
EE25266 – ASIC/FPGA Chip Design

Electrical Engineering Department
Sharif University of Technology

Homework #0 – Spring 2017

Introduction to Computer-Aided Design Software, the Board and Simple Logic, and

Control Logic

1. Introduction

The purpose of this assignment is to introduce you to the software tools and hardware that are used in the labs for
this course. The main software tool is the Altera Quartus II Computer Aided Design (CAD) system. You will need to
install that software on your computer before you can start this lab. The software will be distributed to you in class.
 You will be learning to design hardware that will go into a kind of programmable logic chip call a Field-
Programmable Gate Array, or FPGA. The FPGA chip is mounted on a board called the Altera DE2 Development and
Education board, pictured below (Fig. 1). This board will be used for the first four assignments and possibly the final
project of this course.
 The board contains many useful features for learning about logic circuits, including simple input and output
mechanisms like switches and lights, and more complicated features like audio and video devices. This assignment
will use only the switches and lights that are provided on the bottom edge of the board, as illustrated below, but
other assignments will utilize more advanced features. A detailed description of the board can be found on the
course website at: http://ee.sharif.edu/~asic

Fig. 1. The Altera DE2 Development and Education board.

http://ee.sharif.edu/~asic

Fig. 2. The block diagram of the DE2-70 Control Panel.

Note:

The blue boxes identified by the word “DE2” are the parts that should be done on-line on the board. The
rest can be done at home.

Important Notes:
Note that there are two types of board in the lab (DE2 and DE2-70). So the FPGA and the corresponding
pin assignment will be different for them. Please consider the following notes in all of the assignments:

1- Use ‘DE2_pin_assignments.csv’ for the pin assignment of the DE2 board and use
‘DE2_70_pin_assignments.csv’ for the pin assignment of the DE2-70 board.

2- A ‘starter kit’ is provided for each computer assignment, which can be used for both of the
boards without any change. Because the names of the useful pins are changed in the above
‘.csv’ files for both of the boards. Note that always the port names of your design should be the
same with the content of the corresponding .csv file, which you added to your design.

3- Set the part name in your design as follows:
 For the DE2 board: EP2C35F672C6
 For the DE2-70 board: EP2C70F896C6

Part I:
For this part you need to do three important tutorials indicated in the following. Make sure you perform
every single step specified in them as they are the foundation of all you will do in the rest of this course.
Save them in three subfolders in a folder called Part I to deliver their soft copy to the TA.

Tutorial 1. Do the tutorial called Using Quartus II CAD Software, which is in fact the Appendix B of the book
Fundamentals of Digital Logic with Verilog Design, 2nd Edition. This tutorial describes the basics of how
Quartus II helps a designer describe circuits and check them for correctness. It shows two ways of creating
circuits: either using schematic capture, in which you “draw” a picture of the circuit, or describing a circuit
in language form. Please do the same circuit in both ways so that you understand the schematic form and
the textual form describing exactly the same thing. We will use the textual form often because it is far more
powerful and quicker.

Tutorial 2. Do the first part of the tutorial called Implementing Circuits in Altera Devices (Appendix C.1).
Tutorial 3. Do the tutorial Physical Implementation in an FPGA (Appendix D).

Part II:

Fig. 3. Inside the starter kit for the Homework_0

Create a simple circuit to connect four switches to four lights on the Altera board, by extending the following Verilog
code:

// Simple module that connects the SW switches to the LEDR lights
module Part2 (Switch 1, Switch 2, Switch 3, Switch 4, Light 1, Light 2, Light 3, Light 4);
input Switch 1, Switch 2, Switch 3, Switch 4; // toggle switches
output Light 1, Light 2, Light 3, Light 4; // lights

// Your code goes here

Endmodule

 Fig. 4. Verilog code for Part II.

On the board the FPGA chip that your designs will be programmed into has hardwired connections between
the pins of the FPGA chip and the switches and lights on the board. Note that these lights and switches are
connected to circuits that allow them to generate 1s and 0s as inputs to your FPGA circuit (for the switches)
and to turn on and off in response to digital 1s and 0s that are outputs from your circuit.
To use switches and lights you have to tell Quartus II which of the input/output signals in your Verilog code
should be connected to which pins on the FPGA chip and which are connected to the switches or lights. The
procedure for doing this is called pin assignment and was covered in the tutorial 3 of Part I above. Table 1
below indicates which pins (which are referred to by names such as PIN N25) of the FPGA are connected to
which switches and lights on the board. There are 18 total switches and lights on the board, but the table
only lists 4 of each needed for this part.

NOTE:
Please only connect the SW0…SW3 to LEDR0…LEDR3 on the Altera board .Do NOT try to connect
the other switches and lights.

Note:
To simplify your work for the other parts, a starter kit is provided. The starter kit is a ZIP archive containing a
Quartus II project that you will need for each part of the lab. Unzip the archive into a working directory called
Homework_0.

Table 1. Pin assignment table for lights and switches in Part II.

Do the following steps to download and test the circuit in Part II:
1. Open in Quartus II (using the command File > Open Project) the project named Part2.qpf in
the Part2 subdirectory to begin your work.
2. Create a Verilog module named Part2 for the code in Fig. 4 and include it in your project. Make
sure to complete the code by adding the assignment statements for the lights.
3. Use Quartus II to make the pin assignments shown in Table 1 as described in tutorial 3.
Compile the project.

Part III:

Fig. 5a shows a sum-of-products circuit that implements a 2-to-1 multiplexer (MUX) of inputs x and y select
input s and output m. If s = 0 the multiplexer’s output m is equal to the input x, and if s = 1 the output is
equal to y. Part b of the figure gives a truth table for this multiplexer, and part c shows the schematic circuit
symbol.

x

y

m

S

S m

0 x
1 y

x

m
y

S

0

1

a) Circuit

b) Truth Table c) Symbol

Fig. 5. A 2-to-1 Multiplexer.

The multiplexer can be described by the following Verilog statement:

assign m = (~s & x) | (s & y);

You are to design a circuit, using Verilog, which is a more complex version of a multiplexer. Rather than
select between two signals, your circuit is to select between two sets of eight signals, as illustrated in Fig.
8a. This circuit has two eight-bit inputs, X and Y , and produces the eight-bit output M. If s = 0 then M = X,
while if s = 1 then M = Y . We refer to this circuit as an eight-bit wide 2-to-1 multiplexer. It has the circuit
symbol shown in Fig. 5b, in which X, Y , and M are depicted as eight-bit wires.

Do the following steps to download and test the circuit in Part III:

1. Open the project named Part3.qpf in the Part3 subdirectory to begin your work.
2. Include your Verilog file for the eight-bit wide 2-to-1 multiplexer in your project. Use switch
SW17 on the board as the s input, switches SW7−0 as the X input and SW15−8 as the Y input.
Connect the output M to the green lights on the board, called LEDG7−0.

X

M

Y

S

0

1

b) Symbol

x0

m0

y0

0

1

m1

0

1

m7

S

0

1

x1

y1

x7

y7

8

8

8

a) Circuit

Fig. 6. An eight-bit wide 2-to-1 multiplexer.

3. Include in your project the required pin assignments for the board using the pin assignment file
as described above. As discussed in Parts I and II, these assignments ensure that the inputs
declared in your Verilog code will use the pins on the Cyclone II FPGA that are connected to the
SW switches and LEDRs, and the outputs of your Verilog code will use the FPGA pins connected to
the LEDG lights. Compile the project.

NOTE:
Always Connect the inputs to the LEDRs in Part III and Part IV.

Part IV:

In Fig. 6 we showed a 2-to-1 multiplexer that selects between the two inputs x and y. For this part consider
a circuit in which the output m has to be selected from five inputs u, v, w, x, and y. Part a of Fig. 7 shows
how we can build the required 5-to-1 multiplexer by using four 2-to-1 multiplexers. The circuit uses a 3-bit
select input {s2,s1,s0} and implements the truth table shown in Fig. 7b. A circuit symbol for this multiplexer
is given in Fig. 7c. Recall from Fig. 6 that an eight-bit wide 2-to-1 multiplexer can be built by using eight 2-
to-1 multiplexers. Fig. 8 applies this concept to define a three-bit wide 5-to-1 multiplexer. It contains three
instances of the 5-to-1multiplexer circuit in Fig. 7.

 Fig. 7. A 5-to-1 MUX.

W M

Y

S1

000

011

001

010

V

U

S2

100
X

S0

3

3

3 3

3

3

Fig. 8. A three-bit wide 5-to-1 multiplexer.

Do the following steps to download and test the circuit in Part IV:
1. Open the project named Part4.qpf in the Part4 subdirectory to begin your work.
2. Create a Verilog module for the three-bit wide 5-to-1 multiplexer. Connect its select inputs to
switches SW17−15, and use the remaining 15 switches on the Altera board (SW14−0) to provide
the five 3-bit inputs U through Y. Connect the output M to the green lights LEDG2−0.
3. Include in your project the required pin assignments for the board. Compile the project.

Part V - Design of a 7-Segment Decoder Circuit

Fig. 9 shows a 7-segment character display controlled by a logic circuit. These displays are common on
digital watches and various electrical devices. This circuit is called a 7-segment decoder and it has a three-

bit input {c2, c1, c0} (which you will connect to switches on the board), and 7 outputs that turn on or off the

7 different segments in the character display. The three inputs present a code that are translated by the
circuit into 7 outputs to create a particular character by lighting up some of the lights on the display.

Fig. 9. A 7-segment decoder.

 You are to design a circuit that is able to decode and display the last 5 digits of your student number. An
example mapping is given in Table 2, which lists the characters that should be displayed for each value of

{c2, c1, c0}. To keep the design simple, you only need to decode five numbers, represented using the codes

{c2, c1, c0} = 000, 001, 010, 011, and 100. The fifth code should produce a blank character with all of the

lights off. Since we don’t care what is displayed for the remaining code values (110 and 111) you can be
treat these as don’t care values. The seven segments in the display are identified by the numbers 0 to 6
shown in Fig. 9. Each segment is lit up by driving it to the logic value 0 (which is a little opposite of what you
might expect). You must implement a separate logic function that controls each segment in the display. Use
a Karnaugh map to determine the minimal (optimal) sum-of-products expressions for each of these 7
outputs.
 Create a Verilog module for your 7-segment decoder circuit. In your Verilog code, use only simple assign
statements to specify each of the sum-of-products expressions generated from your Karnaugh maps. In

your Verilog code assign the {c2, c1, c0} inputs to switches SW2−0 on the board, and assign the outputs of

the decoder to the HEX0 display on the board. The segments in this display are called HEX00, HEX01, . . .,
HEX06, corresponding to Fig. 9 using the pin assignment file provided in the previous assignment.
 Note that in the pin assignments file the HEX0 segments are declared as an array. To use the same names
in your Verilog code, your should declare the seven-bit output port as

output [0:6] HEX0;
By using this 7-bit array, the names of the seven segments in your code will match the names that are used
for these segments in the pin assignment file.

Table 2. Character codes (for the case where your student number ends in ’12345’)

Part VI - Selecting the Character to be Displayed

Consider the circuit shown in Fig. 10. It uses a three-bit wide 5-to-1 multiplexer to enable the selection of
five characters that are displayed on a 7-segment display. Using the 7-segment decoder from Part V of
Assignment, this circuit can display any of the five digits and ‘blank’. The character codes are set according
to Table 2 of Assignment by using the switches SW14−0, and a specific character is selected for display by
setting the switches SW17−15.

Fig. 10. A circuit that can select and display one of five characters

To build this circuit you can reuse two smaller designs already created: the three-bit 5-to-1 multiplexer from
Part IV of Assignment and the 7-segment decoder from Part V of Assignment. Your task is to create a new
top-level design that implements the circuit in Fig. 10 using the multiplexer and decoder as subcircuits. You
are to design this top-level circuit twice, using two different approaches:

1. Create the top-level design using the Quartus II schematic capture tool. In this case you use
Quartus II to create a schematic symbol for the multiplexer and decoder circuits, and then
include these symbols in the top-level schematic, as described in Tutorial 1 of Assignment by
doing the following steps:

a) The project for this part is provided in the starter kit. Open the project named
hierarchy_schematic.qpf in the Part6/hierarchy_schematic subdirectory to begin
your work.

b) In the Part6 folder you will find the Verilog files mux_3bit_5to1.v and char_7seg.v.
Edit these files and put in the code you previously wrote to implement the three-bit
5-to-1 multiplexer and the 7-segment decoder, respectively.

c) The next step is to use Quartus II to create a symbol file for each of the above
Verilog files. The symbol file allows the corresponding Verilog module to be used as
a subcircuit in your top-level schematic. The procedure for generating a symbol file
and including it in a schematic was shown in section B.5 of the Tutorial 1.

d) In Quartus II use the command File > New to create a new Block Diagram file and
draw the circuit in Figure 10. Insert the symbols for the subcircuits created above,
insert input and output ports, and draw the wiring connections shown in Figure 10.

e) In your schematic diagram you will need to create vector ports to attach to the
switches and 7-segment displays. You do this in Quartus II by specifying the name of
a signal as a vector of the form NAME[X..Y]. For example, in the schematic capture
tool SW2−0 is designated using the input pin name SW[2..0] and HEX00−6 is
denoted using an output port named HEX0[0..6].

f) Include the required pin assignments for the board switches and 7-segment display.
Compile the project.

g) Simulate the compiled circuit using a timing simulation in the Quartus II Simulator.

2. Create the top-level design by writing complete Verilog code for the circuit in Fig. 10. An
outline of this code, which shows how to include the multiplexer and decoder subcircuits in
the top-level Verilog module, is given in Fig. 11. Complete this section by performing the
following steps:

a) The project for this part is provided in the starter kit. Open the project named
hierarchy_verilog in the Part6/hierarchy_verilog subdirectory to begin your work.

b) Use the modified codes in the previous section, i.e., mux_3bit_5to1.v and
char_7seg.v.

c) Use the File > New command to create a new Verilog file named hierarchy_verilog.v.
Type your top-level Verilog code, following the style of code shown in Fig. 11, into
this file.

d) Include the required pin assignments for the board switches and 7-segment display.
Compile the project.

e) Simulate the compiled circuit using a timing simulation in the Quartus II Simulator.

module hierarchy_verilog (SW, HEX0);
input [17:0] SW; // toggle switches
output [0:6] HEX0; // 7-seg displays
wire [2:0] M;
 mux_3bit_5to1 M0 (SW[17:15], SW[14:12], SW[11:9], SW[8:6], SW[5:3], SW[2:0], M);
 char_7seg H0 (M, HEX0);
endmodule

// implements a 3-bit wide 5-to-1 multiplexer
module mux_3bit_5to1 (S, U, V, W, X, Y, M);
input [2:0] S, U, V, W, X, Y;
output [2:0] M;

. . . code not shown

endmodule

// implements a 7-segment decoder for each character
module char_7seg (C, Display);
input [2:0] C; // input code
output [0:6] Display; // output 7-seg code

. . . code not shown

endmodule

Fig. 11. Verilog code for the circuit in Fig. 2.

Note: Both simulations (of the schematic-based and Verilog-based projects) can be done using the same
input waveforms and should produce identical outputs.

Part VII - Displaying and Rotating a Sequence

In this part you will reuse your previous designs, and extend the code from Part VI so that it uses five 7-
segment displays, rather than just one. You will need to use five instances (copies) of the subcircuits from
Part VI. The purpose of your circuit is to display a sequence on the five displays, and be able to manually
rotate this sequence in a circular fashion across the displays when the switches SW17−15 are toggled. As
an example, if the displayed sequence is 12345, then your circuit should produce the output patterns
illustrated in Table 3. The sequence must be the last five digits of your student number.

Table 3. Manually rotating the sequence 12345 on five displays.

Perform the following steps.

1. The project for this part is provided in the starter kit. Open the project named Part7 in the
Part7 subdirectory to begin your work.

2. Copy the Verilog files mux_3bit_5to1.v and char_7seg.v from Part VI into the project directory
for Part VII. Use the Quartus II command Project > Add/Remove Files in Project to add these
files to the Part7 project.

3. Create a new Verilog file called Part7.v and write the code to instantiate the required

subcircuits. Connect the switches SW17−15, in the same order, to the select inputs of each of
the five instances of the three-bit wide 5-to-1 multiplexers. Also connect SW14−0 to each
instance of the multiplexers as required to produce the patterns of characters shown in
Table 3. Each multiplexer will share the same set of inputs (SW14−0), but the inputs will
connect to each multiplexer in a different manner. It is up to you to arrange them properly
such that you can manually “rotate” your numbers. Following this, you must connect the

outputs of the five multipexers to the 7-segment displays HEX4, HEX3, HEX2, HEX1, and HEX0
on the board.

4. Include the required pin assignments for the board switches and 7-segment displays. Compile
the project.

Part VIII

Extend your design from Part VII so that is uses all eight 7-segment displays on the board. Your circuit
should be able to display the last five digits of your student number on the eight displays, and manually
rotate the displayed sequence when the switches SW17−15 are toggled. If the displayed sequence is 12345,
then your circuit should produce the patterns shown in Table 4.

Table 4. Rotating the sequence 12345 on eight displays.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project named Part8 in the
Part8 subdirectory to begin your work.

2. Write the required Verilog code for this part of the exercise and include these Verilog modules
in the Quartus II project. Connect the switches SW17−15 to the select inputs of each instance
of the multiplexers in your circuit. Also connect SW14−0 to each instance of the multiplexers
as required to produce the patterns of characters shown in Table 4. Connect the outputs of
your multiplexers to the 7-segment displays HEX7, . . ., HEX0.

3. Include the required pin assignments for the board switches and 7-segment displays. Compile

the project.

Part IX :

All FPGAs include flip-flops that are available for implementing a user’s circuit. We will show how to make
use of these flip-flops in the other assignment. But first we will show how storage elements can be created
in an FPGA without using its dedicated flip-flops. Fig. 12 depicts a gated D latch circuit. Two styles of Verilog
code that can be used to describe this circuit are given in Fig. 13. Part a of the figure specifies the latch by
instantiating logic gates, and part b uses logic expressions to create the same circuit. If this latch is
implemented in an FPGA that has 4-input lookup tables (LUTs), then only one lookup table is needed.

Fig. 12. A gated D latch circuit.

// A gated D latch
module Part9(Clk, D, Q);
 input Clk, D;
 output Q;
 wire R_g, S_g, Qa, Qb /* synthesis keep */ ;
 nand (R_g, ~D, Clk);
 nand (S_g, D, Clk);
 nand (Qa, S_g, Qb);
 nand (Qb, R_g, Qa);
 assign Q = Qa;
endmodule

 Fig. 13a. Instantiating logic gates for the D latch.

// A gated D latch
module Part9(Clk, D, Q);
 input Clk, D;
 output Q;

 wire R_g, S_g, Qa, Qb /* synthesis keep */;

 assign R_g = ~(~D & Clk);
 assign S_g = ~(D & Clk);
 assign Qa = ~(S_g & Qb);
 assign Qb = ~(R_g & Qa);

 assign Q = Qa;
endmodule

 Fig. 13b. Specifying the D latch by using logic expressions

Although the latch can be correctly realized in one 4-input LUT, this implementation does not allow its
internal signals, such as R_g and S_g, to be observed, because they are not provided as outputs from the
LUT. To preserve these internal signals in the implemented circuit, it is necessary to include a compiler

directive in the code. In Fig. 13 the directive /*synthesis keep*/ is included to instruct the Quartus II
compiler to use separate logic elements for each of the signals R_g, S_g,Qa, and Qb. Compiling the code
produces the circuit with four 4-LUTs, one for each assign statement.

Perform the following steps.

1. The project for this part is provided in the starter kit. Open the project named Part9 in the
Part9 subdirectory.

2. Generate a Verilog file with the code in either part a or b of Fig. 13 (both versions of the code
should produce the same circuit) and include it in the project.

3. Select as the target chip and compile the code. You may wish to use the Quartus II RTL Viewer
tool to examine the gate-level circuit produced from the code, and the Technology Map
Viewer tool to verify that the latch is implemented with four LUTs. These tools are found under
the menu Tools > Netlist Viewers.

4. Remove the /*synthesis keep*/ construct from the code and compile it again and report the
difference.

5. Create a VectorWaveform File (.vwf) which specifies the inputs and outputs of the circuit. You
need to show it to the TA. Draw waveforms for the D input and use the Quartus II Simulator
to produce the corresponding waveforms for R_g, S_g, Qa, and Qb. Verify that the latch works
as expected using both functional and timing simulation.

6. Create a new Quartus II project which will be used for implementation of the gated D latch on
the board. This project should consist of a top-level module that contains the appropriate
input and output ports (pins) for the board. Instantiate your latch in this top-level module. Use
switch SW0 to drive the D input of the latch, and use SW1 as the Clk input. Connect the Q
output to LEDR0.

7. Recompile your project and simulate the compiled circuit.

Part X:

Fig. 14 shows the circuit for a master-slave D flip-flop.

Fig. 14. Circuit for a master-slave D flip-flop.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project named Part10 in the
Part10 subdirectory to begin your work.

2. Generate a Verilog file that instantiates two copies of your gated D latch module from Part IX
to implement the master-slave flip-flop.

3. Include in your project the appropriate input and output ports for the Altera board. Use switch
SW0 to drive the D input of the flip-flop, and use SW1 as the Clock input. Connect the Q output
to LEDR0. Compile your project.

4. You may wish to use the Quartus Technology Map Viewer to examine the D flip-flop circuit,
using the command Tools > Netlist Viewer > Technology Map Viewer.

5. Use simulation to verify the correct operation of your circuit.

Part XI:
Fig. 15 shows a circuit with three different storage elements: a gated D latch, a positive-edge triggered D
flip-flop, and a negative-edge triggered D flip-flop.

Fig. 15. Circuit and waveforms for Part XI.

Implement and simulate the circuit in Fig. 15 by using the Quartus II software as follows:

1. The project for this part is provided in the starter kit. Open the project named Part11 in the
Part11 subdirectory to begin your work.

2. Write a Verilog file that instantiates the three storage elements. For this part you should no
longer include the /* synthesis keep */ directive in your Verilog code, because you will not be
describing the exact structure of flip-flops like you did in Part X. Instead, you should use a style
of Verilog code that will allow the Verilog compiler (in the Quartus II software) to automatically
instantiate flip-flops that are provided as part of the FPGA logic elements. Such Verilog code
is often called behavioral code, because it specifies a desired circuit behavior rather than an
exact circuit structure. As an example, Fig. 16 gives a behavioral style of Verilog code that
specifies the gated D latch in Fig. 13. This latch can be implemented in one 4-input lookup
table. Use a similar style of code to specify the flip-flops in Fig. 15.

3. Compile your project.

4. You may wish to use the Quartus Technology Map Viewer to examine the compiled circuit, by
using the command Tools > Netlist Viewer > Technology Map Viewer.

5. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. You

need to show it to the TA. Draw the inputs D and Clock as indicated in Fig. 15. Use functional
simulation to obtain the three output signals. Observe the different behavior of the three
storage elements.

module D_latch (D, Clk, Q);
input D, Clk;
output reg Q;
always @ (D, Clk)
if (Clk)
 Q = D;
endmodule

 Fig. 16. A behavioral style of Verilog code that specifies a gated D latch.

Part XII:
In this part you will need to work in base 16, also known as hexadecimal, or hex for short. There are sixteen
digits in hexadecimal, the usual 0-9 and then the letters A through F. It is fairly easy to translate from base
2 to base 16 because each hexadecimal digit corresponds to exactly 4 bits in binary. A sixteen bit number
translates into exactly 4 hexadecimal digits.
 The goal for the circuit in this part is to display the hexadecimal value of a 16-bit number, A, on the four
7-segment displays, HEX7 − 4, and a different hexadecimal value of a 16-bit number B on the four 7-segment
displays, HEX3 − 0. The values of A and B are to be input to the circuit through switches SW15−0, one value
at a time. This is to be done by first setting the switches to the value of A and then setting the switches to
the value of B; therefore, the value of A must be stored in the circuit. You will need a 16-bit register (which
should be clocked by KEY1) to store the value of A once it has been set using SW15−0. Please note that the
hex decoder is provided in the starter kit (i.e., hex_digits.v).

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project named Part12 in the
Part12 subdirectory to begin your work.

2. Write a Verilog file that provides the necessary functionality. Use KEY0 as an active-low
asynchronous reset, and use KEY1 as a clock input.

3. Include the Verilog file in your project and compile the circuit.

4. Assign the pins on the FPGA to connect to the switches and 7-segment displays, as you have
done in previous parts of this exercise.

