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ASIC/FPGA Design Flow 

1. HDL Coding 
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2.  Simulation 

 

3. Synthesis 4. Placement & routing 

 

5. Timing Analysis & Verification 

 

 In this course we learn all the above steps in detail for ASIC 

Front-End Back-End (Physical Design) 
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1. HDL Coding 
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 HDL allows us to describe the functionality of a logic circuit in a language that is: 

 Easy to understand 

 Easy to share  

 Hides complicated implementation details 

 Designer more concerned about the design functionality than the detailed circuit 
design 
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2. Simulation by Testbenches 
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 After HDL coding, the code has to be tested using “testbenches” (Verification). 

 Simulation tools: 

 Synopsys VCS (Synopsys) 

 Modelsim (Mentor Graphics) 

 NCVerilog (Cadence) 
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3. Synthesis 
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  Synthesis tool: 
 Analyzes a piece of Verilog code and converts it into optimized logic gates 

 This conversion is done according to the “language semantics” 

          We have to learn these language semantics, i.e., Verilog code. 
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3. Synthesis 

 Why using synthesis tools?  
 
 It is an important tool to improve designers’ productivity to 
meet today’s design complexity. 

 
 If a designer can design 150 gates a day, it will take 6666 man’s 
day to design a 10-million gate design, or almost 20 years for 10 
designers! This is assuming a linear grow of complexity when 
design gets bigger. 
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3. Synthesis 

 Synthesis tool: 

 Input:  

 HDL Code 

 “Technology library” file           Standard cells (known by transistor size, 90nm) 

o  Basic gates (AND, OR, NOR, …) 

o  Macro cells (Adders, Muxes, Memory, Flip-flops, …) 

 Constraint file (Timing, area, power, loading requirement, optimization Alg.) 

 Output: 

  A gate-level “Netlist” of the design 

  Timing files (.sdf) 
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3. Synthesis Tools 

 

 Example: A 2-to-1 Multiplexer (2x1-MUX) 

If (s==0) 
    f = a; 
else 
    f = b; 

Verilog code 
(has to comply with certain structures) 
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b
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0
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HDL Tech Lib Constraints

Gate-level Netlist

 Synthesis tool: 
 



© M. Shabany, ASIC/FPGA Chip Design 

3. Synthesis 

 Synthesis tools: 
 Infer logic and state elements 

 Perform technology-independent optimizations  

 e.g., logic simplification, state assignment 

 Map elements to the target technology 

 Perform technology-dependent optimizations  

 Multi-level logic optimization 

 Choose gate strengths to achieve speed goals 
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Synthesis Tools 

  Commercial Synthesis Tools: 

Vendor Name Product Name Platform 

Altera Quartus II FPGA 

Xilinx ISE FPGA 

Mentor Graphics Modelsim, Precision FPGA/ASIC 

Synopsys Design Compiler, Galaxy ASIC 

Synplicity Synplify ASIC 

Cadence Ambit, BG, RC ASIC 
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4. Pre-Layout Timing Analysis 

  Timing analysis across all design corners: 

 Different voltages and temperatures 

 Check for setup-time and hold-time violation 

 Rough estimation as wire delays and RC models are not considered 
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5. APR 

  Automatic Placement and Routing (APR) 

 Floorplan (Die size, Pad configuration, Die-to-pad space) 

 Placement (where each submodule sits in the chip) 

 Routing (metal wiring to connect all instances together according to the netlist) 
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6. Back Annotation & Timing Analysis 

  Back Annotation (Timing Closure) 

 To estimate the delay after tapeout  

 Extraction of RC parasitics in the layout netlist interconnect delay 

 Some paths might now violate (setup-time and hold-time) 

 Causes increase in the path delay (specially in deep submicron) 
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7. Logic Verification & Tapeout 

  Logic Verification 

 Simulate and test the very final netlist after APR 

 Timing analysis using testbenches 

 Send the final design (GDS file) for fabrication 
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Introduction: Digital Logic Design 

  Conventional Approach: 

 Schematic Entry             good for fairly small designs 
     (Draw K-maps, optimize the Boolean logic, draw the schematic) 

 

 

 

 

 Possible for large designs? 

 NO! 
 

Y

A
B

C
D

Clk

(10 gates) 

(10,000,000 gates) 
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Introduction: Why HDL? 

  Schematic entry not feasible for large designs: 
 Time consuming to draw the schematic for millions of gates 

 Prone to mistakes 

 Difficult design entry and sharing 

 Different design entry tools to learn 

 Tools not compatible (hard to convert the design from one to another) 

 Not easy to modify 
 

 Solution:  
 Describe the design in text            Hardware Description Language (HDL) 

 Just describe the design “behavior” not the detailed gate-level logic  

 Gate-level logic is generated automatically by a “synthesis” tool 
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Introduction: Why HDL? 

 Complicated designs can be easily described by HDL 

 Can be used as the input to the synthesis tool 

 Supports behavioral and structural descriptions 

 Supports bit-level descriptions 

 Detailed design cycle-by-cycle timing is supported 

 Concurrent cores can be implemented and simultaneously simulated,  

     which is vital to describe the hardware systems 
 Software programming languages typically have no concept of time. In hardware,  

     there are delays associated with going from an input to an output.  
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HDL Coding 
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Advantages of HDL Coding 

 Designer describes what the hardware should do without actually 
    designing the hardware itself 
 
 HDL Coding allows designers to separate behavior from implementation 

 
 Designers develop an executable functional specification that documents 
     the exact behavior of all the components and their interfaces  
 
 Designers can make decisions about cost, performance, power, and area 
     earlier in the design process 
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Advantages of HDL Coding 

There are several benefits to using an HDL to describe your design: 
 

 An HDL facilitates a top-down design methodology using synthesis 
 You can design at a high implementation-independent level 
 You can delay decisions on implementation details 
 You can easily explore design alternatives 
 You can solve architectural problems before implementation 
 You can automate mapping of your high-level description to a 

technology-specific implementation 
 

  An HDL provides greater flexibility 
 You can re-use earlier design components 
 You can move your design between multiple vendors and tools 
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HDL Coding Goals 

1.  To simulate digital designs 

 

2.  To synthesize digital designs 

 

 
 Some tools can automatically manipulate the design for verification,  
     synthesis, optimization, etc. 

 Computer Aided Design (CAD) tools 
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HDL is NOT a Software Programming Languae  

 Software Programming Language 

 Language which can be translated into machine instructions 

and then executed on a computer 

 

 Hardware Description Language 

 Language with syntactic and semantic support for modeling 

the temporal behavior and spatial structure of hardware  
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HDL Coding 

 A Hardware Description Language is a high-level programming language  

    that offers special constructs, used to model microelectronic circuits  
 

 Two standard HDLs: 

 VHDL (Very high-speed integrated circuit HDL) 

 Verilog 

 

 Verilog: 

 Developed by Philip Moorby in 1985 as a proprietary language 

 Open to public by Cadence Design Systems in 1990 

 IEEE standard in 1995 and revised in 2001 

Verilog is used in this course! 
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Verilog or VHDL? 

VHDL Verilog 
Commissioned in 1981 by Department of Defense Created by Gateway Design Automation in 1985 

An IEEE standard An IEEE standard 

Initially created for ASIC Synthesis Initially an interpreted language for gate-level simulation 

Strong support for package management and large 
designs 

No special extensions for large designs 

ADA-like verbose syntax, lots of redundancy  C-like concise syntax 

Design is composed of entities each of which can have 
multiple architectures  

Design is composed of modules which have just one 
implementation  

Gate-level, dataflow, and behavioral modeling. 
Synthesizable subset.  

Gate-level, dataflow, and behavioral modeling. 
Synthesizable subset. 

Harder to learn and use Easy to learn and use 
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Verilog in Three Flavors 

  There are three types of Verilog Coding: 

 Behavioral:  

 Describes a system by the flow of data between its functional Blocks 

 Defines signal values when they change 

 Structural:  

 Shows detailed design components, nets, and interconnects 

 Uses technology-specific, low-level components 

 Used to pass netlist information b/w design tools (e.g., from DC to APR) 

 RTL (Register Transfer Level):  

 Describe how data transfers b/w registers and input/outputs 

 Describes a system by the flow of data and control signals between and 

   within its functional blocks 

 Defines signal values with respect to a clock 

 

 

Focus of 
this course 

Most  
Descriptive 

Least 
Descriptive 

Somehow 
Descriptive 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Coding Styles 

RTL Behavioral Structural 

module RTL ( A,  B, C,  D, Out); 
  input   A,  B, C, D; 
  output Out; 
  reg Out; 
  always @ (A or B or C or D) 
    begin 
      if (A & B & ~D) 
        Out = C; 
      else if (A & D & ~C) 
        Out = B; 
      else 
        Out = 0; 
    end 
endmodule 

module behavior (A,B, C, D, Out); 
  input A, B, C, D; 
  output Out; 
  reg Out; 
  always @ (A or B or C or D) 
    begin 
      if (A & B & ~D) 
        Out = #5 C; 
      else if (A & D & ~C) 
        Out = #3 B; 
      else if ((A ==1'bx) | (B ==1'bx) |  
                 (C ==1'bx) |(D ==1'bz)) 
        Out = #7 1'bx; 
      else if ((A ==1'bz) | (B ==1'bZ)) 
        Out = #7 1'bZ; 
      else 
        Out = #3 0; 
    end 
endmodule 
 

module structural (A,B, C, D, Out); 
   input A, B, C, D; 
   output Out; 
   wire n30; 
   EO U9 ( .A(D), .B(C), .Z(n30) ); 
   AN3 U8 ( .A(A), .B(n30), .C(B), .Z(Out) ); 
endmodule 
 
 

Synthesizable Synthesizable Not synthesizable! 

Our Focus 

EO AN3

A

B

C
D Outn30 
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Verilog in Three Flavors : Behavioral 
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Verilog in Three Flavors : RTL 
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Verilog in Three Flavors : Structural 
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Verilog Coding Styles: Levels of Abstraction 
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Verilog Coding Styles: Levels of Abstraction 

 Trade-offs: 
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Verilog Coding Styles: Levels of Abstraction 

 One language for all levels: 
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Verilog Coding Styles: Design Style 

 Verilog, like any other hardware description language, permits a design in either 
Bottom-up or Top-down methodology.      

 

 Bottom-Up Design  
• The traditional method of electronic design is bottom-up. Each design is 

performed at the gate-level using the standard gates. With the increasing 
complexity of new designs this approach is nearly impossible to maintain. 
New systems consist of ASIC or microprocessors with a complexity of 
thousands of transistors. These traditional bottom-up designs have to give 
way to new structural, hierarchical design methods.   

 

 Top-Down Design  
• A real top-down design allows early testing, easy change of different 

technologies, a structured system design and offers many other 
advantages. But it is very difficult to follow a pure top-down design. Due 
to this fact most designs are a mix of both methods, implementing some 
key elements of both design styles. 
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Verilog for Synthesis (RTL) 

 In this course we focus on RTL coding 

 RTL coding is the closest one to the actual hardware implementation 

 RTL code includes a subset of all Verilog syntax  

 Not all Verilog syntax are synthesizable 

 We cover most Verilog coding parts that are needed for logic synthesis 

 Simulation of the RTL code is also covered 

 We learn how to write a “good” Verilog code for synthesis 

 Lots of examples on the synthesized RTL! 

Comb. Logic
Combinational

Logic

Clk

In Out

Critical path
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Verilog Applications 

The Verilog HDL is used by: 
 

 System Architects: doing high level system simulations 

 Verification Engineers: writing advanced tests for all levels of 
simulation 

 ASIC and FPGA Designers: writing RTL code for synthesis 

 Library Developers: describing ASIC or FPGA cells, or higher level 
components 
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Verilog Fundamentals : Comment 

 Comments are used for documentation  

  

 Comments are in two types:   

 Short comments (single line) 

      // This is a comment  

 Long comments (Multiple lines) 

      /* This a multiple 

      line comment 

           in Verilog */ 

  

 Space, tab and blank lines are ignored by the compiler 
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Verilog Fundamentals : Module 

 Any circuit or subcircuit is declared as a “module” in Verilog. 

 

 Each module may have: 

 Ports (Three possibilities), 

  input 

  output 

  inout 

 Signals (main or intermediate) 

 Body-code  

     (statements for module description) 

module  DUT (A, B, C); 
    input A; 
    output B; 
    inout C; 
 
 
 
 
endmodule 

Signals 

Body-code 

Signals

Body

DUT
input Output

inout

module
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Verilog Fundamentals : Signals 

Signal 

Type Range Name Value 

Net Variable 

wire tri reg integer 

Scalar Vector 

[3:0] 

 Example: wire [2:0]  tmp ; 
                   tmp = 3’b001; 

tmp[0]=1 
tmp[1]=0 
tmp[2]=0 

Each  element of a vector 

 can be accessed 
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Verilog Fundamentals : Signal Type 
  Net 

 wire:  
 For interconnecting logic elements (LEs) 

 To connect an output of a logic element to the input of another LE 

 tri 
 Circuit nodes that are connected in a tri-state fashion 

 Variable 

 reg (unsigned in general) 
 Corresponds to a circuit node (not necessarily a register!) 

 Allow a circuit to be described in terms of its behavior 

 Retains its value until it is overwritten by a subsequent assignment 

 integer (signed in general) 
 Used for loop counters 

Signal 

Type Range Name Value 
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Verilog Fundamentals : Signal Type 

  The “wire” declarations are not necessary as Verilog assumes that signals  

       are nets by default . 

 The “reg” declaration is required! 

 

 Example: 
module  DUT (A, B, C) ; 
    input [1:0] A; 
    output B; 
    inout [2:0] C; 
 
    wire [1:0] A; 
    reg B, w; 
 
 
 
 
endmodule 

Body-code 

Not necessary 
Required Two signal declarations in one line 

Signal 

Type Range Name Value 

Don’t forget semicolon 
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Verilog Fundamentals : Signal Type 

 Example: 

module  DUT (s, Out); 
    input [3:0] s; 
    output [2:0] Out; 
 
    wire [2:0] Out; 
    reg [2:0] Count; 
    integer k; 
 
    Count = 0; 
    for (k=0; k<4; k=k+1) 
        if (s[k]) 
            Count = Count + 1; 
    assign Out = Count; 
 
endmodule 

Loop counter 

Ports 

Signals 

Code  
Body “;” at the end of each line 

DUT

Out

DUT_

Wire

(for interconnection)

Signal 

Type Range Name Value 
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Reg Type  

 The keyword “reg” does NOT necessarily denote a storage element or register. 

 “reg” only models the behavior of a circuit. 

 May or may not be synthesized as a register. 

reg  C; 
    always @ (a,b) 
          C = a+b; 

reg  C; 
    always @ (posedge Clk) 
          C <= a+b; 

a

b

C

Clk

a

b

C

Register Not Register 

Signal 

Type Range Name Value 
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Verilog Fundamentals : Signal Range 

 Signals in Verilog can be: 

 Scalar: representing a node 

 

 

 Vector: representing a bus 

 

 

 

 Each element of a bus can be accessed. 

reg  C; 
wire B; 

reg  [10:0] Data; 
reg  [0:6] S; 
wire [7:4] B; 

assign a = Data[8]; 

Signal 

Type Range Name Value 

Scalar Vector 
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Verilog Fundamentals : Signal Name 

 Signal name may consists of: 

 Any letter 

 Any digit 

 Underscore (_) and $ sign 

 DON’Ts: 

 Should not start with a digit 

 Should not be a Verilog keyword 

 

 A_m 
B1_signal 
My$ 

Signal 

Type Range Name Value 

1xb 
wire 
R&z 

Illegal Legal 

Note: Verilog is case sensitive! 
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Verilog Fundamentals : Signal Value  

 Scalar: each scalar signal can have four possible values: 

 0: Logic value “0” 

 1: Logic value “1” 

 Z(z): Tri-state (high impedance) 

 

 

 

 X(x): Unknown value 

Signal 

Type Range Name Value 

Scalar Vector 

0

1
0

1

X: Unknown

X

0

1 Z
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Verilog Fundamentals : Signal Strength 

Signal 

Type Range Name Value 

Scalar Vector 

Degree Type Strength Level 

Strogest Driving supply 

Driving strong 

Driving pull 

Storage large 

Driving weak 

Storage medium 

Storage small 

weakest High Impedance highz 

شذه متصل قذرتهاي متفاوت يا مقادير با درايورهايي به گره يك زمانيكه فاتاختلا حل منظور به قذرت سطوح  

 سيگنال دو اگر. خواهذ بود strong1مقذار  weak0و  strong1مقذار  اتصال حاصل مثال بطور .شود مي استفاده باشذ

 .خواهذ بود  (x)نامعلوم حاصل شونذ متصل يكذيگر به يكسان سطح قذرت با ولي مختلف مقذار با
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Verilog Fundamentals : Signal Value  

 Vector:      <# of bits>  <base>  <number> 

 

                                  4            ‘b          0101 

 <# of bits> : number of bits for representation 

 <base> : (default decimal) 

 “d” : Decimal 

 “b” : Binary 

 “h” : Hexadecimal 

 “o” : Octal 

 <number> : signal value in base 

 

Signal 

Type Range Name Value 

Scalar Vector 

 Example: 
       K = 8’ha9;            // K=1010_1001 
       C= 4’d3;              // C=0011 
       D= 4’b100;         // D=0100 
       F= ‘b10x;            // F=10X 
       L = -6’b3             // L = 111101 

Used for clarity 
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Verilog Fundamentals : Parameters  

 A parameter is used as a “constant” to facilitate coding. 

 

 Example: 

module  DUT (s, Out) 
 
    parameter n = 3; 
    parameter S0 = 4’b1010; 
 
    input [n-1:0] s; 
    output [n:0] Out; 
 
    wire [n:0] Out; 
    assign Out = S0; 
 
endmodule 
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Verilog Fundamentals : Memories  

 Memory:  

 A two-dimensional array of bits 

 Declared in Verilog as a two-dimensional variable (reg) 

 Example: A 4-byte memory: 

 reg [7:0] R [3:0]; 
 

8-bit 4 rows (cell) 

0 1 72 3 4 5 6

R[0]

R[1]

R[2]

R[3]

R[2][5]
(indexing method) A three-dimensional array may also be declared. 

 Example: 
 

 If an 8-bit A is declared then the legal assignment is: 

 reg [7:0] M [3:0][1:0]; 

 reg [7:0] A; A = M[3][0]; 
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Verilog Fundamentals : Operators  

 Example:  

 Bitwise: 

 

 

 

 

 

 Logical: 

 

                       

Operation Result 

1010  & 1100 1000 

1010 | 1100 1110 

~1010 0101 

1101 Λ 0100 1001 

Operation Result 

1010  && 1100 1 

2’b11 || 2’b00 1 

!0010 0 

2’b1X && 2’b11 X 

Non-zero operand=logical “1” 

Any operand X/Z, result is X 

X || 1 = 1 
X && 0 = 0 

1 0 1 0

1 1 0 0

1 0 0 0

&
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Verilog Fundamentals : Operators  

 Example:  

 Reduction: 

 

 

 

 

 

 Relational: 

 

                       

Operation Result 

 & 1100 0 

& 111 1 

 Λ 0100 1 

Operation Result 

B=(A  == 2’b10) B=1 

B=(A  == 2’b11) B=0 

B=(A  === 2’b1x) B=0 

B=(A  <= 2’b11) B=1 

=== Used with x and z 

A=2’b10 

== Used only with 0 and 1 
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Verilog Fundamentals : Operators  

 Example:  

 Logical Shift: 

 

 

 

 

 

 Concatenation: 

 

                       

Operation Result 

C = A >> 1 C = 000110 

D = A << 2 D = 110000 

F = A >> 3 F = 000001 

Operation Result 

{A, B} 5’b11010 

{3{A}} 6’b111111 

{B, B} 6’b010010 

{{3{A}}, {2{B}}} 12’b111111010010 

A=2’b11 
B=3’b010 

A=6’b001100 

Be generous in {} 
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Verilog Fundamentals : Operators 

 Conditional: (? , : ) 

  D = S ? B:C; 

 

 

 

 

  D = ({S1,S2}==2’b00)? F: 

           ({S1,S2}==2’b01)? E: 

           ({S1,S2}==2’b10)? C:B; 

 

 

 

 

 

 

                       

C

D

B

S

0

1
B if  S=1; 
C if  S=0; 

D = 

C
D

B

S1

00

11

01

10

E

F

S2

4-input 
Multiplexer 

(MUX) 
     D = ({S1,S2}==2’b00)? F: 

           ({S1,S2}==2’b01)? E: 

           ({S1,S2}==2’b10)? C: 

           ({S1,S2}==2’b11)? B:B; 

Default 
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Verilog Fundamentals : Operators (All in One) 
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Verilog Fundamentals : Module-Revisited 

 Any circuit or subcircuit is declared as a “module” in Verilog. 

 There are three types of ports: 

 input             type “wire” 

 output          type “wire” or “reg” 

 inout             type “wire” 

 Note: 

 

 

 

module  DUT (A, B, C) 
    input A; 
    output [3:0] B; 
    inout C; 
     
    wire A; 
    wire C; 
    reg [3:0] B; 
 
 
 
 
 
endmodule 

Signals 

Body-code 

Optional 
Optional 
Mandatory 

output [3:0] B; 

reg [3:0] B; 
output reg [3:0] B; 

Combined 
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Verilog Fundamentals : Module Ports 

net

net inout

net netreg or net reg or net

input output

 Inside view of the module 

 input port: wire 

 output port : wire or reg 

 inout:   wire 

 

 Outside view of the module 

 input port: wire or reg 

 output port : wire 

 inout:   wire 
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Verilog Fundamentals : Module-Revisited 
 In Verilog-2001 the port list can directly follow the module declaration 

module  DUT (A, B, C) 
    input A; 
    output [3:0] B; 
    inout C; 
     
    wire A; 
    wire C; 
    reg [3:0] B; 
 
 
 
 
 
endmodule 

Signals 

Body-code 

module  DUT ( input A, 
          output [3:0] B, 
            inout C); 
     
    wire A; 
    wire C; 
    reg [3:0] B; 
 
 
 
 
 
endmodule 

Signals 

Body-code 

 Body-code consists of some “statements” 

 Statements describe the circuit/module functionality 
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Verilog Fundamentals : Statements 

 Programming languages: 

 High-Level Language (HLL): C, Pascal, Matlab 

 Hardware Description Language (HDL): Verilog, VHDL  

 In HLL programming all statements are sequential (procedural) 

 Statements evaluated in the order and one-bye-one 

 

 

 

Procedural : evaluated sequentially 
                  (Order IS important) 

Concurrent : evaluated in parallel 
                          (Order NOT important) 

always  @ (x, y) 
     begin 
         s = x^y; 
         c = x&y; 
     end 

  assign   s=x^y; 
  assign   c=x&y; 
  assign   out=x|y; 

 Verilog Statements 
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Verilog Fundamentals : Concurrent Statements 

 Evaluated in parallel 

 Each statement describes part of the circuit, thus concurrent 

 Most popular:  

 Continuous statements: realized as connection or wire in the design 

 Format: 
 Example:   wire   [1:3] A, B, C; 

  assign   C = A&B; 

 
assign  C  =  x & y; 

 

Statement Assignment 

Net 

 assign used only for nets (to be synthesizable) 

 assign   C[1] = A[1]&B[1]; 
 assign   C[2] = A[2]&B[2]; 
 assign   C[3] = A[3]&B[3]; 

Equivalent 
x

y

C
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Concurrent  Statements 
Example: Full Adder, same circuit, two descriptions: 

 

 

 

module Adder (Cin, x, y, S, Cout) 
    input  x, y, Cin; 
    output  S, Cout; 
    wire S, Cout; 
 
    assign S = x ^ y ^ Cin; 
 
    assign Cout = (x & y)|(x & Cin)|(y & Cin); 
 
endmodule 

module Adder (Cin, x, y, S, Cout) 
    input  x, y, Cin; 
    output  S, Cout; 
    wire S, Cout; 
 
 
    assign {Cout, S} = x + y + Cin; 
 
endmodule 

x

Cin

S

Cout

y

x    y    Cin      Cout    S       

0      0      0            0          0 
0      0      1            0          1 
0      1      0            0          1 
0      1      1            1          0 
1      0      0            0          1 
1      0      1            1          0
1      1      0            1          0 
1      1      1            0          1
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Concurrent  Statements 

Example: Signed vs. unsigned addition: 

 In Verilog “+” declares unsigned addition 

 Signed addition has to be explicitly specified using the sign extension 

 

 

 

 

 

 

module Adder_sign (X, Y, S_unsigned, S_signed); 
    input  [3:0] X, Y; 
    output  [4:0] S_unsigned, S_signed; 
 
    assign S_unsigned = X + Y; 
 
    assign S_signed = {{X[3]},X} + {{Y[3]},Y}; 
 
endmodule 

module Adder_sign (X, Y, S_unsigned, S_signed); 
    parameter n = 4; 
    input  [n-1:0] X, Y; 
    output  [n:0] S_unsigned, S_signed; 
 
    assign S_unsigned = X + Y; 
    assign S_signed = {{X[n-1]},X} + {{Y[n-1]},Y}; 
 
endmodule 

Sign 
extension 

X = 0011  (unsigned 3)  or (signed +3) 
Y = 1101  (unsigned 13) or (signed -3) 
 
S_unsigned = 10000 (unsigned 16) 
S_signed = 00000 (0 signed) 
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Concurrent  Statements: Sign Extension 
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Concurrent  Statements: Sign Extension 

 Ignore carry bits:  Do not spend any hardware calculating any 
bits to the left of the answer’s MSB 
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Verilog Fundamentals : Delay 

 Delay can be used with continuous assignments by using the “#” sign 

  

 
 

 2 time unit of delay on wire S 

 5 time units of delay for AND gate 

 Any change in x or y reflects on S after 7 time unit delay 

 Used only for simulation purposes  
 No meaning for synthesis 
 Not synthesizable 

wire  #2  S; 
assign  #5  S = x&y; 
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Procedural Statements 

 Evaluated in the order in which they appear in the code (sequential) 

 Should be inside an “always” block 

 An “always” block contains one or more procedural statements 

always @ (sensitivity list) 
    begin 

 Procedural assignments 
 if-else statements 
 case statements 
 while, repeat, for loops 

    end       

List of all signals that trigger the  
evaluation inside the always block 

Procedural  
Statements 
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Procedural Statements: Half-Adder 

Example: 

 

 

 

 

 
 

 Anything on the RHS should be on the sensitivity list 

 always @(*)          Automatically considers all signals on the RHS in the sensitivity list 

 Any signal assigned inside an always block has to be a variable of type  

 reg 

 integer 

module Adder (x, y, S, C) 
    input x,y; 
    output S,C; 
    reg S, C; 
    always @ (x, y) 
        begin 

    S = x Λ y; 
    C = x & y; 

        end  
endmodule      

module Adder (x, y, S, C) 
    input x,y; 
    output S,C; 
    wire S, C; 
    assign S = x Λ y; 
    assign C = x & y; 
endmodule 

If either x or y changes, the statements inside 
the always block are evaluated. 

Type: “reg” 

Type: “wire” 

x    y       C     S       

0      0         0       0           
0      1         0       1           
1      0         0       1          
1      1         1       0          
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always block: Quick Notes 

 The always construct requires begin-end only if there are multiple statements 

      in the block. 

 Example: 

 

 

 

 

 
 

 A given variable should never be assigned a value in more than one always block. 

 Because always blocks are concurrent with respect to one another. 

 

always @ (x, y, z) 
        begin 

    z = x; 
    if (x == 1) 
         z = y; 
end       

Not part of the always block 

Incorrect 

always @ (x, y, z) 
       z = x; 
       if (x == 1) 

 z = y; 

Correct 

always @ (x,y) 
       a <= x; 
always @ (x,y) 
       a <= y; 

Incorrect 
always @ (x,y) 
       a <= y; 

Correct 

always @ (x,y) 
begin 
       a <= x; 
       a <= y; 
end 
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Procedural Statements 

always @ (sensitivity list) 
    begin 

 Procedural assignments 
 if-else statements 
 case statements 
 while, repeat, for loops 

   end       

Procedural  
Statements 

Procedural Statements 

Procedural Assignments If-else  

Statements 

Case 

Statements 

while          repeat         for 

Loop statements 

Blocking Non-blocking 
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Procedural Statements 

Procedural Statements 

Procedural Assignments If-else  

Statements 

Case 

Statements 

while          repeat         for 

Loop statements 

Blocking Non-blocking 

 Used inside an always block and are of two types: 
 Blocking: denoted by “=“ token 

  Evaluation within the always block is “blocked” until this assignment is completed 
 

 Non-blocking: denoted by “<=“ token 
 Nothing is hold or blocked (parallel evaluation) 
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Blocking vs. Non-Blocking Assignments 

 Example: assume S=2 then 

 

 

 

 

 

 

 

  

  

always @ (*) 
        begin 

    S = 4; 
    a = S; 

        end       

always @ (*) 
        begin 

    S <= 4; 
    a <= S; 

        end       

S=4   &   a=4 
(sequential) 

S=4   &   a=2 
(Parallel) 

Blocking Non-Blocking 

 Evaluated and assigned in a single step  
 Sequential nature 
 Assignment ordering IS important 
 S=4 “blocks” a=S to be evaluated 

 a=S has to wait for S=4 to be evaluated first 

 Evaluated and assigned in two steps 
1. All RHSs are evaluated in parallel 
2. Assignments to LHSs are performed together 

 They all are evaluated all at once 
 Assignment ordering is NOT important 
 S<=4 and a<=S  evaluated in parallel 
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Blocking vs. Non-Blocking Assignments 

 Example: Swap bytes in words 

 

 

 Which one is correct? 

 

 

 

 

 

 

 

  

  

always @ (*) 
        begin 

    B[15:8] = B[7:0]; 
    B[7:0]   = B[15:8] ; 

        end       

always @ (*) 
        begin 

 B[15:8] <= B[7:0]; 
  B[7:0]   <= B[15:8] ; 
end       

Blocking Non-Blocking 

B[15:8] B[7:0]

Incorrect Correct 

B[15:8] B[7:0]

B[15:8] B[7:0]
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Blocking vs. Non-Blocking after Synthesis: 

always @ (posedge Clk) 
        begin 

    y1 = in; 
    y2 = y1 ; 

        end       

always @ (posedge Clk) 
        begin 

    y1 <= in; 
    y2 <= y1 ; 

        end       

Clk

in y2y1

Clk

in y2

y1

Clk

in

y1

y2

Clk

in

y1

y2

always @ (*) 
        begin 

    y1 = in; 
    y2 = y1 ; 

        end       

in y2

y1
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Overall Code Parallelism 

always @ (posedge Clk) 
         begin 

    b = in; 
end       
 

assign a=b&c; 
 
always @ (c,b) 
         begin 

    d = c^b; 
         end 
 
assign e=b|c; 

 Statements inside an always block are evaluated sequentially 
 However, all always blocks are evaluated concurrently 
 All continuous assignments are evaluated concurrently too 

C

Clk

in b

a

d

e
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Verilog Assignments in a Glance 

Verilog Assignments 

Continuous Procedural 

Blocking Non-blocking 

Using assign statement Inside an always block 

always @ (*) 
        begin 

     <=  
     <=  

        end       

always @ (*) 
        begin 

     =  
     =  

        end       

assign a=b; 

 assign can not be used inside an always block b/c assign is used for nets.  
 Nets can not be assigned inside an always blocks (only reg or integer). 
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Outline 

 ASIC/FPGA Design Flow  

 Hardware Description Language (HDL) 

  Verilog 

o Introduction 

o Language Fundamentals 

o Modeling Combinational & Sequential Logic Circuits 

o Modeling Finite State Machines 

o Verilog Operations 

 

 

 79 
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Logic Circuits Category 

 Logic Circuits: 

 Combinational logic: (realized by assign and always) 
  Output depends on inputs  

  Inputs propagates to the output through some gates with delay 

  e.g., adders, Mux, multiplier, all logic gates 

 Sequential Logic: (realized only by always) 
  Output depends on inputs and circuit history 

  Circuit history is kept using flip-flops, registers or latches 

  e.g., Finite State Machines (FSM), shift registers, Flip Flops (FF) 

 Sequential logic has two flavors: 
 Synchronous: all registers controlled by a global clock 

 Asynchronous: based on the handshaking process 
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Logic Circuits Category 

 A general system consists of both combinational and sequential circuits 

 

 

 

 

 

 

 

 

 Critical path of the Comb. Logic determines the max operating frequency 

 Combinational logic can be realized using assign and always constructs 

 Sequential logic can only be realized using always blocks. 

Comb. Logic
Combinational

Logic

Clk

In Out

Critical path

always 

assign 

always 

assign 

always always always 
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Combinational Logic 

 Combinational logic can be realized using assign and always constructs 

Example: Full Adder: 

 

 

 

 

 

 

 

 When using always block for Com. Logic, “blocking” assignments are used 
 When using an always block, time instant changes when one of the  
     sensitivity list variables changes 

 

 

module Adder (x, y, S, C) 
    input x,y; 
    output S,C; 
    reg S, C; 
    always @ (x, y) 
        begin 

    S = x Λ y; 
    C = x & y; 

        end 
endmodule       

module Adder (x, y, S, C) 
    input x,y; 
    output S,C; 
    wire S, C; 
    assign S = x Λ y; 
    assign C = x & y; 
endmodule 
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Blocking Assignment for Combinational Logic 

 Use only blocking assignments for combinational logic. Why? 

Example: Accumulator:  (Assume Count == 0) 

 

 

 

 

always @ (*) 
        begin 

for (k=0; k<4; k=k+1) 
         Count = Count + k; 

        end 

always @ (*) 
        begin 

for (k=0; k<4; k=k+1) 
         Count <= Count + k; 

        end 

Count = Count + 0; 
Count = 0 + 1; 
Count = 0 + 1 + 2; 
Count = 0 + 1 + 2 + 3; 
Result: Count = 6 

Count <= Count + 0; 
Count <= Count + 1; 
Count <= Count + 2; 
Count <= Count + 3; 
Result: Count =3 

Incorrect Correct 

In multiple concurrent 
non-blocking 
assignments to a 
variable, the last one 
executes 
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Combinational Logic 
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always block vs. assign for Combinational Logic 

 When do we use the always block to describe a combinational logic? 

1. Normally for high-complexity Comb. Logic 

2. When output depends on several conditions, which requires if-else  

        or case constructs to be fully described 

 

 Why? 

1. Because powerful statements like if-else and loop constructs can only 

        be used inside an always block  

 Comes with more clarity and more concise description than assign 

2. Multiple outputs can be assigned within a single always block 
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Sequential Logic 

 Sequential circuits have memory (i.e., remembers the past) 

 The current state is held in memory and the next state is computed through 

      the combinational logic 

  In a synchronous system, a global clock signal orchestrates the flow of the  

      data and the sequence of events 

 

Comb.

Logic

Registers/

Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

Clk
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Sequential Logic 

 Sequential logic can only be realized using an always block 

 Consists of : 

 Flip flops that are normally controlled by: 

  Positive edge of the clock (posedge)            always @ (posedge Clk) 

  Negative edge of the clock (negedge)          always @ (negedge Clk) 

  Have posedge or negedge in the sensitivity list 

  Any variable assigned a value is the output of a flip-flop 

 Latches  

 Transfers input to output when clock is “1” and stores the value O.W. 

 Finite State Machine (FSM) 

 When using the always block for the sequential Logic, “Non-blocking”  

      assignments are used 
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Sequential Logic: Flip-Flop 

Example: Flip-flop with asynchronous Reset: 

 

 

 

 

 

Example: Flip-flop with synchronous Reset: 

 

 

 

always @ (posedge Clk, negedge Reset) 
        if (Reset == 0) 
 Q<=0; 
        else 
 Q<=D;   

always @ (posedge Clk) 
        if (Reset == 0) 
 Q<=0; 
        else 
 Q<=D;    

Clk

D Q

Reset

Clk

Q
D

Reset
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Sequential Logic: Flip-Flop 

Example: Flip-flop with complete features: 

 

 

 

 

 

 

 

 

module flip_flop_n ( output reg Q , output Q_n ,input pre_n, clr_n, 
D, input clk_n, CE );  
 
always@ (negedge clk_n or negedge pre_n or negedge clr_n)  

begin 
if (!pre_n) Q <= 1'b1; 
elseif (!clr_n) Q <= 1'b0; 
elseif (CE) Q <= D; 

end 
assign Q_n = ~Q; 
endmodule 

Clk

D
Q

clr

CE

pre

!Q
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Sequential Logic: Flip-Flop 

 Use reset-able FFs only where needed 
 FFs are a little larger and higher power 
 Requires the global routing of the high-fanout reset signal 

high-fanout 
reset signal 

Reset 
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Sequential Logic 

Example: D-Latch: 

 

 

 

 

 

Example:  

 

 

 

module Latch(D, Clk, Q);  
   input D, Clk; 
   output reg Q; 
   always @ (D, Clk) 
        if (Clk) 
 Q<=D; 
endmodule 

Q

Clk

D

Clk

D

D-Latech

FF (sync Rst)

FF (Async Rst)

Reset
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Sequential Logic 

Example: D-Latch: 

 

 

 

 

 

 

 

 

module Latch(D, Clk, Q);  
   input D, Clk; 
   output reg Q; 
   always @ (D, Clk) 
        if (Clk) 
 Q<=D; 
endmodule 

Q

Clk

D

module Latch(D, Clk, Q);  
   input D, Clk; 
   output reg Q; 
   always @ (Clk) 
        if (Clk) 
 Q<=D; 
endmodule 

Both results in a latch 

This results in a warning saying D is 
not in the sensitivity list 
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Sequential Logic: Registers 

wire [n:0] d; 
reg [n:0] q; 
... 
always @ (posedge Clk) 
 q<=d; 

 Store a multi-bit encoded value 
 One D-FF per bit 
 Stores a new value on each clock cycle 
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Reg Type (Revisited)  

 The keyword “reg” does NOT necessarily denote a storage element or register. 

 “reg” simply means a variable that can hold a value 

 May or may not be synthesized as a register. 

reg  C; 
    always @ (a,b) 
          C = a+b; 

reg  C; 
    always @ (posedge Clk) 
          C <= a+b; 

a

b

C

Clk

a

b

C

Register Not Register 

Signal 

Type Range Name Value 
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Sequential Logic 

 When using always block for sequential Logic, “Non-blocking”  
     assignments are used. Why? 

 

 

 

 

 

 

always @ (posedge Clk) 
       y1=in; 

 
always @ (posedge Clk) 

       y2=y1; 
      

always @ (posedge Clk) 
       y1<=in; 

 
always @ (posedge Clk) 

       y2<=y1; 
      

Clk

in

y1

y2 ?          ?          ?          ?          ?          ?          

Clk

in

y1

y2

Race Condition 
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Sequential Logic 

 When using always blocks for sequential Logic, “Non-blocking”  
     assignments are used. Why? 
 Example: Shift register 

 

 

 

 

 

 

always @ (A) 
       begin 
           for (k=0; k<4;k=k+1) 
                 A[k]=A[k+1]; 
           A[3] = A[0]; 
       end 

always @ (A) 
       begin 
           for (k=0; k<4;k=k+1) 
                 A[k]<=A[k+1]; 
           A[3] <= A[0]; 
       end 

A[0] A[1] A[2] A[3]

Incorrect! 

 Do NOT use blocking assignments for sequential logic 
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Important Timing Parameters 
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System Timing Parameters 
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System Timing Parameters : Minimum Period 
 Setup-time Condition: 

 If violates circuit works at lower frequency (why?) 

 

 

 

Clk

in

Tsu Thold Tsu Thold

Tcq Tlogic Tsu

TClk>Tcq+Tlogic+Tsu

Tlogic<TClk-Tsu-Tcq

Combinational
Logic

Clk

In
Out
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System Timing Parameters : Minimum Delay 
 Hold-time Condition: 

 If violates circuit does not work (even at lower frequencies) (why?) 

 

 

 

Clk

in

Tsu Thold Tsu Thold

Tcq,d Tlogic,cd

Tcq,cd+Tlogic,cd>Thold

Combinational
Logic

Clk

In
Out

Tcq,d Tlogic,cd
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Procedural Statements 

always @ (sensitivity list) 
    begin 

 Procedural assignments 
 if-else statements 
 case statements 
 while, repeat, for loops 

   end       

Procedural  
Statements 

Procedural Statements 

Procedural Assignments If-else  

Statements 

Case 

Statements 

while          repeat         for 

Loop statements 

Blocking Non-blocking 
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If-else statements 

 Used only inside an always block 

 Format: 

 

 

 

 

 

 Example: 

 

If (expression1) 
    statement1; 
else if (expression2) 
    statement2; 
else 
    statement3; 

Single statement no need for begin-end 
Multiple statements, begin-end is needed 

module Mux21 (in1, in2, s, out) 
    input in1, in2, s; 
    output reg out; 
 
    always @ (in1, in2, s) 
          if (s==0) 

     out = in1; 
else 
     out = in2;  

endmodule       

in1

s

out

0

1in2

module Mux21 (in1, in2, s, out) 
    input in1, in2, s; 
    output reg out; 
    always @ (in1, in2, s) 
          begin 
              out = in1; 
              if (s==1) 

         out = in2; 
end 

endmodule       
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If-else statements 

 If-else construct inside an always block have a sequential nature when used 

     by blocking assignments. Sequential means direct effect on synthesis not 

     necessarily sequential in actual hardware implementation 

 This means ordering is important 

 Example: 

 

in1

s

out

0

1in2

always @ (*) 
          begin 
              out = in1; 
              if (s==1) 

         out = in2; 
end    

always @ (*) 
          begin 
               if (s==1) 

         out = in2; 
               out = in1; 

end    

in1 out
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Procedural Statements 

always @ (sensitivity list) 
    begin 

 Procedural assignments 
 if-else statements 
 case statements 
 while, repeat, for loops 

   end       

Procedural  
Statements 

Procedural Statements 

Procedural Assignments If-else  

Statements 

Case 

Statements 

while          repeat         for 

Loop statements 

Blocking Non-blocking 
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Case statements 

 Used only inside an always block 

 Format: 

 

 

 

 

 

 Example: 

 

case (expression) 
    alternative1: statement1; 
    alternative2: begin 
            statement2; 
         end 
    default: statementn; 
endcase 

Single statement no need for begin-end 

module Mux21 (in1, in2, s, out) 
    input in1, in2, s; 
    output reg out; 
 
    always @ (in1, in2, s) 
          case (s) 

     1’b0: out = in1; 
     1’b1: out = in2; 
endcase 

endmodule       

Multiple statements, begin-end is needed 

module Mux21 (in1, in2, s, out) 
    input in1, in2, s; 
    output reg out; 
 
    always @ (in1, in2, s) 
          case (s) 

     1’b0: out = in1; 
     default: out = in2; 
endcase 

endmodule       
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Case statements 

 Example: Combinational logic using both assign and always block 

module FullAdder (Cin, x, y, S, Cout) 
    input  x, y, Cin; 
    output  S, Cout; 
    wire S, Cout; 
 
    assign S = x ^ y ^ Cin; 
 
    assign Cout = (x & y)|(x & Cin)|(y & Cin); 
 
endmodule 

module FullAdder (Cin, x, y, S, Cout) 
    input  x, y, Cin; 
    output reg  S, Cout; 
    always @ (Cin, x, y) 
          begin 
               case ({Cin, x, y}) 
                    3’b000: {Cout, S} = ‘b00; 
  3’b001: {Cout, S} = ‘b01; 
  3’b010: {Cout, S} = ‘b01; 
  3’b011: {Cout, S} = ‘b10; 
  3’b100: {Cout, S} = ‘b01; 
  3’b101: {Cout, S} = ‘b10; 
  3’b110: {Cout, S} = ‘b10; 
  3’b111: {Cout, S} = ‘b11; 
               endcase 
         end 
endmodule 

concatenation 

x    y    Cin      Cout    S       

0      0      0            0          0 
0      0      1            0          1 
0      1      0            0          1 
0      1      1            1          0 
1      0      0            0          1 
1      0      1            1          0
1      1      0            1          0 
1      1      1            0          1
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Case statements 

 In case statements, each alternative is compared for an exact match  

 Synthesis tools are only concerned about matching of “0” and “1” while 

    “Z” and “X” are not important 

 If “X” or “Z” are needed to be added, casex is used (casex is synthesizable). 

 In fact casex treats them as don’t care. 

 Example: 4-to-2 priority encoder 

 

module Priority (W, Y, f) 
    input [3:0] W; 
    output reg [1:0] Y; 
    output f; 
    assign f = (W!=0) 
    always @ (W) 
       begin 
          casex (W) 

     ’b1xxx:  Y = 3; 
     ‘b01xx:  Y = 2; 
     ‘b001x:  Y = 1; 
     default: Y = 0; 
endcase 

       end 
endmodule       

w3   w2    w1     w0           y1      y0      f       

0      0      0      0            d      d      0       
0      0      0      1            0      0      1       
0      0      1      X            0      1      1       
0      1      X      X            1      0      1       
1      X      X      X            1      1      1       
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Case statements 

  casez allows use of wildcard “?” character for don’t 

 

module Priority (W, Y, f) 
    input [3:0] W; 
    output reg [1:0] Y; 
    output f; 
    assign f = (W!=0) 
    always @ (W) 
       begin 
          casez (W) 

     ’b1???:  Y = 3; 
     ‘b01??:  Y = 2; 
     ‘b001?:  Y = 1; 
     default: Y = 0; 
endcase 

       end 
endmodule       

w3   w2    w1     w0           y1      y0      f       

0      0      0      0            d      d      0       
0      0      0      1            0      0      1       
0      0      1      X            0      1      1       
0      1      X      X            1      0      1       
1      X      X      X            1      1      1       
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Latch Inference in Combinational Logic 

 When realizing combinational logic with always block using if-else or case 

     constructs care has to be taken to avoid latch inference after synthesis 

 

 The latch is inferred when “incomplete” if-else or case statements are declared 

 

 This latch is “unwanted” as the logic is combinational not sequential 

 

 If there is some logic path through the always block that does not assign a value 

     to the output, a latch is inferred 
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Latch Inference in If-else or Case Statements 

Example:  

 

 

 

 

 

 

 

 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
begin 
    if (S==1) 
         out = A; 
end 
endmodule 

Latch Inference 

outA

S

Q

Clk

D

module DUT (A, B, S, out); 
input A, B; 
Input [1:0] S; 
output reg out; 
always @(A, B, S) 
begin 
    case (S) 
         2’b00: out = A; 
         2’b01: out = B; 
    endcase 
end 
endmodule 

Latch Inference 

out
Q

Clk

A

B

S[0]

0

1

S[1]

D
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Latch Inference in Combinational Logic 

 To avoid latch inference make sure to specify all possible cases “explicitly” 

  

 Two practical approaches to avoid latch inference: 

 

 For if-else construct: 

1. Initialize the variable before the if-else construct 

2. Use else to explicitly list all possible cases 

 For case constructs:  

1. Use default to make sure no case is missed! 

 

 Do NOT let it up to the synthesis tool to act in unspecified cases and do specify 

     all cases explicitly. 
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Avoid Latch Inference in If-else Statements 

Example:  

 

 

 

 

 

 

 

 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
begin 
    if (S==1) 
         out = A; 
    else 
         out =B; 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
begin 
    if (S==1) 
         out = A; 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
Begin 
    out = B; 
    if (S==1) 
         out = A; 
end 
endmodule 

B

S

A

out

B

S

A

out

1 

2 

Latch Inference 

No Latch 

No Latch 

outA

S

Q

Clk

D
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Avoid Latch Inference in Case Statements 

Example:  

 

module DUT (A, B, S, out); 
input A, B; 
Input [1:0] S; 
output reg out; 
 
always @(A, B, S) 
begin 
    case (S) 
         2’b00: out = A; 
         2’b01: out = B; 
    endcase 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B; 
Input [1:0] S; 
output reg out; 
always @(A, B, S) 
begin 
    case (S) 
         2’b00: out = A; 
         2’b01: out = B; 
         default: out = 1’b0; 
    endcase 
end 
endmodule 

B

S[0]

A

out

S[1]

Latch Inference No Latch 

out
Q

Clk

A

B

S[0]

0

1

S[1]

D
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Procedural Statements 

always @ (sensitivity list) 
    begin 

 Procedural assignments 
 if-else statements 
 case statements 
 while, repeat, for loops 

   end       

Procedural  
Statements 

Procedural Statements 

Procedural Assignments If-else  

Statements 

Case 

Statements 

while          repeat         for 

Loop statements 

Blocking Non-blocking 
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Loop Statements 

 To be used for efficient coding style 

 All being used inside an always block 

 Make sure to use blocking statements for combinational logic 

for (k=0;  k<n-1; k=k+1) 
     begin 
          statement; 
     end 

while (condition) 
     begin 
          statement; 
     end 

repeat (constant_value) 
     begin 
          statement; 
     end 

Single statements no need for begin-end construct 
Multiple statements, begin-end construct is needed 
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Loop Statements 

Example: Remember: 1-bit full Adder 

 

 

 module Full_Adder (Cin, x, y, S, Cout) 
    input  x, y, Cin; 
    output  S, Cout; 
    wire S, Cout; 
 
    assign S = x ^ y ^ Cin; 
 
    assign Cout = (x & y)|(x & Cin)|(y & Cin); 
 
endmodule 

S

y

Cin

x

Cout
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Loop Statements 

Example: n-Bit ripple carry adder 

module RippleCarryAdderI (Cin, X, Y, S, Cout) 
    parameter n = 4; 
    input  Cin; 
    input [n-1:0] X, Y; 
    output  reg [n-1:0] S; 
    output reg  Cout; 
    reg [n:0] C; 
    integer k; 
    always  @(X, Y, Cin) 
        begin 
             C[0] = Cin; 
             for (k=0;k<=n-1;k=k+1) 
                  begin 
 S[k] = X[k] ^ Y[k] ^ C[k]; 
                       C[k+1] = (X[k] & Y[k]) 
                                  |(X[k] & C[k])|(Y[k] & C[k]); 
                    end 
             Cout = C[n]; 
         end  
endmodule 

X[0]

S[0]

Y[0]

Cin

X[1]

S[1]

Y[1]X[2]

S[2]

Y[2]X[3]

S[3]

Y[3]

C[1]C[2]C[3]
Cout

Breaking one statement in two lines is allowed! 

module Adder (Cin, X, Y, S, Cout) 
    input  Cin; 
    input [3:0] X, Y; 
    output [3:0] S; 
    output Cout; 

    assign {Cout, S} = {1’b0, X} + {1’b0, Y} + {4’b0, Cin} 

endmodule 

Supported 
Sequential  
Structure 
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Using Sub-Circuits (Sub-modules) 

 A design can use multiple submodules or a module multiple times 

 Using a module in another is called “instantiation” 

 Top-level module: the module that has not been instantiated 

 To use a module inside another, it should be explicitly instantiated 

M1 M2

M3 M1 M1

M2 M1

Top Module

Inputs

Outputs
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Using Sub-modules 

 There are some built-in primitive logic gates in Verilog that can be instantiated 

 Built-in primitives means there is no need to define a module for these gates 

 and, or, nor, …. 

 Example: 
module Myand(In1, In2, out) 
    input  In1, In2; 
    output out; 
      
    and myand (out, In1, In2);     
      
 
    assign out = In1 & In2; 
      
 
    reg out; 
    always  @(In1, In2) 
         out = (In1 & In2); 
 
endmodule 

3. always block 

2. assign 

1. Gate instantiation 
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Using Sub-modules : Gate-level Primitives 

and buf nmos tran 

nand not pmos tranif0 

nor bufif0 cmos tranif1 

or bufif1 rnmos rtran 

xor notif0 rpmos rtranif0 

xnor notif1 rcmos  rtranif1 

 Gate-Level primitives: 
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Using Sub-modules 

 Example: (4-input MUX using primitives) 
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Sub-modules Instantiation 

 To instantiate a module, two things have to be clearly specified 

 module’s ports 

 module’s parameters (considered as default if not specified) 

 Format: 

 

 

 

 

 If port connections are in the same order as the original module 

     “.port_name” is not needed in the port list. 

Module_name  #(parameter_value)  instance_name (.port_name(port-connection), .port_name(port-connection),….) 

Module_name   instance_name (.port_name(port-connection), .port_name(port-connection),….) 
defparam  instance_name.parameter_name = parameter_value 
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Sub-modules Instantiation 

 Example: 

module RippleCarryAdderII (Cin, X, Y, S, Cout); 
    parameter n = 4; 
    input  Cin; 
    input [n-1:0] X, Y; 
    output  [n-1:0] S; 
    output  Cout; 
    wire [n-1:0] C;           Cin    x       y        S      Cout 
      
    Full_Adder stage0  (Cin, X[0], Y[0], S[0], C[1]); 
    Full_Adder stage1  (C[1], X[1], Y[1], S[1], C[2]); 
    Full_Adder stage2  (C[2], X[2], Y[2], S[2], C[3]); 
    Full_Adder stage3  (.Cout(Cout), .Cin(C[3]), .x(X[3]), .y(Y[3]), .S(S[3])); 
 
endmodule 

module Full_Adder (Cin, x, y, S, Cout); 
    input  x, y, Cin; 
    output  S, Cout; 
    wire S, C; 
    assign S = x ^ y ^ Cin; 
    assign Cout = (x & y)|(x & Cin)|(y & Cin); 
endmodule 

Explicit list 
(Order NOT important) 

Implicit list 
(Order IS important) 

4-bit Ripple Carry 
Adder 

Can NOT be of type “reg” 
(output of a submodule) 

X[0]

S[0]

Y[0]

Cin

X[1]

S[1]

Y[1]X[2]

S[2]

Y[2]X[3]

S[3]

Y[3]

C[1]C[2]C[3]
Cout
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Sub-modules Instantiation 

 Example: 5-bit Ripple Carry Adder: 

 
module 5-BitRippleCarryAdder (Cin, X, Y, S, Cout) 
    parameter n = 5; 
    input  Cin; 
    input [n-1:0] X, Y; 
    output  [n-1:0] S; 
    output  Cout; 
    wire  C;            
      
     
    RippleCarryAdderI  #(3)  stage0   (.Cin(Cin), .X(X[2:0]), .Y(Y[2:0]), .S(S[2:0]), .Cout(C)); 
 
    defparam  stage1.n = 2; 
    RippleCarryAdderI stage1  (.Cin(C), .X(X[4:3]), .Y(Y[4:3]), .S(S[4:3]), .Cout(Cout)); 
 
endmodule 

defparam  stage0.n = 3; 

If two parameters : # (3,8) 
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Sub-modules Instantiation 

 Example: 

M1
Parameter length =10;

in1

in2

out1

out2

module DUT (IN, OUT) 
    input [2:0] IN; 
    output [2:0] OUT; 
    wire  w1, w2, w3;    
         
   defparam  stage0.length = 6; 
    M1 stage0  (IN[0], IN[1], w1, w2); 
 
    defparam  stage1.length = 3; 
    M1 stage1  (.in1(w1), .in2(IN[2]),  .out2(w3), .out1(OUT[2])); 
 
    M1 stage2  (.in1(w2), .in2(w3), .out1(OUT[0]), .out2(OUT[1])); 
 
endmodule 

M1

(6)

M1

(10)

DUT

IN_0

IN_1

w1

w2

w3

OUT_0

M1

(3)

IN_2

OUT_1

OUT_2
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Function Construct 

 function may be used to have a modular code without defining separate modules 

 

 A function is defined inside a module 

 

 Not crucial for Verilog but might facilitate modular coding 

 

 A function can be called both in continuous and procedural assignments 

 

 A function can have multiple inputs but does not have any output 

 

 Function name serves as the output 
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Function Construct 

 Example: 16-to-1 multiplexer: 

 module my16-to-1MUX (W, S, Out); 
    input  [0:15] W; 
    input [3:0] S; 
    output  reg Out; 
    reg  [0:3] M; 
     
    function my4-to-1MUX; 
         input [0:3] W; 
         input [1:0] s; 
         if (s==0) my4-to-1MUX = W[0]; 
         else if (s==1) my4-to-1MUX = W[1]; 
         else if (s==2) my4-to-1MUX = W[2]; 
         else if (s==3) my4-to-1MUX = W[3]; 
    endfunction 
 
    always@ (W, S)  
        begin 
            M[0] = my4-to-1MUX(W[0:3],S[1:0]); 
            M[1] = my4-to-1MUX(W[4:7],S[1:0]); 
            M[2] = my4-to-1MUX(W[8:11],S[1:0]); 
            M[3] = my4-to-1MUX(W[12:15],S[1:0]); 
 
            Out   = my4-to-1MUX(M[0:3], S[3:2]); 
 
        end    
endmodule 

         if        (S[3:2]==0) Out= M[0]; 
         else if (S[3:2]==1) Out= M[1]; 
         else if (S[3:2]==2) Out= M[2]; 
         else if (S[3:2]==3) Out= M[3]; 



© M. Shabany, ASIC/FPGA Chip Design 

Function Construct with multiple-bit output 

 Example: 

 module test_fcn (a, b, c, Out); 
    input  a, b, c; 
    output reg [2:0] Out; 
      
function [2:0] myfcn; 
    input a, b, c; 
    begin 
        myfcn[0] = a^b; 
        myfcn[1] = b^c; 
        myfcn[2] = c^a; 
    end 
endfunction 
 
always @(*) 
      Out = myfcn(a,b,c); 
  
endmodule 

module test_fcn (a, b, c, Out); 
    input  a, b, c; 
    output [2:0] Out; 
      
function [2:0] myfcn; 
    input a, b, c; 
    begin 
        myfcn[0] = a^b; 
        myfcn[1] = b^c; 
        myfcn[2] = c^a; 
    end 
endfunction 
 
assign   Out = myfcn(a,b,c); 
  
endmodule 

With always With assign 
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Task Construct 

 task may be used to have a modular code without defining separate modules 

 

 A task is defined inside a module 

 

  A task can only be called from inside and always (or initial) block 

 

 A task can have multiple inputs and outputs 
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Task Construct 

 Example: 16-to-1 multiplexer: 

 
module 16-to-1MUX (W, S, Out) 
    input  [0:15] W; 
    input [3:0] S; 
    output  reg Out; 
    reg  [0:3] M; 
 

      task 4-to-1MUX; 
         input [0:3] W; 
         input [1:0] s; 
         output Result; 
         begin 
               if (s==0) Result= W[0]; 
               elseif (s==1) Result = W[1]; 
               elseif (s==2) Result = W[2]; 
               elseif (s==3) Result = W[3]; 
          end 
    endtask 
    always@ (W, S)  
        begin 
            4-to-1MUX(W[0:3],S[1:0], M[0]); 
            4-to-1MUX(W[4:7],S[1:0] , M[1]); 
            4-to-1MUX(W[8:11],S[1:0] , M[2]); 
            4-to-1MUX(W[12:15],S[1:0] , M[3]); 
            4-to-1MUX(M[0:3],S[3:2] , Out); 
        end    
endmodule 
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HDL for Synthesis (Priority logic) 

 The order in which assignments are written in an always block may affect the logic 

     that is synthesized. (both conditions in if and else if can be true!) 

 Example: 

 
always @ (s0,s1, d0, d1) 
    begin 
         Q = 0; 
         if (s0)   Q = d0; 
         else if (s1) Q = d1; 
     end 

0

d1

s1

0

1

d0

s0

0

1

Q

Different 

Non of the above infer latch, why? 

always @ (s0,s1, d0, d1) 
    begin 
         Q = 0; 
         if (s1)   Q = d1; 
         else if (s0) Q = d0; 
     end 

0

d0

s0

0

1

d1

s1

0

1

Q
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Example: Up & Down Counters 

4-Bit unsigned down-counter 
 with synchronous set 

module D_counter (C, S, Q); 
 
     input C, S; 
     output [3:0] Q; 
     reg [3:0] tmp; 
     always @(posedge C) 
          begin 
            if (S) 
              tmp <= 4’b1111; 
            else 
              tmp <= tmp - 1’b1; 
           end 
     assign Q = tmp; 
 
endmodule 

4-Bit up-counter with 
asynchronous reset and 

modulo maximum 

module U_counter (C, CLR, Q); 
 
     parameter 
        MAX_SQRT = 4, 
        MAX = (MAX_SQRT*MAX_SQRT); 
      input C, CLR; 
      output [MAX_SQRT-1:0] Q; 
      reg [MAX_SQRT-1:0] cnt; 
     always @ (posedge C or posedge CLR) 
           begin 
              if (CLR) 
                  cnt <= 0; 
              else 
                  cnt <= (cnt + 1) %MAX; 
              end 
       assign Q = cnt; 
 
endmodule 
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Accumulator 
 Accumulates multiple successive k-bit values and stores them into a k-bit register 
 The number of successive numbers (Num) as an input 

module Accumulator (In, Num, Clk, Rst, Out); 
    parameter k = 8; 
    parameter m = 4; 
    input  [k-1:0] In; 
    input [m-1:0] Num; 
    input Clk, Rst; 
    output  reg  [k-1:0] Out; 
    wire [k-1:0] Sum;  
    reg  [m-1:0] C; 
    wire En, Cout; 
    defparam stage0.n = k; 
    RippleCarryAdderI  stage0   (.Cin(0), .X(In), .Y(Out), .S(Sum), .Cout(Cout)); 
    always@ (posedge Clk, negedge Rst)  
            if (Rst == 0) 
               begin 
                 C <= Num; 
                 Out <= {k{1‘b0}}; 
               end 
             else if (En) 
               begin 
                 C  <= C-1; 
                 Out <= Sum; 
               end 
assign En = |C; 
endmodule 

Clk

Sum Out

Reset

In

Down

Counter

Num En
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Outline 

 ASIC/FPGA Design Flow  

 Hardware Description Language (HDL) 

  Verilog 

o Introduction 

o Language Fundamentals 

o Modeling Combinational & Sequential Logic Circuits 

o Modeling Finite State Machines 

o Verilog Operations 
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Finite State Machine (FSM) 

 Used to implement control sequencing 
 

 An FSM is defined by 
 set of inputs 
 set of outputs 
 set of states 
 initial state 
 transition function  
 output function 

 
 States are steps in a sequence of transitions 

 

 There are “Finite”‖ number of states. 
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Finite State Machine (FSM) 

 The behavior of the circuit can be represented using a finite number of states 

 Two types: 

 Mealy: 

 Output depends on the “current state” and the “input” 

 

 

 

 

  

Comb.

Logic
Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

always block always block always block
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Finite State Machine (FSM) 

 Moore: 

 Output depends only on the “current state” 

Comb.

Logic
Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

always block always block assign statement

 Therefore, to describe an FSM in Verilog we have to show how to derive: 

 Next State (NC) 

 Current State (CS) 

 Output 

 

  



© M. Shabany, ASIC/FPGA Chip Design 

FSM Code Structure 

always @(*) 
…………… 
…………… 
…………… 
 

always @(*) 
…………… 
…………… 
…………… 
 

NS & Output 
Calculation 

CS Calculation 

Mealy 

 Output depends on input  
 Output declared as reg 

always @(*) 
…………… 
…………… 
…………… 
 

always @(*) 
…………… 
…………… 
…………… 
 

assign …………… 
 

NS Calculation 

CS Calculation 

Output 
Calculation 

Moore 

 Output does not depend on input  
 Output declared as wire 
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FSM 
module mealy (Clock, w, Resetn, z); 
  input Clock, w, Resetn ; 
  output reg z ; 
  reg CS, NS; 
  parameter A = 1'b0, B = 1'b1; 
  always @(w, CS) 
     case (CS) 
         A:  if (w == 0) 
                   begin 
                      NS = A;   z = 0; 
                   end 
             else 
                   begin 
                      NS = B;    z = 0; 
                   end 
      B:  if (w == 0) 
                   begin 
                      NS = A;    z = 0; 
                   end 
           else 
                   begin 
                      NS = B;    z = 1; 
                   end 
    endcase 
  always @(posedge Clock, negedge Resetn) 
    if (Resetn == 0) 
      CS <= A; 
    else 
      CS <= NS; 
endmodule 

 Example: Mealy Machine 

 

NS  & Output 
Calculation 

CS  
Calculation 

A B

Reset

W=1/z=0

W=0/z=0

W=1/z=1W=0/z=0

Combinational 
(Blocking) 

Sequential 
(Non-Blocking) 

Output: reg 
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FSM 

module moore (Clk, w, Resetn, z); 
  input Clk, w, Resetn; 
  output z; 
  reg [1:0] CS, NS; 
  parameter A = 2'b00, B = 2'b01, C = 2'b10; 
 
  always @(w, CS) 
  begin 
    case (CS) 
      A:  if (w == 0)  NS = A; 
        else  NS = B; 
      B:  if (w == 0)  NS = A; 
        else  NS = C; 
      C:  if (w == 0)  NS = A; 
        else  NS = C; 
      default:    NS = 2'bxx; 
    endcase 
  end 
  always @(posedge Clk, negedge Resetn) 
  begin 
    if (Resetn == 0) 
      CS <= A; 
    else 
      CS <= NS; 
  end 
 
  assign z = (CS == C); 
endmodule 

 Example: Moore Machine 

 

A/z=0 B/z=0

C/z=1

Reset

W=0

W=0

W=0

W=1

W=1

W=1

NS  
Calculation 

CS  
Calculation 

Output 
Calculation 

Output: wire 

Combinational 
(Blocking) 

Sequential 
(Non-Blocking) 
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Outline 

 ASIC/FPGA Design Flow  

 Hardware Description Language (HDL) 

  Verilog 

o Introduction 

o Language Fundamentals 

o Modeling Combinational & Sequential Logic Circuits 

o Modeling Finite State Machines 

o Verilog Operations 

 

 

 143 
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Tri-State Logic in Verilog 
  Tri-state buffer: 

 

 

 

 

 

 Tri-state driver inference: 

module tri-buffer (A, y, EN) 
    input A, EN; 
    output Y; 
 
    assign Y = (EN) ? A : 1’bZ; 
 
endmodule     

A         EN = 1 
Z         EN = 0 

Y = 
Y

EN

A

always @ (ENa, a) 
    begin 
      if (ENa) 
         out = a; 
      else 
         out = 1’bz; 
    end 
always @ (ENb, b) 
    begin 
      if (ENb) 
         out = b; 
      else 
         out = 1’bz; 
    end 

outENa

a

ENb

b

    assign out = (ENa) ? a : 1’bz; 
    assign out = (ENb) ? b : 1’bz; 
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Tri-State Applications 
1. Buffering: 

 

 

2. Half-duplex communication: 

 

 

 

 

 

 

3. Bus multiplexing: 

Y

EN

A

Ena = 0

A

Enb = 1

Ena = 0Enb = 1

Ena = 1

A

Enb = 0

Ena = 1Enb = 0

Out[7:0]
s

a

b 8

8 8

8

8
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Tri-State Applications 
 Example: Adder with four options 

S_ab

a

b 8

8 8

8

8

S_cd

c

d 8

8 8

8

8

Out[7:0]

p

q

module tri-adder (a, b, c, d, S_ab, S_cd, Out); 
 
  input S_ab, S_cd; 
  input [7:0] a, b, c, d; 
  output [8:0] Out; 
  wire [7:0] p, q; 
 
  assign p = ~S_ab ? a : 8’bzzzzzzzz; 
  assign p =   S_ab ? b : 8’bzzzzzzzz; 
  assign q = ~S_cd ? c : 8’bzzzzzzzz; 
  assign q =   S_cd ? d : 8’bzzzzzzzz; 
 
  assign Out = p + q; 
 
endmodule     

Z is an allowed logic value and implies 
a tri-state driver for synthesis 
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Verilog Operations: Right/Left Shift 

 Verilog supports << for left and >> for right shift. (Only one position) 

 Both of these operators use a zero for the shift input bit. 

 We can also control the shift input 

module LRShift (Si, L, R, In, Out); 
 
  input Si, L, R; 
  input [7:0] In; 
  output [7:0] Out; 
 
  always @ (L, R, In, Si) 
          begin 
 case({R,L}) 
     2’b01  :  Out = {In[6:0], Si};   // Left shift 
     2’b10  :  Out = {Si, In[7:1]};   // Right shift 
     default:  Out = In; 
 endcase 
         end 
endmodule     
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Verilog Operations: Barrel Shifter 

 Barrel shifter shifts a signal by multiple positions 

 Example: 

 32-bit left shift barrel shifter 

 Left shifts by 0 to 31 positions based on the 5-bit s input  

 Each of its stages corresponds to a fixed shift by a power of 2 (16, 8, 4, 2, 1) 

 Simple HDL implementation, which illustrates the power of HDL to hide  

    implementation details from a designer 

module BarrelShifter (s, a, y); 
  input [4:0] s; 
  input [31:0] a; 
  output [31:0] y; 
  assign y = a<<s; 
 endmodule     
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Counters 

 Stores an unsigned integer value 
 Increments or decrements the value 

 Used to count occurrences of 
 Events 
 Repetitions of a processing step 

 Used as timers 
 Count elapsed time intervals by incrementing periodically 
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 Free-running Counter: 

 Increments every rising edge of clock 

 Up to 2𝑛–1, then wraps back to 0 
 Counts modulo 2𝑛 

 This counter is synchronous 
 All outputs governed by clock edge 
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Example: Periodic Control Signal 

 Count modulo 16 clock cycles 
 Control output = 1 every 8thand 12th cycle 
 Decode count values 0111 and 1011 

module decoded_counter ( output ctrl, 
input clk ); 
reg [3:0] count_value;  
always@(posedge clk)  

count_value <= count_value + 1;  
assign ctrl = count_value == 4'b0111 
|| count_value == 4'b1011;  

endmodule 
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Fixed-point vs. Floating-point 

 Fixed-point means allocating a fixed number of bits with a fixed pointer 
position to represent numbers. 

 Simpler for implementation 

 Less accuracy 

 

 Floating-point representation is provide a much more extensive means for 
providing real number representations and tend to be used extensively in 
scientific computation applications. 

 More flexible/accuracy 

 More complexity on implementation side (some times 10 times larger 
hardware than fixed-point counterpart!) 
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Verilog Operations: Fixed-Point Simulation 

 For realization of DSP algorithms all variables should be converted 

     to the fixed-point representation 

 

 Normally 2’s complement representation is used to represent signed numbers 

 

 A fixed-point 2’s complement representation of a number has two parts: 

 Integer part (WI bits) 

 Fractional part (WF bits) 

 

 The length of WI and WF are calculated based on the dynamic range of variables 

 Total length: WI + WF 
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Verilog Operations: Fixed-Point Simulation 

 Typical word lengths: 

 

 

 

 

 

 

 Fixed word-length dynamic range: 

  

 

 

 

 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Operations: Fixed-Point Simulation 

 2’s complement Representation: (WI , WF) format 

 

 

 

 

 

 Good to represent quantized numbers in the range: 

  

 Resolution : 
 

 Example: 

 in (3,3) 011101 represents 3.625 (smallest number: 0.125) 

 in (3,5) 10111000 represents -2.25 (smallest number: 0.03125) 

WI WF

Sign Bit = 
0:     positive

 1:     negative

Sing Bit







































F

II

W

1WW

2

1
2,2

FW

2

1
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Fixed-Point Simulation: Rounding 

 Eliminates LSB bits 
 Need to reduce the number of bits due to word growth 

 For example, if we multiply two 5‐bit words, the product will have 10 bits, 
i.e.,  xxxxx × yyyyy = zzzzzzzzzz and we likely don’t want or need all that 
precision 
 

 Matlab rounding: 
 round(∙): towards nearest integer 

 Pos. and neg. numbers are rounded symmetrically about zero 
 Generally the best possible rounding algorithm 

 fix(∙): truncates towards zero 
 Pos. and neg. numbers are rounded symmetrically about zero 

 floor(∙): rounds towards negative infinity 
 ceil(∙): rounds towards positive infinity 
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Fixed-Point Simulation: Matlab round(.) 

 One of the best rounding modes 
 “Unbiased” rounding 
 Symmetric rounding for positive and negative numbers 
 Max error ½ LSB 
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Fixed-Point Simulation: Matlab fix(.) 

 Truncates toward zero 
 Numerical performance poor 
 Symmetric rounding for positive and negative numbers 
 Max error 1 LSB 
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Fixed-Point Simulation: Matlab floor(.) or truncation 

 Numbers rounded down towards –∞ (-infinity) 
 Numerical performance poor 
 Very simple hardware 
 In:xxxxxx -> Out: xxxx-- 
 Max error 1 LSB 
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Fixed-Point Simulation: Matlab ceil(.) 

 Numbers rounded up towards + ∞ (+infinity) 
 Numerical performance poor 
 Max error 1 LSB 
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Hardware Rounding 

 Easiest is truncation 
 
 
 

 Maximum rounding error ~1 post‐rounded LSB 
 

 Signed magnitude 
 Positive and negative numbers both truncate towards zero 
 Matlab fix(∙) 

 

 2’s complement and unsigned 
 All numbers truncate towards negative infinity 
 Matlab floor(∙) 

x x x x x x x x x x x x x
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Hardware Rounding 

 Better rounding numerically is to add ½ lSB and then truncate 
 
 
 
 
 
 

 Maximum rounding error ½ post‐rounded LSB 
 Two cases: 

a. When the input is xxxx.5000 (base 10) (or xxx.xx100 (base 2) in the 
example above) 

 Rounding is towards +∞ (for both positive and negative numbers) 
 matlab ceil(∙) 

b. Otherwise 
 Performs best rounding: matlab round(∙) 

x x x x x x x x

y y y y y

1

y y y y y y x x
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Fixed-Point Modeling: Casting 

 Care must be taken when dealing with fixed-point numbers 

 Casting: To convert a number with a larger bit length to a smaller one 

 

 

 

 

 
 

  

 Saturation happens if:   

 “A” is positive and  

 “A” is negative and  

 

 

 

 

]}WW:2-WWA[1],-W{A[WB FFFIFI


WI WF

IW
FW

II WW 

FF WW 
B:

A:

one) (all 111...1111]WW:2-WA[W FIFI 

01]WW:2-WA[W FIFI 
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Fixed-Point Modeling: Casting 

 Example: 

0 0 0 0 1 1 0 1 1 1 0 1 0 0

WI WF

1 1 0 1 1 1 0 10

(10,4)

(7,2)

0 0 0 1 1 0 1 1 1 0 1 0 0

WI WF

1 1 1 1 1 1 1 10

(10,4)

(7,2)

1

1 1 1 1 0 1 1 1 0 1 0 0

WI WF

0 0 0 0 0 0 0 01

(10,4)

(6,3)

101 1 1 1 0 1 1 1 0 1 0 0

WI WF

1 0 1 1 1 0 1 01

(10,4)

(6,3)

11

Saturation 
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Fixed-Point Modeling: Sign Extension 

 To convert a number with a smaller bit length to a larger one sign extension  

      is required. 

 

 

 

 

 
 

 assign 

 Examples: Adding two numbers with different lengths: 

 

 

 

 

 
 

 

 

 

 

 

b0}A,2'1]}},-W{{n{A[WB FI 

wire [2:0] A; 
wire [5:0] B; 
wire [6:0] C; 
assign C = {B[5],B} + {{4{A[2]}},A}; 

1 0 1 1 1 0 1 0

WI WF

(10,4)

1 0 1 1 1 0 1 01(6,3)

11111 0

WI WF

IW
FW

B:

A:
II WW 

FF WW 

00
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Verilog Operations: Addition with Same Length 

  Adding two signed n-bit numbers and save it in a signed n-bit number: 

 Might not be safe if two number are large 

 Overflow condition should be checked 

 

 Overflow may happen if: 

 A[n-1]==1 and B[n-1]==1 and C[n-1]==0 

 A[n-1]==0 and B[n-1]==0 and C[n-1]==1 

assign SUM = B + A; 
assign OV = (A[n-1]==1 && B[n-1]==1 && C[n-1]==0)|| 
                      (A[n-1]==0 && B[n-1]==0 && C[n-1]==1); 
 
assign C = (OV && A[n-1] == 1) ? MIN_NEG_n : SUM; 
assign C = (OV && A[n-1] == 0) ? MAX_POS_n : SUM; 

A[n-1:0]

B[n-1:0]

C[n-1:0]

+

0110

0111

1101

+
1010

1001
+

10011
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Floating-point 

 In floating-point, the aim is to represent the real number using a sign (S), 
exponent (Exp) and mantissa (or fraction).  
 
 
 
 
 
 
 
 

 The most widely used form of floating-point is IEEE Standard for Binary 
Floating-Point Arithmetic (IEEE 754) with two major formats: 
 Single-precision (32-bit) 
 Double-precision (64-bit) 

𝑁 = 2𝐸𝑥𝑝−127 ×𝑀 
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Floating-point: Example 

 Converting a real number, −1082.5674  IEEE 754 floating-point representation: 
 
 It can be determined that S = 1 as the number is negative. 
 The number (1082) is converted to binary by successive division, 10000111010. 
 The fractional part (0.65625) is computed in the same way as above, giving 10101. 
 The parts are combined to give the value 10000111010.10101. 
 The radix point is moved left, to leave a single 1 on the left, 1.000011101010101 × 210. 
 Filling with 0s to get the 23-bit mantissa gives the value 10000111010101010000000. 
 The exponent is 10 and with the 32-bit IEEE 754 format bias of 127, giving 137 which is 

given as 10001001 in binary. 
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Floating-point Implementation 

 The floating-point implementation concurs a complicated hardware compared to 
the fixed-point counterpart. 

 Take into account as an example a floating-point adder! 
 This additional logic is needed to perform the various normalization steps for the adder 

implementation. 
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Fixed-point vs. Floating-point 

 The area comparison for floating-point is additionally complicated as the 
relationship between multiplier and adder area is now changed.  

 In fixed-point, multipliers are generally viewed to be N times bigger than 
adders where N is the word length.  

 However, in floating-point, the area of floating-point adders is comparable 
to that of floating-point multipliers which corrupts the assumption at the 
algorithmic stages to reduce number of multiplications in favor of additions.  

 Table below gives some figures on area and speed figures for floating-point 
addition and multiplication implemented in a Xilinx Virtex 4 FPGA 
technology. 
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Verilog Operations: $signed and $unsigned 

 A = $signed(B) 

 Sign extends B and assigns it to A 

 bit width(B) < bit width (A) 

 Example 

 

 

 A = $unsigned (B) 

 Zero fill B and assign it to A 

 bit width(B) < bit width (A) 

 Example 

 

 

 

 

wire [5:0] A; 
assign A = $signed (3b’110); 

wire [5:0] A; 
assign A = $unsigned (3b’110); 

A = 111110 

A = 000110 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Operations: Signed Addition 

 There are two ways to perform signed addition: 

1. Sing Extension: 

 

 

 
 

2. Using signed signals 

 

 

 

 Wrong otherwise: 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

wire [2:0] A, B; 
wire [3:0] SUM; 
assign SUM = {B[2],B} + {A[2],A}; 

wire signed [2:0] A, B; 
wire signed [3:0] SUM; 
assign SUM = B + A; 

Same result 

wire [2:0] A, B; 
wire [3:0] SUM; 
assign SUM = B + A; 

110

010

1000

(-2)

(+2)

(-8)

(Wrong) 

1110

0010

10000

Discard Overflow

(-2)

(+2)

(0)
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Verilog Operations: Signed Addition with Carry-in 

 There are two correct ways to perform signed addition with carry-in: 

1. Sing Extension: 

 

 

 

 
 

2. Using signed signals 

 

 

 

 

wire [2:0] A, B; 
wire Cin; 
wire [3:0] SUM; 
assign SUM = {B[2],B} + {A[2],A} + Cin; 

wire signed [2:0] A, B; 
wire Cin; 
wire signed [3:0] SUM; 
assign SUM = B + A + $signed({1’b0},Cin); 

Same result 

1110

0010

0001

10001

Discard Overflow

(-2)

(+2)

(1)

Cin
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Verilog Operations: Signed Addition with Carry-in 

 Incorrect Codes: 

wire signed [2:0] A, B; 
wire Cin; 
wire signed [3:0] SUM; 
assign SUM = B + A + Cin; 

If any operand of an operation is 
unsigned, the entire operation is 

performed unsigned 

wire signed [2:0] A, B; 
wire Cin; 
wire signed [3:0] SUM; 
assign SUM = B + A + $signed(Cin); 

110

010

    1

1001

(-2)

(+2)

(9)

Cin

1110

0010

1111

1111

(-2)

(+2)

(-1)

Cin

wire signed [2:0] A, B; 
wire signed Cin; 
wire signed [3:0] SUM; 
assign SUM = B + A + Cin; 

1110

0010

1111

1111

(-2)

(+2)

(-1)

Cin

When Cin=1, it sign extends it, to 
match the size of A and B,  

 which is incorrect! 

When Cin=1, it sign extends it, to 
match the size of A and B,  

 which is incorrect! 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Operations: Signed Multiplication 

 Use signed construct as we used for signed addition: 

1. Use Verilog constructs: 

 

 

 

 

2. Write it manually as a module 

                                               

                                       Complicated! 

 

wire signed [16:0] A, B; 
wire signed [31:0] MULT; 
assign MULT = A*B; 
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Verilog Operations: Signed Multiplication 

 Multiplication of a signed number and an unsigned number: 

 Correct: 

 

 

 

 Incorrect: 

wire signed [2:0] A; 
wire [2:0] B; 
wire signed [5:0] PROD; 
assign PROD = A*$signed({1’b0,B}); 

wire signed [2:0] A; 
wire [2:0] B; 
wire signed [5:0] PROD; 
assign PROD = A*$signed(B); 

wire signed [2:0] A; 
wire [2:0] B; 
wire signed [5:0] PROD; 
assign PROD = A*B; 

When B[2]==1, treats it as a negative number! Entire operation is performed unsigned 

110

111

101010

(-2)

(7)

(42)

110

111

000010

(-2)

(7) treat it as (-1)

(+2)

110

111

110010

(-2)

(7)

(-14)
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Verilog Operations: Fixed Multiplication 

 Sometimes one input is fixed so remove partial products that are always zero 
 We have to try to find the minimum number of power‐of‐2 numbers to add 

together to equal the fixed multiplier input 

 

 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Operations: Fixed Multiplication 

 Example: Multiply by 3: 

input [7:0] in; 
wire [9:0] product; 
assign product = {in[7], in, 1’b0} 
+ {in[7], in[7], in}; 

 Example: Multiply by 56: 

input [7:0] in; 
wire [13:0] product; 
assign product = 
{in[7], in, 5’b00000} 
+ {in[7], in[7], in, 4’b0000} 
+ {in[7], in[7], in[7], in, 3’b000}; 

56=32+16+8 

input [7:0] in; 
wire [13:0] product; 
assign product = 
{in, 6’b00000} 
- {in[7], in[7], in[7], in, 3’b000}; 

56=64-8 



© M. Shabany, ASIC/FPGA Chip Design 

Verilog Operations: Constant Multiplication 

  Multiplication with a set of constant numbers may be implemented more  

      efficiently: 

 

 

 

}-1,1,3,5,7{-7,-5,-3,b         baP 

0111

0101

0011

0001

1111

1101

1011

1001

3 24
M

S
B

1
L

S
B

b

b[4]

b[3]b[2]

b[4]b[3]b[4]b[3] 

<<1 <<2

SUM SUM SUM

<<3

01 01 01

010

01

a

P=axb
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Verilog Operations: Constant Multiplication 

  Simpler way for implementation: 

 

 

 

}-1,1,3,5,7{-7,-5,-3,b         baP 

0111

0101

0011

0001

1111

1101

1011

1001

3 24
M

S
B

1
L

S
B

b
a

1        0

1        0 1        0

1        0

1        0

<<10 <<2 <<3

baP 

b[4]

b[3]b[4] 

b[3]b[2] 

b

C.M.

Constant Multiplier

b[1]b[2]b[3]

+

b[3]b[2]b[1]

Multiplier Critical Path Area (um2) 

Constant MUL 3.5 1800 

Normal MUL 5.1 12000 
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Verilog Operations: Complex Multiplication 

  A complex multiplication is equivalent to four real multiplications 

 

 

 However, it can be efficiently realized using only three real multiplications: 

 

bc)j(adbd)(acjd)jb)(c(a 

 bd)(ac-d)b)(c(ajbd)(acjd)jb)(c(a 

a

b

a+b

c

d

bd

ac

c+d

-

(a+b)(c+d)

ac-bd

ac+bd

-

Imag

Real
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Pipelined Complex Multiplication 

 Pipelined Implementation: 

  bd)(ac-d)b)(c(ajbd)(acjd)jb)(c(a 

a

b

a+b

c

d

bd

ac

c+d

-

(a+b)(c+d)

ac-bd

ac+bd

-

Imag

Real
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Squaring 

 x2 can be done with about half the hardware of a full multiply (for a 
dedicated squaring block, of course) 

0x

0x

1x

1x

2x

2x

3x

3x

 Diagonals (x0 x0, x1 x1, …) can be replaced by the single input bit with 
no computation for that bit b/c we have x0 AND x0= x0 

0x
1x2x3x

0x

1x

2x

3x
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Squaring 

 Pairs of equivalent bit products (x1 x0 and x0 x1, …) can be replaced by 
one bit product shifted over one column 

0x
1x2x3x

0x

1x

2x

3x

0x
1x2x3x

0x

1x

2x

3x



© M. Shabany, ASIC/FPGA Chip Design 

Resource-Shared Complex Multiplication 

 Operands: 4 integer, 12 fraction bits  
 Result: 8 pre-, 24 post-binary-point bits  
 Subject to tight area constraints  

 
 
 
 

 4 multiplies, 1 add, 1 subtract  
 Perform sequentially using 1 multiplier, 1 adder/subtracter 
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Digital Systems 

General Architecture: 

 
 Data Path: 

 Transfer input data signals into outputs 

 Normally combinational logic or counters 

 

 Controller: 

 Provides any control signal to determine the direction of data flow 

 Examples: Reset, set, MUX select signals, … 

 Sequential logic 

 

 

 

 

 

Data Path

Controller

n m
inputs outputs

Clk
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Resource-Shared Complex Multiplication 

 Data Path VLSI Architecture: 
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Resource-Shared Complex Multiplication 

 HDL Code: 

  Control Path: 
1. a_r * b_r →pp1_reg 
2. a_i * b_i →pp2_reg 
3. pp1 –pp2 →p_r_reg 
    a_r * b_i →pp1_reg 
4. a_i * b_r →pp2_reg 
5.pp1 + pp2 →p_i_reg 
 

 Takes 5 clock cycles 
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Resource-Shared Complex Multiplication 

 Control Logic (Timing Schedule): 
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Resource-Shared Complex Multiplication 

 Control Logic Design: 

 One state per step 
 Separate idle state?  

 Wait for input_rdy = 1 
 Then proceed to steps 1, 2, ... 
 But this wastes a cycle! 

 Use step 1 as idle state 
 Repeat step 1 if input_rdy ≠ 1 
 Proceed to step 2 otherwise 
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Resource-Shared Complex Multiplication 

 Control Logic Design: 



© M. Shabany, ASIC/FPGA Chip Design 

Resource-Shared Complex Multiplication 

 Control Logic Design: 
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Memories 

 A memory is an array of storage locations 
 Each with a unique address 
 Like a register bank, but with optimized 

implementation 
 Address is unsigned-binary encoded 
 n address bits ⇒ 2n locations 
 All locations the same size 
 2n×m bit memory 
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Memory Sizes 

 Use power-of-2 multipliers 
 Kilo (K): 210= 1,024 ≈ 103 

 Mega (M): 220= 1,048,576 ≈ 106 

 Giga (G): 230= 1,073,741,824 ≈ 109 

 Example: 
 32K ×32-bit memory 
 Capacity = 1,024K = 1Mbit 
 Requires 15 address bits 

 Size is determined by application requirements 
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Basic Memory Operations 

 a inputs: unsigned address 
 d_in and d_out 
 Type depends on application 
Write operation 

 en = 1, wr = 1 
 d_in value stored in location given by address 

inputs 

 Read operation 
 en = 1, wr = 0 
 d_out driven with value of location given by 

address inputs 

 Idle: en = 0 
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Wider Memories 

 Memory components have a 
fixed width 
 

 E.g., ×1, ×4, ×8, ×16, ... 
 

 Use memory components in 
parallel to make a wider memory 
 

 E.g, three 16K×16 components 
for a 16K×48 memory 
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Larger Memories 

 To provide 2n locations with 2k-
location components 
 

 Use 2n/2k components 
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Larger Memories 

 Example: 64K×8 memory 
composed of 16K×8 
components 
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Memory Types 

 Random-Access Memory (RAM) 
 Can read and write 
 Static RAM (SRAM) 

 Stores data so long as power is supplied 
 Asynchronous SRAM: not clocked 
 Synchronous SRAM (SSRAM): clocked 

 Dynamic RAM (DRAM) 
 Needs to be periodically refreshed 

 Read-Only Memory (ROM) 
 Combinational 
 Programmable and Flash rewritable 

 Volatile and non-volatile 
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Verilog Memories: Single-Port vs. Dual-Port RAM 

 Single-port RAM (SPRAM): 

 Can only be accessed at one address at one time 

 Read or Write (not both) one memory cell at a time in each clock cycle 
 

 Dual-port RAM (DPRAM): 

 Can be accessed at two addresses at one time 

 Read & Write different memory cells at different addresses simultaneously  

 

 

DPRAM

In0 Out0

Add0

In1 Out1

Add1

SPRAM

In Out

Add

Read  

Read  

Write 

Write 
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Verilog Memories: Single-Port RAM 

 256-Byte SPRAM: 

 With chip select and read/write enable 

module SPRAM ( clk , address , data, cs, we , oe); 
// cs:chip select, we:Write/Read Enable, oe: Output Enable 
parameter DATA_WIDTH = 8 ;  
parameter ADDR_WIDTH = 8 ;  
parameter RAM_DEPTH = 1 << ADDR_WIDTH; 
input [ADDR_WIDTH-1:0] address ;  
input clk, cs, we, oe ; 
inout [DATA_WIDTH-1:0] data ;  
reg [DATA_WIDTH-1:0] data_out ;  
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];  
//Tri-state buffer, Output: When we = 0 (read), oe = 1, cs = 1 
assign data = (cs && oe && !we) ? data_out : 8'bz;  

// CONTINUED 
// Memory Write : when we = 1, cs = 1  
always @ (posedge clk) 
   begin  : MEM_WRITE_READ  
     if ( cs && we )  
         mem[address] <= data;  
// Memory Read: when we = 0, oe = 1, cs = 1 
     else if (cs && !we && oe)  
         data_out <= mem[address];     
   end  
endmodule  
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Verilog Memories: Single-Port RAM 

 256-Byte SPRAM: 

 With chip select and read/write enable 

Clk

data_out

cs&!we&oe

EN

mem
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data

cs&!we&oe

cs&we

address

Clk CLK

oe

we

cs
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Verilog Memories: Dual-Port RAM 

 256-Byte DPRAM: 

 Two separate read/write operations 

module SPRAM ( clk , address_0 , data_0, cs_0, we_0 , oe_0, 
 address_1 , data_1, cs_1, we_1 , oe_1); 
// cs:chip select, we:Write/Read Enable, oe: Output Enable 
parameter DATA_WIDTH = 8 ;  
parameter ADDR_WIDTH = 8 ;  
parameter RAM_DEPTH = 1 << ADDR_WIDTH; 
input [ADDR_WIDTH-1:0] address_0, address_1 ;  
input clk, cs_0, we_0 , oe_0, cs_1, we_1 , oe_1 ; 
inout [DATA_WIDTH-1:0] data_1, data_2 ;  
reg [DATA_WIDTH-1:0] data_out _0, data_out _1;  
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];  
//Tri-state buffer, Output: When we = 0, oe = 1, cs = 1 
assign data _0= (cs_0 && oe_0 && !we_0) ? data_out _0: 8'bz;  
assign data _1= (cs_1 && oe_1&& !we_1) ? data_out _1: 8'bz;  

// CONTINUED 
// Memory Write : when we = 1, cs = 1  
always @ (posedge clk) 
   begin  : MEM_WRITE_READ  
     if ( cs_0 && we_0 )  
         mem[address_0] <= data_0;  
   else if (cs_0 && !we_0 && oe_0)  
         data_out_0 <= mem[address_0]; 
    end     
   if ( cs_1 && we_1 )  
         mem[address_1] <= data_1; 
     else if (cs_1 && !we_1 && oe_1)  
         data_out_1 <= mem[address_1];     
   end  
endmodule  
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Verilog Memories: Dual-Port RAM 

 256-Byte DPRAM: 

 

Clk

data_out0

EN

mem
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data0

cs0 & we0

address0

Clk CLK

oe0

we0

cs0

cs0 & !we0 & oe0

cs0 & !we0 & oe0

Clk

data_out1

EN

mem_dual
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data1

cs1 & we1

address1

Clk CLK

oe1

we1

cs1

cs1 & !we1 & oe1

cs1 & !we1 & oe1
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Verilog Memories: Dual-Port RAM 

 256-Byte DPRAM: 

 One write two reads simultaneously 

module SPRAM ( clk , address_0 , data_0, cs_0, we_0 , oe_0, 
 address_1 , data_1, cs_1, we_1 , oe_1); 
// cs:chip select, we:Write/Read Enable, oe: Output Enable 
parameter DATA_WIDTH = 8 ;  
parameter ADDR_WIDTH = 8 ;  
parameter RAM_DEPTH = 1 << ADDR_WIDTH; 
input [ADDR_WIDTH-1:0] address_0, address_1 ;  
input clk, cs_0, we_0 , oe_0, cs_1, we_1 , oe_1 ; 
inout [DATA_WIDTH-1:0] data_1, data_2 ;  
reg [DATA_WIDTH-1:0] data_out _0, data_out _1;  
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];  
//Tri-state buffer, Output: When we = 0, oe = 1, cs = 1 
assign data _0= (cs_0 && oe_0 && !we_0) ? data_out _0: 8'bz;  
assign data _1= (cs_1 && oe_1&& !we_1) ? data_out _1: 8'bz;  

// CONTINUED 
// Memory Write : when we = 1, cs = 1  
always @ (posedge clk) 
   begin  : MEM_WRITE_READ  
     if ( cs_0 && we_0 )  
         mem[address_0] <= data_0;  
   else if ( cs_1 && we_1 )  
         mem[address_1] <= data_1; 
    end 
end 
always @ (posedge clk) 
  if (cs_0 && !we_0 && oe_0)  
         data_out_0 <= mem[address_0]; 
    else    
          data_out_0 <= 0; 
always @ (posedge clk) 
  if (cs_1 && !we_1 && oe_1)  
         data_out_1 <= mem[address_1]; 
    else    
          data_out_1 <= 0;  
endmodule  
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Verilog Memories: Dual-Port RAM 

 256-Byte DPRAM: 

 

Clk

data_out1

EN

mem_dual
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data1

cs1 & we1

address1

Clk CLK

oe1

we1

cs1

cs1 & !we1 & oe1

 

0

1

cs1 & !we1 & oe1

0

cs0 & we0 & !cs1 & !we1

Clk
EN

mem
(SYNC RAM)

DATAOUT[7:0]
DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

0

1

cs0 & !we0 & oe0

0
address0

Clk

oe0

we0

cs0

data_out0
data0

cs0 & !we0 & oe0
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FIFO 

 First-In/First-Out buffer 
 Connecting producer and consumer 
 Decouples rates of production/consumption 

 
 
 
 

 Implementation using dual-port RAM 
 Circular buffer 
 Full: write-addr = read-addr 
 Empty: write-addr = read-addr 
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FIFO Example 

 Design a FIFO to store up to 256 data items of 16-bits each, using 
256x 16-bit dual-port SSRAM for the data storage. Assume the 
FIFO will not be read when it is empty, not to be written when it 
is full, and that the write and read ports share a common clock.  
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Verilog Memories: ROM 

  For constant data, or CPU programs 
 

 Masked ROM 
 Data manufactured into the ROM 

 
 Programmable ROM (PROM) 

 Use a PROM programmer 
 

 Erasable PROM (EPROM) 
 UV erasable 
 Electrically erasable (EEPROM) 
 Flash RAM 
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Verilog Memories: ROM 

  ROM can be realized using two methods: 

 Initialized using a file 

 Initialized explicitly using case statement 

module ROMFile( address , data , read_en , ce ); 
 input [7:0] address;  
output [7:0] data;  
input read_en,  ce;  
reg [7:0] mem [0:255] ;  
assign data = (ce && read_en) ? mem[address] : 8'b0;  
initial  
    begin  
          $readmemb("memory.list", mem);  
          // memory.list is the memory file  
     end  
endmodule 

module ROMCase( address , data , read_en , ce ); 
 input [2:0] address;  
output reg [7:0] data;  
input read_en,  ce;  
 
always @ (ce or read_en or address) begin  

case (address)  
   0 : data = 10;  
   1 : data = 55;  
   2 : data = 244;  
   3 : data = 0;  
   4 : data = 1;  
   5 : data = 8'hff;  
   6 : data = 8'h11;  
   7 : data = 8'h1; 
 endcase 

 end  
endmodule 
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Function Implementation using look-up tables 

 Complex or arbitrary functions are not uncommon 
 Example: 

 
 
 

 
always @ (input) begin  
case (input)  
   4’b0000: begin real=3’b100; imag=3’b001; end;  
   4’b0001: begin real=3’b000; imag=3’b101; end;  
   4’b0010: begin real=3’b110; imag=3’b011; end;  
 …… 
    default: begin real=3’bxxx; imag=3’bxxx; end;  
endcase 
 end  

 One way is to implement it using Look-
up Tables 

 Often best to write a Matlab program to 
write the Verilog table as plain text 

 Easy to adapt to other specifications 
 Not efficient for very large tables 
 Tables with data that is less random will 

have smaller synthesized area 



© M. Shabany, ASIC/FPGA Chip Design 

Reviews and Notes 
 Every Verilog statement must end with a semicolon “;” 

 For comparison “==” has to be used not “=” 

 

 When there are multiple assignments to the same variable in an always block,  

     the last statement is evaluated 

 Example:  

 

 

module DUT(Count ); 
output reg [2:0] Count; 
integer k; 
 
always @ (*) 
        begin 

    Count <= 0; 
    for (k=0; k<4; k=k+1) 
         Count <= Count + k; 

        end 
endmodule 

module DUT(Count ); 
output reg [2:0] Count; 
integer k; 
 
always @ (*) 
         Count <= Count + 3; 
endmodule 

Counter
3
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Reviews and Notes 

 Two codes with different simulation results might have the same synthesized circuit 

 

 

 

 

 

 

 

 

 

 

 Therefore, to avoid mismatch b/w simulation and synthesized version, the sensivity 

     list of always block should include all the signals on the RHS 

 

 

 

always @ (a, b, c) 
         if (a & b & c) 

  Out =0; 
         else  

   Out = 1; 

always @ (a, b) 
         if (a & b & c) 

  Out =0; 
         else  

   Out = 1; 

a    b    c          I     II       

0      0      0            1      1 
0      0      1            1      1 
0      1      0            1      1 
0      1      1            1      1 
1      0      0            1      1 
1      0      1            1      1
1      1      0            1      1 
1      1      1            0      1Out

a

b

c

Same Synthesized Circuit 

Different Simulation 

I II 
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Coding Styles 

 Do not mix blocking and non-blocking assignments in an always block 

 Use parentheses to optimize logic structure 

 Use meaningful names for signals, variables, and modules  

 Define if-else and case statements explicitly to avoid latch inference 

 Multiple procedural assignments (inside an always block) to a single variable is allowed.  

  The last assignment is evaluated. 

 Multiple continuous assignments (assign) to a single net in NOT allowed. 

 Do not mix edge and level sensitive elements together 

 Use assign statements for simple comb. logic and always block for complex comb. logic 

 Avoid mixing positive-edge and negative-edge triggered flip-flops in one design 

 Confuses the timing closure 
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Coding Styles : Parentheses 
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Coding Styles : Parentheses 
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Difference b/w HDL and HLL (1) 

 In HLL (high-level language) assignment order is important 

 In HDL for “assign” and “non-blocking” assignments, order is NOT important  

 Example: 

 

 

 

 

 

 

 

a = 1; b=0; s=0; na=0; nb=0; 
y = na|nb; 
nb = b&s; 
na = a&~s; 
k = a&b; 

a = 1; b=0; s=0; na=0; nb=0; 
nb = b&s; 
na = a&~s; 
k = a&b; 
y = na|nb; 

Result: y=0; Result: y=1; 

wire na, nb; 
 
assign y = na|nb; 
assign nb = b&s; 
assign na = a&~s; 
assign k = a&b; 

wire na, nb; 
 
assign na = a&~s; 
assign k = a&b; 
assign nb = b&s; 
assign y = na|nb; 

HLL: 

HDL: 

b

s

a

b

a

nb

na

y

k

The same! 
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Difference b/w HDL and HLL (2) 

 In HLL, multiple assignments to a single signal is allowed 

 In HDL , multiple continuous assignments to a signal is NOT allowed. 

 Example: 

 

 

 

 

 

 

 

a = 1; b=0; s=0; na=0; nb=0; 
y = na|nb; 
na = b&s; 
na = a&~s; 

Result: na = a&~s; 

wire na; 
 
assign y = na|nb; 
assign na = b&s; 
assign na = a&~s; 

HLL: 

HDL: 

b

s

a

na
Illegal 
(only used for tri-state implementation) 


