treated as binary numbers. They can also be treated as@ith&érhexadecimal, signed decimal, or unsigned
decimal numbers. For our purpose it is convenient to treanhths hexadecimal numbers, so right-click on
X in the Name column and seledProperties in the pop-up box to get to the window displayed in Figure
C.15. Choose hexadecimal as the radix, make sure that theibitisis 16 bits, and clickOK. (Quartus |l
uses the ternbus to refer to multibit nodes.) In the same manner, declare¥hand.S should be treated as
hexadecimal numbers. The resulting waveform display isvahia Figure C.16.

I waveforml.ywf* [_ (O] x|
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[ # B o000, Q000000000000000
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2 carmyout B
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Type [inPUT |
Yalue type: ‘El—LeveI

Radlix

Buswidth:  [16 5

™ Display gray code count as binary count

Figure C.14. Selected input and output nodes.
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Figure C.15. Defining the characteristics of a node.
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| s H 5 P
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Figure C.16. Using the hexadecimal representation foribiugtignals.
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We will now set the test values of andY. The default value of these inputs is 0. To assign specific
values in various intervals proceed as follows. Selecthigbt) the interval from 100 to 175 ns of input
X. Press thérbitrary Value icon in the toolbar (it is labeled by a question mark), to grup the pop-up
window in Figure C.17. Enter the value 3FFF and cl@K. Then, setX to the value 7FFF in the interval

from 175 to 250 ns. S&t to 0001 in the interval from 50 to 250 ns. Thus, the input wakmes should be
as depicted in Figure C.18. Save the fileadder 16.vwif.

Arbitrary Value %]
Mode/group namers):
® Cancel |
Radix: IHexadecimaI j
Mumetic or named wvalue: j

Figure C.17. Assigning the value of a multibit signal.

C.3.3 Timing Simulation

To examine the functionality of the circuit, and determitsespeed of operation in the chosen device, we will
perform a timing simulation. Seleétssignments | Settings | Simulator to reach the window in Figure
B.25 and choos&iming as the simulation mode. Run the simulator. The result isngind=igure C.18. It

shows considerable delays in producing the correct véllee4000 because the carries are rippling through
the adder stages.

& adder16 Simulation Report M=) =
g I;:.gtjlgr\i,i::;eary Master Time Ops J_'l Fairter | Ops Intewal| Ops Startl Endl
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- SHER Simulator Summ Ups f
T e
1
B smudator 1t L | 22] B X H 0000 I O Y
(i} Simulator Mess: =d ¥ H 0000 onan_y, 0001
=| @S H 0000 OO0y 0001 j4ff”_fom ¥ sow
| canmpout BOD
A &

Figure C.18. The result of timing simulation.

Point to the small square handle at the top of the refereneealnd drag it to the point where tisevalue
becomes 4000. A more accurate view can be obtained if thefaravémage is enlarged using the Zoom
Tool. Enlarge the image to look like the display in Figure €.Click on the Selection Tool icon, and drag
the reference line as closely as possible to the point whergalue 4000 becomes valid.
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The change irt from 0001 to 4000 is caused by theinput changing from 0000 to 3FFF, which occurs
at 100 ns. As seen in Figure C.19, the outfuthanges to 4000 at approximately 123.4 ns. Therefore,
the propagation delay through the adder, for these paaticdlues of inputs, is estimated to be 23.4 ns.
Note that, in this case, the adder performs the operafitF + 1 = 4000 which involves a carry rippling
through most of the stages of the adder circuit. For otharegbf inputs, the propagation delay may be
much smaller. In Figure C.18, we see that the operdiim® + 0001 = 0001 is completed in about 8.5 ns.
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=
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Figure C.19. Detailed results of timing simulation.

When we compile our circuit usinBrocessing | Start Compilation one of the modules executed is the
Timing Analyzer. As explained in Chapter 12, this moduleoaudtically produces an estimate of the speed
of the circuit. Open the compilation report by selectiigpcessing | Compilation Report or by clicking

on its icon. The report includes the derived timing analy€itick on the small + symbol next to Timing
Analyzer to expand this section of the report. Then, clickioning Analyzer Summary to get the display

in Figure C.20. The summary indicates that the estimatedtwase propagation delay from an input to
output pin,t,4, is 24.7 ns. This longest path starts at daeryin input and ends a$[15]. Note also that
the minimum delay is estimated to be 8.5 ns. More detailedrinétion about the propagation delays
along various paths through the circuit can be seen by olickintpd on the left side of Figure C.20,
which displays the information in Figure C.21. Here, we $&# there are several paths along which the
propagation delay is close to the maximum, including theginen in the summary in Figure C.20. These
longest-delay paths are referred tocasical paths.

& 3dder16 Compilation Report M=) =
@[:I Analysis & Synthesis -I alyze -

éD Fitter Type Slack |Required Time |Actual Time | From |To
S5 Assembler 1| ‘Worstcaze tpd Wi [Mone 24727 e carmyin | 5[15]
S Timing Analyzer 2| Warst-case minimum tpd| N/ | Mone £ 454 s vIo |50

%@ Timing Analyzer Settings
%% Timing Analyzer Summary

@% tpd

%% Minirurn kpd

¢ B} Timing Analyzer Message
< 2

Figure C.20. The worst-case propagation delay.
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% Compilation Repork pd
S B Legal Matice Glack |Required P2P Time Actual P2P Time |From |To -
~=FH Flow Summary 1 f M4 [More 24.727 ns canyin |5[15] )
~&HER Flow Settings 2 | M [None 24 539 ns #[0]  |5[15]
B Flow Elapsed Time 3 | Ma | Mone 24.446 s Y] |S[15]
_é Flows L?g ) 4 MAh Maorne 24.032 nz caryin | carmyout
&5 Analysis & Synthesis
41257 Fitter 5| WA More 23044 my H0] | camyout
[+1-¢5h] Assembler T More 23.751 nz YO | caryout
=& Timing Analyzer 7 [eF Mone 23564 ng carryin | 5[14]
£S5 Timing Analyzer Settings |8 R MNone 23376 ns X[0] |5[14]
@g Timing Analyzer Summary | | 9 1 A2, MNone 2329 ns caryin [5[13]
-~ SHE tpd 10 | M/ |Mone 23.283 1 YO0l |5M4)
-~ &E Minimum tpd 1| M |Nare 23103 ns N OIELE)]
& 82 Tining Analyzer Messages 557101 0™ lone 23010 ms FEE!
4] I3 | nee [Mone 22713 ns camyin |5012) x|

Figure C.21. The critical paths.

The Timing Analyzer performs several types of timing analyd he results displayed in Figure C.21
give the delays through a combinational circuit, from inpims to output pins. The other types of analysis
are applicable only to circuits that contain storage eld@memamely flip-flops. This type of analysis is
discussed in section C.5.

C.3.4 Implementation in a CPLD Chip

We will now implement the ripple-carry circuit in a CPLD chifelectAssignments | Device to reach the
window in Figure C.22. Choose tiMAX 7000S family and select the devidePM7128SLC84-7.

Compile the circuit. Open the Timing Analyzer summary in¢benpilation report, which is depicted in
Figure C.23. Observe that the worst-case propagation delagw 22.5 ns, which is smaller than the delay
observed in Figure C.20. We should not jump to a conclusiamutathe relative performance of FPGA and
CPLD devices, because this circuit is just a small examplé there are many other devices that we could
have chosen in our implementation. Also, there are othesipitises in implementing a design, as we will
see in the next section.

We have finished working on tregldern circuit, so close the project.
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Settings - adder16 E

Category:

- General

- Files

- Uzer Libraries

- Device

- Timing Fequirements & Options
- EDA Tool Settings

- Compilation Process

- Analyzis & Synthesiz Settings
- Fitter Settings

- Timing Analyzer

- Design Assistant

- SignalT ap Il Logic &nalyzer
- SignalProbe Settings

- Simulator

- Software Build Settings

- Stratix G Registration

- HardCopy Settingz

el
[+

-
[

el
[+

Select the family and device you want to target for compilation.

Family: | Max70005

j Device & Pin Options. . | Fiouting Dptions... |

— Target device

" Auto device selected by the Fitter from the ‘Swvailable devices' list

% Specific device selected in 'Bwvailable devices' list
) Other: n/a

Azzign Pinz... |

Available devices:

EPM70E45TCI00-7
EPM7OB45TIT00-7
EPM7OG45TCIO010
EPM71285LC84-6
EPh -7
EPM71285LCE4-1
EPM71285L184-10
EPM71285LCE4-15
EPM712850C100-6
EPM712850C100-7
EPM71285QC100-10
EPM71285Q1100-10
EPM712850C10015
EPM71285QC160-6

Iigration compatibility: Oimigration devices selected

;I Show in ‘Available devices' list
Package: Any =
Pin count: Any -

Speed grade: IAn_p VI

Core voltage: 5.00
[V Show Advanced Devices

Iigration Devices... |

Figure C.22. Specification of the desired device.

%@ Compilation Repork

S B Legal Matice

=5 Flow Surmmary

5B Flow Settings

5B Flow Elapsed Time

5B FlowLog

[]—-@D Analysis & Svnkhesis
-¢ZB(0 Fitter

I:l--%[:l Assembler

=23 Timing Analyzer

%% Timing Analvzer Setkings
%g Timing Analyzer Surmmary

@% Minimurn tpd

i) Timing Analyzer Messages

& adder16 Compilation Report =]

Type Slack | Required Time|Actual Time|From |To
1§ Worst-caze tpd MAs  |Mone 22500 ns x4 |5[12]
2| Worst-case minimum tpd| N8 |None 7500 ns wI0) o |S[0]

Figure C.23. The worst-case delay using a CPLD

C.4 Using an LPM Module

In section 5.5.1 we discuss how an adder circuit can be imghéea by using thgpm_add_sub module in
the library of parameterized modules (LPM). In this sectimcompare the adder circuit produced by the
Ipm_add_sub module to the ripple-carry adder implemented in the previsection. Create a new project,
adder16_Ipm, in a directorytutorial2\adderlpm. Choose the same FPGA chip as in section C.3.

The easiest way to instantiate an LPM module is by means ofardi Selecfools | MegaWizard
Plug-in Manager to activate the wizard. A number of pop-up boxes will appearhich we can specify
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the features of the desired module. In the screen shown uré-iQ.24 choose to create a new variation of a
megafunction, and clicklext. In the screen in Figure C.25 select the LENDD _SUB module. Make sure
that the Cyclone family is indicated at the top right, ana aslect the entryerilog HDL as the type of file

to create. Let the output file be namedgadd.v. (The filename extension, will be added automatically.)
Click Next. In Figure C.26, specify that a 16-bit adder circuit is regdi ClickNext to reach the screen
in Figure C.27. Indicate that both inputs can vary and chlekt. In Figure C.28 specify that both carry
input and output signals are needed. Observe that the waispthys a symbol for the adder which includes
the specified inputs and outputs. In the screen in Figure @e2Bne the pipelining option. The last screen
is given in Figure C.30, which indicates the files generatgthk wizard. ClickFinish. We are interested
only in themegadd.v file, so make sure that this in the only file selected by a cheatkm

MegaWlizard Plug-In Manager [page 1]

The MegaWizard Plug-ln Manager helps you create or modify design
\ files that contain custom wvariations of megafunctions.

YWhich action do you want to perfarm?

& Create a new custom meagafunction varistion
" Edit an existing custom megafunction variation

 Copy an existing custom megafunction variation

Copyright € 1991-2003 Altera Corporation

Cancell <Elack| Iext » I Finish |

Figure C.24. Choose to create an LPM instance.

MegaWizard Plug-In Manager [page 2a]

Which megafunction would you like to customize? Which device Farnily will you be IEycIone vI

ihg?
Select a megafunction from the list below R
-9 Installed Plugdns “which type of output file do you want to create?
T a[ith:f;i;CEUMULATE Loy
[ ALTFP_MULT UL
7] ALTMEMMULT £ Werilog HDL
- ALTMULT_ACCUM (MAC)
] ALTMULT_ADD wihat narne do you want far the output file? Browsze...
- LPM_ABS |
+] LPM_aDD_SUB Id:'\tutorial2\adderlpm\megadd
| LPM_COMPARE
~1z] LPM_COUNTER I~ Generate a Clearbox body [far EDA tools orly)
-2 LPM_DIVIDE
LA LPM_MULT I Fietum ta this page far another create operation
| PARALLEL_ADD
IH ABM-Baszed Excalibur Mote: To compile a project successfully in the Quartus 1|
i software, your design files must be in the project directony or
F a uzer libramy vou specify in the User Librariez page of the
B gates Settings dislog box [Azzsignments menu).
- 110
-8 memary compiler Your current uzer library directories are:
-8 storage

(- @ P MegaStare

Cancel | <Back| st > I Firiizh |

Figure C.25. Select the LPM and its Verilog specification.
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MegaWizard Plug-In Manager - LPM_ADD_SUB [page 3 of 7] E2

Currently selected device family: IEchIone j

rmegadd

datas[15.0] How wide should the 'dataa’ and 'datab’ input buses be? I'I B 'I bits:

datab[ls 0] B which operating mode do you veant for the adder/subtractor?

' Addition only
~ Subtraction only

{~ Create an 'add_sub' input port ta allow me o do both
[1 adds; O subtracts)

Resource Usage .
i = Cancel | ¢ Back | Mewt » | Finizh |

Figure C.26. Choose the adder option and the number of bits.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 4 of 7]

megadd
JLdataa 15__0,1\___5 Is the 'dataa’ or 'datab’ input bus value a constant?
result/[15.
At & Mo, both values vary
Jdatab[15..0],
=  Yes, datas =
 Yes, datak =

Resource Usage

16 0t Cancell <Elack| ext » | Finish |

Figure C.27. Choose both inputs to be variable.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 5 of 7]

cin megadd Do you want any optional inputs or outputs?
Jdataa 15..0,1\: Input:
¥ Create a carry input

Outputs:
v Create a carry output

[” Create an overflow output

Resource Usage
17 lut

Cancell <Elack| ext » | Finish |

Figure C.28. Include carry input and output connections.
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MegaWizard Plug-In Manager - LPM_ADD_SUB [page 6 of 7]

) megadd
cin

Jdataa 15..0,1\]

Do you want to pipeline the function?

& Mo
 as, lwant an output latency of I Clock cycles

[T Create an asynchrenous Clear input

[T Create a Clock Enalle input

Resource Usage
17 lut

Cancell <Elack| ext » | Finish |

Figure C.29. Decline the pipelining option.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 7 of 7] -- Summary

wihen the Finish' button iz preszed, the Mega'wizard Plug-ln Manager
will create the checked filez in the following ligt. rou may chooze o
include or exclude a file by checking ar unchecking itz carespaonding
checkboy, respectively. The state of checkboxes will be remembered
for the next Megawizard Flug-ln Manager session.

The Meagawizard Plug-In tanager will create the checked files in the
directony: d:sbutonial2hadderlpm®

File | Degcription |
el [ megadd.v Y ariation file

O megadd.inc AHDL Include file

O megadd.crp YHODL Component declaration file

[ megadd.bsf Quartus spmbal file

[ megadd_inzt.w Instantiation tenplate file

[ megadd bb.v “erilog ‘Black Box' declaration file

Document ation. .. | Cancel | < Back | I [ | Finish I

Figure C.30. Files generated by the wizard.

The megadd module is shown in Figure C.31. (We have removed the comnientsake the figure
smaller.) The top-level Verilog code that instantiates tmiodule is given in Figure C.32. Enter this code
into a file calledadder 16_Ipm.v.

Compile the design. A summary of the timing analysis is shawRigure C.33. In this design, the
worst-case propagation delay is 13.4 ns. Clearly, the amdelementation by means of an appropriate
LPM is superior to our generic specification in Figure C.10eTeason that this adder is much faster than
our previously created ripple-carry adder is that the LPMkesause of special circuitry in the FPGA for
performing addition. We discuss such circuitry, oftenedlhcarry-chain, in Section 5.4. We may conclude
that a designer should normally use an LPM if a suitable nedxists in the library. Close tlaglder 16_Ipm
project.
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module megadd (dataa, datab, cin, result, cout);
input [15:0] dataa;
input [15:0] datab;
input cin;
output [15:0] result;
output cout;
wire suhwireO;
wire [15:0] suhwirel;
wire cout = subwireO;
wire [15:0] result = subwire1[15:0];

Ipm_addsub Ipmaddsuhcomponent (
.dataa (dataa),
.datab (datab),
.cin (cin),
.cout (subwire0),
.result (subwirel));
defparam
Ipm_add sub.component.lpnwidth = 16,
Ipm_add sub.component.lpndirection = "ADD”,
Ipm_add.sub.component.lpntype = "LPM_ADD _SUB”",
Ipm_add sub.component.lphint = "ONE_LINPUT_IS_.CONSTANT=NO";
endmodule

Figure C.31. Verilog code for thaegadd module.

module adderl6lpm (carryin, X, Y, S, carryout);
input carryin;
input [15:0] X, Y;
output [15:0] S;
output carryout;

megadd addecircuit (.cin(carryin), .dataa(X), .datab(Y),

.result(S), .cout(carryout));
endmodule

Figure C.32. Verilog code that instantiates the LPM addedute

Type Slack |Required Time | Actual Time |From |To

1§ “Woarst-caze tpd R Mone 13.242 nz [0l |5[158]
2| Worst-case minimum tpd| M A, Maone 9079 ne ¥[O]  |S[0]

Figure C.33. The worst-case delay for tmsler 16_|pm circuit.
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C.5 Design of a Finite State Machine

This example shows how to implement a sequential circuitgu§uartus Il. The presentation assumes that
the reader is familiar with the material in Chapter 8. In gerB.1 we show a simple Moore-type finite
state machine (FSM) that has one input,and one output;. Wheneverw is 1 for two successive clock
cycles,z is set to 1. The state diagram for the FSM is given in Figurei8i8 reproduced in Figure C.34.
Verilog code that describes the machine appears in Fig@@& 8.is reproduced in Figure C.35. Create a
new projectsimple, in the directorytutorial2\fsm. Create a new Text Editor file and enter the code shown

in Figure C.35. Save the file with the namieple.v.

Reset

w=1

Figure C.34. State diagram of a Moore-type FSM.
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module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1]y,Y;
parameter [2:1] A =2’b00, B =2'b01, C = 2'b10;

/I Define the next state combinational circuit
always @(w or y)
case(y)

A if (w) Y=B;

else Y =A;

B: if (w) Y=¢C;

else Y=A;

C.if(w) Y=C;

else Y =A;

default: Y=2
endcase

// Define the sequential block
always @ (negedgeResetn oposedgeClock)
if (Resetn ==0) w=A;
else y <=Y;

I/l Define output
assignz=(y == C);

endmodule

Figure C.35. Verilog code for the FSM in Figure C.34.

C.5.1 Implementation ina CPLD

Select the same MAX 7000S device as in section C.1. Compleiticuit. Open the Waveform Editor and
import the nodefResetn, Clock, w, andz. These nodes are found by setting the Node Finder filt&ins:

all. We also want to see the behavior of the state variables vdre implemented by means of flip-flops.
To find these nodes, set the Node Finder filteRemisters: post-fitting and clickList. The Node Finder
displays two nodes, as shown in Figure C.36. Import both @g¢modes into the Waveform Editor. Set the
total simulation time to 650 ns and set the grid size to 25 e$R&setn = 0 during the first 50 ns, and then
setResetn = 1. To enter the waveform for the clock signal, click on the narhthe Clock waveform in the
Waveform Editor display. With the signal highlighted, &lion theOverwrite Clock icon in the toolbar (the
icon depicts a clock). This causes the pop-up window in Eid@Lu37 to appear. Set the clock period to be
50 ns, make sure that the phase is 0 and the duty cycle is 58npeand clickOK. The defined clock signal
is now displayed in the Waveform Editor window, as depicte&igure C.38. Next, draw the waveform for
w as indicated in the figure. Save the file, under the namplevwf. Run the Timing Simulator to get the
result shown in Figure C.39.
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MNode Finder

Named: [f =] Fiter: [Registers: postfiting ¥ Customize.. | List |

Loak. in: ||Sil'ﬂ|3|8| J ¥ Include subentities Stom |

Cancel |

Modes Found: Selected Modes:
Mane | Assignments | Type | Ch _>| Mame | Assignments | Type
A 2 Unassigned  Reqistered [ats] b4 I A | sirmple|y~21 Unassigned  Registered
G yez] Unassigned  Registered [als] < | & |simple|y~20 Unassigned  Registered
J | ol < |4 | »
A
Figure C.36. Nodes that represent the state variables.
—Base waweform on
) Clock setfings:
& Time pariod:
Feriod: ISD.D Ins j
Fhase: ID.D Ins j
Duty cycle (%): |50 =
oK I Cancel |
Figure C.37. Setting th€lock input.
B simple.vwf* H=] B3
taster Time Bar: 0ps <| 'l Pointer: | 0ps Interval; | 0ps Start; | Ops End: | ER0.0 nz
ps 100.0 nz 2000 nz 300.0 ne 400.0 ne B00.0 nz BO0.0 nz |
Name Walue... i i i i i i
Opz | %
i
| I Resetn | BO
=d Clock BO
=3 w BO I | I ] I T
k=d z B
LR ol HU [i]
LR g w20 HU [i]

Figure C.38. Input test vectors.
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Simulation Waveforms
taster Time Bar:| Opz <|>|F'0inter:| Ops Interval:| 0ps Stalt:| End:l

pz 1000ns 2000n: 3000n: 4000ns S000n: GOOO ns|
Walue at i i i i i i
Ops P

Resatn BO
Clock, BO

Mame

w BO L
2 BO 1 o L
ey HO 1 RN

EIEENANA0

[l Ho L 1.1 1

Figure C.39. Timing simulation waveforms.

The FSM behaves correctly, setting= 1 in each clock cycle for whiclw = 1 in the preceding two
clock cycles. Examine the timing delays in the circuit, gsthe reference line in the Waveform Editor.
Observe that changes in the FSM’s state occur 2.5 ns aftertae alock edge and that 4.5 ns are needed
to change the value of theoutput.

Open the Timing Analyzer summary in the compilation repwattich is displayed in Figure C.40. The
bottom row indicates that the maximum frequency, which iemfcalledfmax, at which the synthesized
circuit can operate is 125 MHz. This is a useful indicator effprmance. Thémax is determined by the
longest propagation delay between two registers (flip-jloplke figure also shows the values of some other
timing parameters. The worst-case flip-flop setup titag, and hold timeth, are given. Line 1 in figure
C.40 specifies that the input cannot change within 6 ns of the active clock edge, s® t#ey~21 flip-flop
may become unstable. Line 3 shows that no input signal in iocwit has to remain stable after the active
clock edge, because the worst case hold-time requiremerdgiative. We explain in section 10.3.2 how
flip-flop timing parameters are determined in a target chipe parametetco indicates the time elapsed
from an active edge of the clock signal at the clock pin umibatput signal is produced at an output pin.
This delay is 4.5 ns for the output, which is what we also observed in the waveforms inifeig.39.

Type Slack | Required Time |Actual Time From |To
1§ “Warst-caze tsu M/ MHaone E.000 ns w w21
2| “Warst-caze tco M/ MHaone 4500 nz 21|z
3| Woarst-caze th M/ MHaone -1.000 ns w w21
4| “wWarst-case minimum boo |MAg MHaone 4500 nz 21|z
5| Clock Setup: 'Clock! M/ MHaone 126,00 MHz [ period = 8000 ns ] (w~21  |p~20

Figure C.40. Summary of the timing analysis for the FSM dtrcu

Note that the states of this FSM are implemented using twie staiables. The Verilog code in Figure C.35
specified the present state variablegfd$ andy[2]. However, Quartus Il gave the namgs 20 andy~21
to these variables, as we discovered when using the NoderiQdartus Il uses the names of all inputs and
outputs as given in the Verilog code, but it may choose fairbjitrary names for internal connections.

Two or more binary signals displayed in the Waveform Editam be combined into a “group” (corre-
sponding to a vector in Verilog terminology) of signals thah be referred to by a single name. Open the
simple.vwf file and select thg~21 andy~20 simultaneously, so that their waveforms are highliglitedke
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sure thaty~21 is listedabove y~20, as shown in Figure C.38). Seldadit | Group to reach the pop-up
box in Figure C.41. Type as the group name, choose hexadecimal as the radix, andd#icKhis causes
y to be used, instead gi~21 andy~20, in the filesmplewwf. Perform timing simulation to get the result
in Figure C.42. Now, the FSM states are represented by thesalf the vectoy.

Group

Group name; I.'H

R adix: I Hexadecimal j

[ Display gray code count as binary count

ak. I Cancel |

Figure C.41. Grouping of signals.

Simulation Waveforms
taster Time Bar:| 0 ps *l 'l F'ointer:l Inlerval:| Start:| End:l

Valu pe 1000ns 2000ns 3000ns 4000ns 5000ns EO00,0 ns|

Ops | %
i

M ame

[ g Resetn BO || |

P Clock go | LML L L L L L
=d w BO L

= - BO 1 IR EEEEN
@ #Hy HO

Figure C.42. Waveform displayed as a veajor

C.5.2 Implementation in an FPGA

In section 8.8 we said that when implementing an FSM in an FP&#4ood strategy is to use one-hot
encoding, with one state variable assigned to each staeeQUhrtus Il synthesis tool automatically chooses
this approach when targeting an FPGA chip.

The reader is encouraged to recompile gimple.v code for the same FPGA chip used in section C.3.
Compile the code and observe that three flip-flops are useaiptement the FSM. The timing analysis
results should show that the circuit will operate at an fmiatmut 320 MHz.

C.6 Concluding Remarks

Having completed this and the preceding tutorial, the real&@amiliar with many of the most important
features of Quartus Il. In the next tutorial we will show hdwe user can manipulate which pins on the target
chip are used for a circuit, and how PLD programming is dort@ ®@uartus Il.
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