
© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Chip Design

Mahdi Shabany

Department of Electrical Engineering

Sharif University of technology

HDL Coding (Verilog)

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 2

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 3

© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Design Flow

1. HDL Coding

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

2. Simulation

3. Synthesis 4. Placement & routing

5. Timing Analysis & Verification

 In this course we learn all the above steps in detail for ASIC

Front-End Back-End (Physical Design)

© M. Shabany, ASIC/FPGA Chip Design

1. HDL Coding

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

 HDL allows us to describe the functionality of a logic circuit in a language that is:

 Easy to understand

 Easy to share

 Hides complicated implementation details

 Designer more concerned about the design functionality than the detailed circuit
design

© M. Shabany, ASIC/FPGA Chip Design

2. Simulation by Testbenches

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

 After HDL coding, the code has to be tested using “testbenches” (Verification).

 Simulation tools:

 Synopsys VCS (Synopsys)

 Modelsim (Mentor Graphics)

 NCVerilog (Cadence)

© M. Shabany, ASIC/FPGA Chip Design

3. Synthesis

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

 Synthesis tool:
 Analyzes a piece of Verilog code and converts it into optimized logic gates

 This conversion is done according to the “language semantics”

 We have to learn these language semantics, i.e., Verilog code.

© M. Shabany, ASIC/FPGA Chip Design

3. Synthesis

 Why using synthesis tools?

 It is an important tool to improve designers’ productivity to
meet today’s design complexity.

 If a designer can design 150 gates a day, it will take 6666 man’s
day to design a 10-million gate design, or almost 20 years for 10
designers! This is assuming a linear grow of complexity when
design gets bigger.

© M. Shabany, ASIC/FPGA Chip Design

3. Synthesis

 Synthesis tool:

 Input:

 HDL Code

 “Technology library” file Standard cells (known by transistor size, 90nm)

o Basic gates (AND, OR, NOR, …)

o Macro cells (Adders, Muxes, Memory, Flip-flops, …)

 Constraint file (Timing, area, power, loading requirement, optimization Alg.)

 Output:

 A gate-level “Netlist” of the design

 Timing files (.sdf)

© M. Shabany, ASIC/FPGA Chip Design

3. Synthesis Tools

 Example: A 2-to-1 Multiplexer (2x1-MUX)

If (s==0)
 f = a;
else
 f = b;

Verilog code
(has to comply with certain structures)

a

b

s
f

Synthesized gate-level

Synthesis
Tool

a

b

s

f

0

1

Schematic

Synthesis

Tool

HDL Tech Lib Constraints

Gate-level Netlist

 Synthesis tool:

© M. Shabany, ASIC/FPGA Chip Design

3. Synthesis

 Synthesis tools:
 Infer logic and state elements

 Perform technology-independent optimizations

 e.g., logic simplification, state assignment

 Map elements to the target technology

 Perform technology-dependent optimizations

 Multi-level logic optimization

 Choose gate strengths to achieve speed goals

© M. Shabany, ASIC/FPGA Chip Design

Synthesis Tools

 Commercial Synthesis Tools:

Vendor Name Product Name Platform

Altera Quartus II FPGA

Xilinx ISE FPGA

Mentor Graphics Modelsim, Precision FPGA/ASIC

Synopsys Design Compiler, Galaxy ASIC

Synplicity Synplify ASIC

Cadence Ambit, BG, RC ASIC

© M. Shabany, ASIC/FPGA Chip Design

4. Pre-Layout Timing Analysis

 Timing analysis across all design corners:

 Different voltages and temperatures

 Check for setup-time and hold-time violation

 Rough estimation as wire delays and RC models are not considered

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

© M. Shabany, ASIC/FPGA Chip Design

5. APR

 Automatic Placement and Routing (APR)

 Floorplan (Die size, Pad configuration, Die-to-pad space)

 Placement (where each submodule sits in the chip)

 Routing (metal wiring to connect all instances together according to the netlist)

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

© M. Shabany, ASIC/FPGA Chip Design

6. Back Annotation & Timing Analysis

 Back Annotation (Timing Closure)

 To estimate the delay after tapeout

 Extraction of RC parasitics in the layout netlist interconnect delay

 Some paths might now violate (setup-time and hold-time)

 Causes increase in the path delay (specially in deep submicron)

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

© M. Shabany, ASIC/FPGA Chip Design

7. Logic Verification & Tapeout

 Logic Verification

 Simulate and test the very final netlist after APR

 Timing analysis using testbenches

 Send the final design (GDS file) for fabrication

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 17

© M. Shabany, ASIC/FPGA Chip Design

Introduction: Digital Logic Design

 Conventional Approach:

 Schematic Entry good for fairly small designs
 (Draw K-maps, optimize the Boolean logic, draw the schematic)

 Possible for large designs?

 NO!

Y

A
B

C
D

Clk

(10 gates)

(10,000,000 gates)

© M. Shabany, ASIC/FPGA Chip Design

Introduction: Why HDL?

 Schematic entry not feasible for large designs:
 Time consuming to draw the schematic for millions of gates

 Prone to mistakes

 Difficult design entry and sharing

 Different design entry tools to learn

 Tools not compatible (hard to convert the design from one to another)

 Not easy to modify

 Solution:
 Describe the design in text Hardware Description Language (HDL)

 Just describe the design “behavior” not the detailed gate-level logic

 Gate-level logic is generated automatically by a “synthesis” tool

© M. Shabany, ASIC/FPGA Chip Design

Introduction: Why HDL?

 Complicated designs can be easily described by HDL

 Can be used as the input to the synthesis tool

 Supports behavioral and structural descriptions

 Supports bit-level descriptions

 Detailed design cycle-by-cycle timing is supported

 Concurrent cores can be implemented and simultaneously simulated,

 which is vital to describe the hardware systems
 Software programming languages typically have no concept of time. In hardware,

 there are delays associated with going from an input to an output.

© M. Shabany, ASIC/FPGA Chip Design

HDL Coding

© M. Shabany, ASIC/FPGA Chip Design

Advantages of HDL Coding

 Designer describes what the hardware should do without actually
 designing the hardware itself

 HDL Coding allows designers to separate behavior from implementation

 Designers develop an executable functional specification that documents
 the exact behavior of all the components and their interfaces

 Designers can make decisions about cost, performance, power, and area
 earlier in the design process

© M. Shabany, ASIC/FPGA Chip Design

Advantages of HDL Coding

There are several benefits to using an HDL to describe your design:

 An HDL facilitates a top-down design methodology using synthesis
 You can design at a high implementation-independent level
 You can delay decisions on implementation details
 You can easily explore design alternatives
 You can solve architectural problems before implementation
 You can automate mapping of your high-level description to a

technology-specific implementation

 An HDL provides greater flexibility
 You can re-use earlier design components
 You can move your design between multiple vendors and tools

© M. Shabany, ASIC/FPGA Chip Design

HDL Coding Goals

1. To simulate digital designs

2. To synthesize digital designs

 Some tools can automatically manipulate the design for verification,
 synthesis, optimization, etc.

 Computer Aided Design (CAD) tools

© M. Shabany, ASIC/FPGA Chip Design

HDL is NOT a Software Programming Languae

 Software Programming Language

 Language which can be translated into machine instructions

and then executed on a computer

 Hardware Description Language

 Language with syntactic and semantic support for modeling

the temporal behavior and spatial structure of hardware

© M. Shabany, ASIC/FPGA Chip Design

HDL Coding

 A Hardware Description Language is a high-level programming language

 that offers special constructs, used to model microelectronic circuits

 Two standard HDLs:

 VHDL (Very high-speed integrated circuit HDL)

 Verilog

 Verilog:

 Developed by Philip Moorby in 1985 as a proprietary language

 Open to public by Cadence Design Systems in 1990

 IEEE standard in 1995 and revised in 2001

Verilog is used in this course!

© M. Shabany, ASIC/FPGA Chip Design

Verilog or VHDL?

VHDL Verilog
Commissioned in 1981 by Department of Defense Created by Gateway Design Automation in 1985

An IEEE standard An IEEE standard

Initially created for ASIC Synthesis Initially an interpreted language for gate-level simulation

Strong support for package management and large
designs

No special extensions for large designs

ADA-like verbose syntax, lots of redundancy C-like concise syntax

Design is composed of entities each of which can have
multiple architectures

Design is composed of modules which have just one
implementation

Gate-level, dataflow, and behavioral modeling.
Synthesizable subset.

Gate-level, dataflow, and behavioral modeling.
Synthesizable subset.

Harder to learn and use Easy to learn and use

© M. Shabany, ASIC/FPGA Chip Design

Verilog in Three Flavors

 There are three types of Verilog Coding:

 Behavioral:

 Describes a system by the flow of data between its functional Blocks

 Defines signal values when they change

 Structural:

 Shows detailed design components, nets, and interconnects

 Uses technology-specific, low-level components

 Used to pass netlist information b/w design tools (e.g., from DC to APR)

 RTL (Register Transfer Level):

 Describe how data transfers b/w registers and input/outputs

 Describes a system by the flow of data and control signals between and

 within its functional blocks

 Defines signal values with respect to a clock

Focus of
this course

Most
Descriptive

Least
Descriptive

Somehow
Descriptive

© M. Shabany, ASIC/FPGA Chip Design

Verilog Coding Styles

RTL Behavioral Structural

module RTL (A, B, C, D, Out);
 input A, B, C, D;
 output Out;
 reg Out;
 always @ (A or B or C or D)
 begin
 if (A & B & ~D)
 Out = C;
 else if (A & D & ~C)
 Out = B;
 else
 Out = 0;
 end
endmodule

module behavior (A,B, C, D, Out);
 input A, B, C, D;
 output Out;
 reg Out;
 always @ (A or B or C or D)
 begin
 if (A & B & ~D)
 Out = #5 C;
 else if (A & D & ~C)
 Out = #3 B;
 else if ((A ==1'bx) | (B ==1'bx) |
 (C ==1'bx) |(D ==1'bz))
 Out = #7 1'bx;
 else if ((A ==1'bz) | (B ==1'bZ))
 Out = #7 1'bZ;
 else
 Out = #3 0;
 end
endmodule

module structural (A,B, C, D, Out);
 input A, B, C, D;
 output Out;
 wire n30;
 EO U9 (.A(D), .B(C), .Z(n30));
 AN3 U8 (.A(A), .B(n30), .C(B), .Z(Out));
endmodule

Synthesizable Synthesizable Not synthesizable!

Our Focus

EO AN3

A

B

C
D Outn30

© M. Shabany, ASIC/FPGA Chip Design

Verilog in Three Flavors : Behavioral

© M. Shabany, ASIC/FPGA Chip Design

Verilog in Three Flavors : RTL

© M. Shabany, ASIC/FPGA Chip Design

Verilog in Three Flavors : Structural

© M. Shabany, ASIC/FPGA Chip Design

Verilog Coding Styles: Levels of Abstraction

© M. Shabany, ASIC/FPGA Chip Design

Verilog Coding Styles: Levels of Abstraction

 Trade-offs:

© M. Shabany, ASIC/FPGA Chip Design

Verilog Coding Styles: Levels of Abstraction

 One language for all levels:

© M. Shabany, ASIC/FPGA Chip Design

Verilog Coding Styles: Design Style

 Verilog, like any other hardware description language, permits a design in either
Bottom-up or Top-down methodology.

 Bottom-Up Design
• The traditional method of electronic design is bottom-up. Each design is

performed at the gate-level using the standard gates. With the increasing
complexity of new designs this approach is nearly impossible to maintain.
New systems consist of ASIC or microprocessors with a complexity of
thousands of transistors. These traditional bottom-up designs have to give
way to new structural, hierarchical design methods.

 Top-Down Design
• A real top-down design allows early testing, easy change of different

technologies, a structured system design and offers many other
advantages. But it is very difficult to follow a pure top-down design. Due
to this fact most designs are a mix of both methods, implementing some
key elements of both design styles.

© M. Shabany, ASIC/FPGA Chip Design

Verilog for Synthesis (RTL)

 In this course we focus on RTL coding

 RTL coding is the closest one to the actual hardware implementation

 RTL code includes a subset of all Verilog syntax

 Not all Verilog syntax are synthesizable

 We cover most Verilog coding parts that are needed for logic synthesis

 Simulation of the RTL code is also covered

 We learn how to write a “good” Verilog code for synthesis

 Lots of examples on the synthesized RTL!

Comb. Logic
Combinational

Logic

Clk

In Out

Critical path

© M. Shabany, ASIC/FPGA Chip Design

Verilog Applications

The Verilog HDL is used by:

 System Architects: doing high level system simulations

 Verification Engineers: writing advanced tests for all levels of
simulation

 ASIC and FPGA Designers: writing RTL code for synthesis

 Library Developers: describing ASIC or FPGA cells, or higher level
components

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Styles for Synthesis

o Testbench and Simulation

 39

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Comment

 Comments are used for documentation

 Comments are in two types:

 Short comments (single line)

 // This is a comment

 Long comments (Multiple lines)

 /* This a multiple

 line comment

 in Verilog */

 Space, tab and blank lines are ignored by the compiler

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Module

 Any circuit or subcircuit is declared as a “module” in Verilog.

 Each module may have:

 Ports (Three possibilities),

 input

 output

 inout

 Signals (main or intermediate)

 Body-code

 (statements for module description)

module DUT (A, B, C);
 input A;
 output B;
 inout C;

endmodule

Signals

Body-code

Signals

Body

DUT
input Output

inout

module

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signals

Signal

Type Range Name Value

Net Variable

wire tri reg integer

Scalar Vector

[3:0]

 Example: wire [2:0] tmp ;
 tmp = 3’b001;

tmp[0]=1
tmp[1]=0
tmp[2]=0

Each element of a vector

 can be accessed

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Type
 Net

 wire:
 For interconnecting logic elements (LEs)

 To connect an output of a logic element to the input of another LE

 tri
 Circuit nodes that are connected in a tri-state fashion

 Variable

 reg (unsigned in general)
 Corresponds to a circuit node (not necessarily a register!)

 Allow a circuit to be described in terms of its behavior

 Retains its value until it is overwritten by a subsequent assignment

 integer (signed in general)
 Used for loop counters

Signal

Type Range Name Value

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Type

 The “wire” declarations are not necessary as Verilog assumes that signals

 are nets by default .

 The “reg” declaration is required!

 Example:
module DUT (A, B, C) ;
 input [1:0] A;
 output B;
 inout [2:0] C;

 wire [1:0] A;
 reg B, w;

endmodule

Body-code

Not necessary
Required Two signal declarations in one line

Signal

Type Range Name Value

Don’t forget semicolon

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Type

 Example:

module DUT (s, Out);
 input [3:0] s;
 output [2:0] Out;

 wire [2:0] Out;
 reg [2:0] Count;
 integer k;

 Count = 0;
 for (k=0; k<4; k=k+1)
 if (s[k])
 Count = Count + 1;
 assign Out = Count;

endmodule

Loop counter

Ports

Signals

Code
Body “;” at the end of each line

DUT

Out

DUT_

Wire

(for interconnection)

Signal

Type Range Name Value

© M. Shabany, ASIC/FPGA Chip Design

Reg Type

 The keyword “reg” does NOT necessarily denote a storage element or register.

 “reg” only models the behavior of a circuit.

 May or may not be synthesized as a register.

reg C;
 always @ (a,b)
 C = a+b;

reg C;
 always @ (posedge Clk)
 C <= a+b;

a

b

C

Clk

a

b

C

Register Not Register

Signal

Type Range Name Value

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Range

 Signals in Verilog can be:

 Scalar: representing a node

 Vector: representing a bus

 Each element of a bus can be accessed.

reg C;
wire B;

reg [10:0] Data;
reg [0:6] S;
wire [7:4] B;

assign a = Data[8];

Signal

Type Range Name Value

Scalar Vector

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Name

 Signal name may consists of:

 Any letter

 Any digit

 Underscore (_) and $ sign

 DON’Ts:

 Should not start with a digit

 Should not be a Verilog keyword

 A_m
B1_signal
My$

Signal

Type Range Name Value

1xb
wire
R&z

Illegal Legal

Note: Verilog is case sensitive!

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Value

 Scalar: each scalar signal can have four possible values:

 0: Logic value “0”

 1: Logic value “1”

 Z(z): Tri-state (high impedance)

 X(x): Unknown value

Signal

Type Range Name Value

Scalar Vector

0

1
0

1

X: Unknown

X

0

1 Z

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Strength

Signal

Type Range Name Value

Scalar Vector

Degree Type Strength Level

Strogest Driving supply

Driving strong

Driving pull

Storage large

Driving weak

Storage medium

Storage small

weakest High Impedance highz

شذه متصل قذرتهاي متفاوت يا مقادير با درايورهايي به گره يك زمانيكه فاتاختلا حل منظور به قذرت سطوح

 سيگنال دو اگر. خواهذ بود strong1مقذار weak0و strong1مقذار اتصال حاصل مثال بطور .شود مي استفاده باشذ

 .خواهذ بود (x)نامعلوم حاصل شونذ متصل يكذيگر به يكسان سطح قذرت با ولي مختلف مقذار با

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Signal Value

 Vector: <# of bits> <base> <number>

 4 ‘b 0101

 <# of bits> : number of bits for representation

 <base> : (default decimal)

 “d” : Decimal

 “b” : Binary

 “h” : Hexadecimal

 “o” : Octal

 <number> : signal value in base

Signal

Type Range Name Value

Scalar Vector

 Example:
 K = 8’ha9; // K=1010_1001
 C= 4’d3; // C=0011
 D= 4’b100; // D=0100
 F= ‘b10x; // F=10X
 L = -6’b3 // L = 111101

Used for clarity

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Parameters

 A parameter is used as a “constant” to facilitate coding.

 Example:

module DUT (s, Out)

 parameter n = 3;
 parameter S0 = 4’b1010;

 input [n-1:0] s;
 output [n:0] Out;

 wire [n:0] Out;
 assign Out = S0;

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Memories

 Memory:

 A two-dimensional array of bits

 Declared in Verilog as a two-dimensional variable (reg)

 Example: A 4-byte memory:

 reg [7:0] R [3:0];

8-bit 4 rows (cell)

0 1 72 3 4 5 6

R[0]

R[1]

R[2]

R[3]

R[2][5]
(indexing method) A three-dimensional array may also be declared.

 Example:

 If an 8-bit A is declared then the legal assignment is:

 reg [7:0] M [3:0][1:0];

 reg [7:0] A; A = M[3][0];

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Operators

 Example:

 Bitwise:

 Logical:

Operation Result

1010 & 1100 1000

1010 | 1100 1110

~1010 0101

1101 Λ 0100 1001

Operation Result

1010 && 1100 1

2’b11 || 2’b00 1

!0010 0

2’b1X && 2’b11 X

Non-zero operand=logical “1”

Any operand X/Z, result is X

X || 1 = 1
X && 0 = 0

1 0 1 0

1 1 0 0

1 0 0 0

&

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Operators

 Example:

 Reduction:

 Relational:

Operation Result

 & 1100 0

& 111 1

 Λ 0100 1

Operation Result

B=(A == 2’b10) B=1

B=(A == 2’b11) B=0

B=(A === 2’b1x) B=0

B=(A <= 2’b11) B=1

=== Used with x and z

A=2’b10

== Used only with 0 and 1

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Operators

 Example:

 Logical Shift:

 Concatenation:

Operation Result

C = A >> 1 C = 000110

D = A << 2 D = 110000

F = A >> 3 F = 000001

Operation Result

{A, B} 5’b11010

{3{A}} 6’b111111

{B, B} 6’b010010

{{3{A}}, {2{B}}} 12’b111111010010

A=2’b11
B=3’b010

A=6’b001100

Be generous in {}

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Operators

 Conditional: (? , :)

 D = S ? B:C;

 D = ({S1,S2}==2’b00)? F:

 ({S1,S2}==2’b01)? E:

 ({S1,S2}==2’b10)? C:B;

C

D

B

S

0

1
B if S=1;
C if S=0;

D =

C
D

B

S1

00

11

01

10

E

F

S2

4-input
Multiplexer

(MUX)
 D = ({S1,S2}==2’b00)? F:

 ({S1,S2}==2’b01)? E:

 ({S1,S2}==2’b10)? C:

 ({S1,S2}==2’b11)? B:B;

Default

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Operators (All in One)

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Module-Revisited

 Any circuit or subcircuit is declared as a “module” in Verilog.

 There are three types of ports:

 input type “wire”

 output type “wire” or “reg”

 inout type “wire”

 Note:

module DUT (A, B, C)
 input A;
 output [3:0] B;
 inout C;

 wire A;
 wire C;
 reg [3:0] B;

endmodule

Signals

Body-code

Optional
Optional
Mandatory

output [3:0] B;

reg [3:0] B;
output reg [3:0] B;

Combined

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Module Ports

net

net inout

net netreg or net reg or net

input output

 Inside view of the module

 input port: wire

 output port : wire or reg

 inout: wire

 Outside view of the module

 input port: wire or reg

 output port : wire

 inout: wire

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Module-Revisited
 In Verilog-2001 the port list can directly follow the module declaration

module DUT (A, B, C)
 input A;
 output [3:0] B;
 inout C;

 wire A;
 wire C;
 reg [3:0] B;

endmodule

Signals

Body-code

module DUT (input A,
 output [3:0] B,
 inout C);

 wire A;
 wire C;
 reg [3:0] B;

endmodule

Signals

Body-code

 Body-code consists of some “statements”

 Statements describe the circuit/module functionality

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Statements

 Programming languages:

 High-Level Language (HLL): C, Pascal, Matlab

 Hardware Description Language (HDL): Verilog, VHDL

 In HLL programming all statements are sequential (procedural)

 Statements evaluated in the order and one-bye-one

Procedural : evaluated sequentially
 (Order IS important)

Concurrent : evaluated in parallel
 (Order NOT important)

always @ (x, y)
 begin
 s = x^y;
 c = x&y;
 end

 assign s=x^y;
 assign c=x&y;
 assign out=x|y;

 Verilog Statements

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Concurrent Statements

 Evaluated in parallel

 Each statement describes part of the circuit, thus concurrent

 Most popular:

 Continuous statements: realized as connection or wire in the design

 Format:
 Example: wire [1:3] A, B, C;

 assign C = A&B;

assign C = x & y;

Statement Assignment

Net

 assign used only for nets (to be synthesizable)

 assign C[1] = A[1]&B[1];
 assign C[2] = A[2]&B[2];
 assign C[3] = A[3]&B[3];

Equivalent
x

y

C

© M. Shabany, ASIC/FPGA Chip Design

Concurrent Statements
Example: Full Adder, same circuit, two descriptions:

module Adder (Cin, x, y, S, Cout)
 input x, y, Cin;
 output S, Cout;
 wire S, Cout;

 assign S = x ^ y ^ Cin;

 assign Cout = (x & y)|(x & Cin)|(y & Cin);

endmodule

module Adder (Cin, x, y, S, Cout)
 input x, y, Cin;
 output S, Cout;
 wire S, Cout;

 assign {Cout, S} = x + y + Cin;

endmodule

x

Cin

S

Cout

y

x y Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

© M. Shabany, ASIC/FPGA Chip Design

Concurrent Statements

Example: Signed vs. unsigned addition:

 In Verilog “+” declares unsigned addition

 Signed addition has to be explicitly specified using the sign extension

module Adder_sign (X, Y, S_unsigned, S_signed);
 input [3:0] X, Y;
 output [4:0] S_unsigned, S_signed;

 assign S_unsigned = X + Y;

 assign S_signed = {{X[3]},X} + {{Y[3]},Y};

endmodule

module Adder_sign (X, Y, S_unsigned, S_signed);
 parameter n = 4;
 input [n-1:0] X, Y;
 output [n:0] S_unsigned, S_signed;

 assign S_unsigned = X + Y;
 assign S_signed = {{X[n-1]},X} + {{Y[n-1]},Y};

endmodule

Sign
extension

X = 0011 (unsigned 3) or (signed +3)
Y = 1101 (unsigned 13) or (signed -3)

S_unsigned = 10000 (unsigned 16)
S_signed = 00000 (0 signed)

© M. Shabany, ASIC/FPGA Chip Design

Concurrent Statements: Sign Extension

© M. Shabany, ASIC/FPGA Chip Design

Concurrent Statements: Sign Extension

 Ignore carry bits: Do not spend any hardware calculating any
bits to the left of the answer’s MSB

© M. Shabany, ASIC/FPGA Chip Design

Verilog Fundamentals : Delay

 Delay can be used with continuous assignments by using the “#” sign

 2 time unit of delay on wire S

 5 time units of delay for AND gate

 Any change in x or y reflects on S after 7 time unit delay

 Used only for simulation purposes
 No meaning for synthesis
 Not synthesizable

wire #2 S;
assign #5 S = x&y;

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

 Evaluated in the order in which they appear in the code (sequential)

 Should be inside an “always” block

 An “always” block contains one or more procedural statements

always @ (sensitivity list)
 begin

 Procedural assignments
 if-else statements
 case statements
 while, repeat, for loops

 end

List of all signals that trigger the
evaluation inside the always block

Procedural
Statements

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements: Half-Adder

Example:

 Anything on the RHS should be on the sensitivity list

 always @(*) Automatically considers all signals on the RHS in the sensitivity list

 Any signal assigned inside an always block has to be a variable of type

 reg

 integer

module Adder (x, y, S, C)
 input x,y;
 output S,C;
 reg S, C;
 always @ (x, y)
 begin

 S = x Λ y;
 C = x & y;

 end
endmodule

module Adder (x, y, S, C)
 input x,y;
 output S,C;
 wire S, C;
 assign S = x Λ y;
 assign C = x & y;
endmodule

If either x or y changes, the statements inside
the always block are evaluated.

Type: “reg”

Type: “wire”

x y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

© M. Shabany, ASIC/FPGA Chip Design

always block: Quick Notes

 The always construct requires begin-end only if there are multiple statements

 in the block.

 Example:

 A given variable should never be assigned a value in more than one always block.

 Because always blocks are concurrent with respect to one another.

always @ (x, y, z)
 begin

 z = x;
 if (x == 1)
 z = y;
end

Not part of the always block

Incorrect

always @ (x, y, z)
 z = x;
 if (x == 1)

 z = y;

Correct

always @ (x,y)
 a <= x;
always @ (x,y)
 a <= y;

Incorrect
always @ (x,y)
 a <= y;

Correct

always @ (x,y)
begin
 a <= x;
 a <= y;
end

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

always @ (sensitivity list)
 begin

 Procedural assignments
 if-else statements
 case statements
 while, repeat, for loops

 end

Procedural
Statements

Procedural Statements

Procedural Assignments If-else

Statements

Case

Statements

while repeat for

Loop statements

Blocking Non-blocking

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

Procedural Statements

Procedural Assignments If-else

Statements

Case

Statements

while repeat for

Loop statements

Blocking Non-blocking

 Used inside an always block and are of two types:
 Blocking: denoted by “=“ token

 Evaluation within the always block is “blocked” until this assignment is completed

 Non-blocking: denoted by “<=“ token
 Nothing is hold or blocked (parallel evaluation)

© M. Shabany, ASIC/FPGA Chip Design

Blocking vs. Non-Blocking Assignments

 Example: assume S=2 then

always @ (*)
 begin

 S = 4;
 a = S;

 end

always @ (*)
 begin

 S <= 4;
 a <= S;

 end

S=4 & a=4
(sequential)

S=4 & a=2
(Parallel)

Blocking Non-Blocking

 Evaluated and assigned in a single step
 Sequential nature
 Assignment ordering IS important
 S=4 “blocks” a=S to be evaluated

 a=S has to wait for S=4 to be evaluated first

 Evaluated and assigned in two steps
1. All RHSs are evaluated in parallel
2. Assignments to LHSs are performed together

 They all are evaluated all at once
 Assignment ordering is NOT important
 S<=4 and a<=S evaluated in parallel

© M. Shabany, ASIC/FPGA Chip Design

Blocking vs. Non-Blocking Assignments

 Example: Swap bytes in words

 Which one is correct?

always @ (*)
 begin

 B[15:8] = B[7:0];
 B[7:0] = B[15:8] ;

 end

always @ (*)
 begin

 B[15:8] <= B[7:0];
 B[7:0] <= B[15:8] ;
end

Blocking Non-Blocking

B[15:8] B[7:0]

Incorrect Correct

B[15:8] B[7:0]

B[15:8] B[7:0]

© M. Shabany, ASIC/FPGA Chip Design

Blocking vs. Non-Blocking after Synthesis:

always @ (posedge Clk)
 begin

 y1 = in;
 y2 = y1 ;

 end

always @ (posedge Clk)
 begin

 y1 <= in;
 y2 <= y1 ;

 end

Clk

in y2y1

Clk

in y2

y1

Clk

in

y1

y2

Clk

in

y1

y2

always @ (*)
 begin

 y1 = in;
 y2 = y1 ;

 end

in y2

y1

© M. Shabany, ASIC/FPGA Chip Design

Overall Code Parallelism

always @ (posedge Clk)
 begin

 b = in;
end

assign a=b&c;

always @ (c,b)
 begin

 d = c^b;
 end

assign e=b|c;

 Statements inside an always block are evaluated sequentially
 However, all always blocks are evaluated concurrently
 All continuous assignments are evaluated concurrently too

C

Clk

in b

a

d

e

© M. Shabany, ASIC/FPGA Chip Design

Verilog Assignments in a Glance

Verilog Assignments

Continuous Procedural

Blocking Non-blocking

Using assign statement Inside an always block

always @ (*)
 begin

 <=
 <=

 end

always @ (*)
 begin

 =
 =

 end

assign a=b;

 assign can not be used inside an always block b/c assign is used for nets.
 Nets can not be assigned inside an always blocks (only reg or integer).

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 79

© M. Shabany, ASIC/FPGA Chip Design

Logic Circuits Category

 Logic Circuits:

 Combinational logic: (realized by assign and always)
 Output depends on inputs

 Inputs propagates to the output through some gates with delay

 e.g., adders, Mux, multiplier, all logic gates

 Sequential Logic: (realized only by always)
 Output depends on inputs and circuit history

 Circuit history is kept using flip-flops, registers or latches

 e.g., Finite State Machines (FSM), shift registers, Flip Flops (FF)

 Sequential logic has two flavors:
 Synchronous: all registers controlled by a global clock

 Asynchronous: based on the handshaking process

© M. Shabany, ASIC/FPGA Chip Design

Logic Circuits Category

 A general system consists of both combinational and sequential circuits

 Critical path of the Comb. Logic determines the max operating frequency

 Combinational logic can be realized using assign and always constructs

 Sequential logic can only be realized using always blocks.

Comb. Logic
Combinational

Logic

Clk

In Out

Critical path

always

assign

always

assign

always always always

© M. Shabany, ASIC/FPGA Chip Design

Combinational Logic

 Combinational logic can be realized using assign and always constructs

Example: Full Adder:

 When using always block for Com. Logic, “blocking” assignments are used
 When using an always block, time instant changes when one of the
 sensitivity list variables changes

module Adder (x, y, S, C)
 input x,y;
 output S,C;
 reg S, C;
 always @ (x, y)
 begin

 S = x Λ y;
 C = x & y;

 end
endmodule

module Adder (x, y, S, C)
 input x,y;
 output S,C;
 wire S, C;
 assign S = x Λ y;
 assign C = x & y;
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Blocking Assignment for Combinational Logic

 Use only blocking assignments for combinational logic. Why?

Example: Accumulator: (Assume Count == 0)

always @ (*)
 begin

for (k=0; k<4; k=k+1)
 Count = Count + k;

 end

always @ (*)
 begin

for (k=0; k<4; k=k+1)
 Count <= Count + k;

 end

Count = Count + 0;
Count = 0 + 1;
Count = 0 + 1 + 2;
Count = 0 + 1 + 2 + 3;
Result: Count = 6

Count <= Count + 0;
Count <= Count + 1;
Count <= Count + 2;
Count <= Count + 3;
Result: Count =3

Incorrect Correct

In multiple concurrent
non-blocking
assignments to a
variable, the last one
executes

© M. Shabany, ASIC/FPGA Chip Design

Combinational Logic

© M. Shabany, ASIC/FPGA Chip Design

always block vs. assign for Combinational Logic

 When do we use the always block to describe a combinational logic?

1. Normally for high-complexity Comb. Logic

2. When output depends on several conditions, which requires if-else

 or case constructs to be fully described

 Why?

1. Because powerful statements like if-else and loop constructs can only

 be used inside an always block

 Comes with more clarity and more concise description than assign

2. Multiple outputs can be assigned within a single always block

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

 Sequential circuits have memory (i.e., remembers the past)

 The current state is held in memory and the next state is computed through

 the combinational logic

 In a synchronous system, a global clock signal orchestrates the flow of the

 data and the sequence of events

Comb.

Logic

Registers/

Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

Clk

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

 Sequential logic can only be realized using an always block

 Consists of :

 Flip flops that are normally controlled by:

 Positive edge of the clock (posedge) always @ (posedge Clk)

 Negative edge of the clock (negedge) always @ (negedge Clk)

 Have posedge or negedge in the sensitivity list

 Any variable assigned a value is the output of a flip-flop

 Latches

 Transfers input to output when clock is “1” and stores the value O.W.

 Finite State Machine (FSM)

 When using the always block for the sequential Logic, “Non-blocking”

 assignments are used

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic: Flip-Flop

Example: Flip-flop with asynchronous Reset:

Example: Flip-flop with synchronous Reset:

always @ (posedge Clk, negedge Reset)
 if (Reset == 0)
 Q<=0;
 else
 Q<=D;

always @ (posedge Clk)
 if (Reset == 0)
 Q<=0;
 else
 Q<=D;

Clk

D Q

Reset

Clk

Q
D

Reset

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic: Flip-Flop

Example: Flip-flop with complete features:

module flip_flop_n (output reg Q , output Q_n ,input pre_n, clr_n,
D, input clk_n, CE);

always@ (negedge clk_n or negedge pre_n or negedge clr_n)

begin
if (!pre_n) Q <= 1'b1;
elseif (!clr_n) Q <= 1'b0;
elseif (CE) Q <= D;

end
assign Q_n = ~Q;
endmodule

Clk

D
Q

clr

CE

pre

!Q

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic: Flip-Flop

 Use reset-able FFs only where needed
 FFs are a little larger and higher power
 Requires the global routing of the high-fanout reset signal

high-fanout
reset signal

Reset

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

Example: D-Latch:

Example:

module Latch(D, Clk, Q);
 input D, Clk;
 output reg Q;
 always @ (D, Clk)
 if (Clk)
 Q<=D;
endmodule

Q

Clk

D

Clk

D

D-Latech

FF (sync Rst)

FF (Async Rst)

Reset

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

Example: D-Latch:

module Latch(D, Clk, Q);
 input D, Clk;
 output reg Q;
 always @ (D, Clk)
 if (Clk)
 Q<=D;
endmodule

Q

Clk

D

module Latch(D, Clk, Q);
 input D, Clk;
 output reg Q;
 always @ (Clk)
 if (Clk)
 Q<=D;
endmodule

Both results in a latch

This results in a warning saying D is
not in the sensitivity list

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic: Registers

wire [n:0] d;
reg [n:0] q;
...
always @ (posedge Clk)
 q<=d;

 Store a multi-bit encoded value
 One D-FF per bit
 Stores a new value on each clock cycle

© M. Shabany, ASIC/FPGA Chip Design

Reg Type (Revisited)

 The keyword “reg” does NOT necessarily denote a storage element or register.

 “reg” simply means a variable that can hold a value

 May or may not be synthesized as a register.

reg C;
 always @ (a,b)
 C = a+b;

reg C;
 always @ (posedge Clk)
 C <= a+b;

a

b

C

Clk

a

b

C

Register Not Register

Signal

Type Range Name Value

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

 When using always block for sequential Logic, “Non-blocking”
 assignments are used. Why?

always @ (posedge Clk)
 y1=in;

always @ (posedge Clk)

 y2=y1;

always @ (posedge Clk)
 y1<=in;

always @ (posedge Clk)

 y2<=y1;

Clk

in

y1

y2 ? ? ? ? ? ?

Clk

in

y1

y2

Race Condition

© M. Shabany, ASIC/FPGA Chip Design

Sequential Logic

 When using always blocks for sequential Logic, “Non-blocking”
 assignments are used. Why?
 Example: Shift register

always @ (A)
 begin
 for (k=0; k<4;k=k+1)
 A[k]=A[k+1];
 A[3] = A[0];
 end

always @ (A)
 begin
 for (k=0; k<4;k=k+1)
 A[k]<=A[k+1];
 A[3] <= A[0];
 end

A[0] A[1] A[2] A[3]

Incorrect!

 Do NOT use blocking assignments for sequential logic

© M. Shabany, ASIC/FPGA Chip Design

Important Timing Parameters

© M. Shabany, ASIC/FPGA Chip Design

System Timing Parameters

© M. Shabany, ASIC/FPGA Chip Design

System Timing Parameters : Minimum Period
 Setup-time Condition:

 If violates circuit works at lower frequency (why?)

Clk

in

Tsu Thold Tsu Thold

Tcq Tlogic Tsu

TClk>Tcq+Tlogic+Tsu

Tlogic<TClk-Tsu-Tcq

Combinational
Logic

Clk

In
Out

© M. Shabany, ASIC/FPGA Chip Design

System Timing Parameters : Minimum Delay
 Hold-time Condition:

 If violates circuit does not work (even at lower frequencies) (why?)

Clk

in

Tsu Thold Tsu Thold

Tcq,d Tlogic,cd

Tcq,cd+Tlogic,cd>Thold

Combinational
Logic

Clk

In
Out

Tcq,d Tlogic,cd

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

always @ (sensitivity list)
 begin

 Procedural assignments
 if-else statements
 case statements
 while, repeat, for loops

 end

Procedural
Statements

Procedural Statements

Procedural Assignments If-else

Statements

Case

Statements

while repeat for

Loop statements

Blocking Non-blocking

© M. Shabany, ASIC/FPGA Chip Design

If-else statements

 Used only inside an always block

 Format:

 Example:

If (expression1)
 statement1;
else if (expression2)
 statement2;
else
 statement3;

Single statement no need for begin-end
Multiple statements, begin-end is needed

module Mux21 (in1, in2, s, out)
 input in1, in2, s;
 output reg out;

 always @ (in1, in2, s)
 if (s==0)

 out = in1;
else
 out = in2;

endmodule

in1

s

out

0

1in2

module Mux21 (in1, in2, s, out)
 input in1, in2, s;
 output reg out;
 always @ (in1, in2, s)
 begin
 out = in1;
 if (s==1)

 out = in2;
end

endmodule

© M. Shabany, ASIC/FPGA Chip Design

If-else statements

 If-else construct inside an always block have a sequential nature when used

 by blocking assignments. Sequential means direct effect on synthesis not

 necessarily sequential in actual hardware implementation

 This means ordering is important

 Example:

in1

s

out

0

1in2

always @ (*)
 begin
 out = in1;
 if (s==1)

 out = in2;
end

always @ (*)
 begin
 if (s==1)

 out = in2;
 out = in1;

end

in1 out

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

always @ (sensitivity list)
 begin

 Procedural assignments
 if-else statements
 case statements
 while, repeat, for loops

 end

Procedural
Statements

Procedural Statements

Procedural Assignments If-else

Statements

Case

Statements

while repeat for

Loop statements

Blocking Non-blocking

© M. Shabany, ASIC/FPGA Chip Design

Case statements

 Used only inside an always block

 Format:

 Example:

case (expression)
 alternative1: statement1;
 alternative2: begin
 statement2;
 end
 default: statementn;
endcase

Single statement no need for begin-end

module Mux21 (in1, in2, s, out)
 input in1, in2, s;
 output reg out;

 always @ (in1, in2, s)
 case (s)

 1’b0: out = in1;
 1’b1: out = in2;
endcase

endmodule

Multiple statements, begin-end is needed

module Mux21 (in1, in2, s, out)
 input in1, in2, s;
 output reg out;

 always @ (in1, in2, s)
 case (s)

 1’b0: out = in1;
 default: out = in2;
endcase

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Case statements

 Example: Combinational logic using both assign and always block

module FullAdder (Cin, x, y, S, Cout)
 input x, y, Cin;
 output S, Cout;
 wire S, Cout;

 assign S = x ^ y ^ Cin;

 assign Cout = (x & y)|(x & Cin)|(y & Cin);

endmodule

module FullAdder (Cin, x, y, S, Cout)
 input x, y, Cin;
 output reg S, Cout;
 always @ (Cin, x, y)
 begin
 case ({Cin, x, y})
 3’b000: {Cout, S} = ‘b00;
 3’b001: {Cout, S} = ‘b01;
 3’b010: {Cout, S} = ‘b01;
 3’b011: {Cout, S} = ‘b10;
 3’b100: {Cout, S} = ‘b01;
 3’b101: {Cout, S} = ‘b10;
 3’b110: {Cout, S} = ‘b10;
 3’b111: {Cout, S} = ‘b11;
 endcase
 end
endmodule

concatenation

x y Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

© M. Shabany, ASIC/FPGA Chip Design

Case statements

 In case statements, each alternative is compared for an exact match

 Synthesis tools are only concerned about matching of “0” and “1” while

 “Z” and “X” are not important

 If “X” or “Z” are needed to be added, casex is used (casex is synthesizable).

 In fact casex treats them as don’t care.

 Example: 4-to-2 priority encoder

module Priority (W, Y, f)
 input [3:0] W;
 output reg [1:0] Y;
 output f;
 assign f = (W!=0)
 always @ (W)
 begin
 casex (W)

 ’b1xxx: Y = 3;
 ‘b01xx: Y = 2;
 ‘b001x: Y = 1;
 default: Y = 0;
endcase

 end
endmodule

w3 w2 w1 w0 y1 y0 f

0 0 0 0 d d 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

© M. Shabany, ASIC/FPGA Chip Design

Case statements

 casez allows use of wildcard “?” character for don’t

module Priority (W, Y, f)
 input [3:0] W;
 output reg [1:0] Y;
 output f;
 assign f = (W!=0)
 always @ (W)
 begin
 casez (W)

 ’b1???: Y = 3;
 ‘b01??: Y = 2;
 ‘b001?: Y = 1;
 default: Y = 0;
endcase

 end
endmodule

w3 w2 w1 w0 y1 y0 f

0 0 0 0 d d 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

© M. Shabany, ASIC/FPGA Chip Design

Latch Inference in Combinational Logic

 When realizing combinational logic with always block using if-else or case

 constructs care has to be taken to avoid latch inference after synthesis

 The latch is inferred when “incomplete” if-else or case statements are declared

 This latch is “unwanted” as the logic is combinational not sequential

 If there is some logic path through the always block that does not assign a value

 to the output, a latch is inferred

© M. Shabany, ASIC/FPGA Chip Design

Latch Inference in If-else or Case Statements

Example:

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
begin
 if (S==1)
 out = A;
end
endmodule

Latch Inference

outA

S

Q

Clk

D

module DUT (A, B, S, out);
input A, B;
Input [1:0] S;
output reg out;
always @(A, B, S)
begin
 case (S)
 2’b00: out = A;
 2’b01: out = B;
 endcase
end
endmodule

Latch Inference

out
Q

Clk

A

B

S[0]

0

1

S[1]

D

© M. Shabany, ASIC/FPGA Chip Design

Latch Inference in Combinational Logic

 To avoid latch inference make sure to specify all possible cases “explicitly”

 Two practical approaches to avoid latch inference:

 For if-else construct:

1. Initialize the variable before the if-else construct

2. Use else to explicitly list all possible cases

 For case constructs:

1. Use default to make sure no case is missed!

 Do NOT let it up to the synthesis tool to act in unspecified cases and do specify

 all cases explicitly.

© M. Shabany, ASIC/FPGA Chip Design

Avoid Latch Inference in If-else Statements

Example:

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
begin
 if (S==1)
 out = A;
 else
 out =B;
end
endmodule

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
begin
 if (S==1)
 out = A;
end
endmodule

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
Begin
 out = B;
 if (S==1)
 out = A;
end
endmodule

B

S

A

out

B

S

A

out

1

2

Latch Inference

No Latch

No Latch

outA

S

Q

Clk

D

© M. Shabany, ASIC/FPGA Chip Design

Avoid Latch Inference in Case Statements

Example:

module DUT (A, B, S, out);
input A, B;
Input [1:0] S;
output reg out;

always @(A, B, S)
begin
 case (S)
 2’b00: out = A;
 2’b01: out = B;
 endcase
end
endmodule

module DUT (A, B, S, out);
input A, B;
Input [1:0] S;
output reg out;
always @(A, B, S)
begin
 case (S)
 2’b00: out = A;
 2’b01: out = B;
 default: out = 1’b0;
 endcase
end
endmodule

B

S[0]

A

out

S[1]

Latch Inference No Latch

out
Q

Clk

A

B

S[0]

0

1

S[1]

D

© M. Shabany, ASIC/FPGA Chip Design

Procedural Statements

always @ (sensitivity list)
 begin

 Procedural assignments
 if-else statements
 case statements
 while, repeat, for loops

 end

Procedural
Statements

Procedural Statements

Procedural Assignments If-else

Statements

Case

Statements

while repeat for

Loop statements

Blocking Non-blocking

© M. Shabany, ASIC/FPGA Chip Design

Loop Statements

 To be used for efficient coding style

 All being used inside an always block

 Make sure to use blocking statements for combinational logic

for (k=0; k<n-1; k=k+1)
 begin
 statement;
 end

while (condition)
 begin
 statement;
 end

repeat (constant_value)
 begin
 statement;
 end

Single statements no need for begin-end construct
Multiple statements, begin-end construct is needed

© M. Shabany, ASIC/FPGA Chip Design

Loop Statements

Example: Remember: 1-bit full Adder

 module Full_Adder (Cin, x, y, S, Cout)
 input x, y, Cin;
 output S, Cout;
 wire S, Cout;

 assign S = x ^ y ^ Cin;

 assign Cout = (x & y)|(x & Cin)|(y & Cin);

endmodule

S

y

Cin

x

Cout

© M. Shabany, ASIC/FPGA Chip Design

Loop Statements

Example: n-Bit ripple carry adder

module RippleCarryAdderI (Cin, X, Y, S, Cout)
 parameter n = 4;
 input Cin;
 input [n-1:0] X, Y;
 output reg [n-1:0] S;
 output reg Cout;
 reg [n:0] C;
 integer k;
 always @(X, Y, Cin)
 begin
 C[0] = Cin;
 for (k=0;k<=n-1;k=k+1)
 begin
 S[k] = X[k] ^ Y[k] ^ C[k];
 C[k+1] = (X[k] & Y[k])
 |(X[k] & C[k])|(Y[k] & C[k]);
 end
 Cout = C[n];
 end
endmodule

X[0]

S[0]

Y[0]

Cin

X[1]

S[1]

Y[1]X[2]

S[2]

Y[2]X[3]

S[3]

Y[3]

C[1]C[2]C[3]
Cout

Breaking one statement in two lines is allowed!

module Adder (Cin, X, Y, S, Cout)
 input Cin;
 input [3:0] X, Y;
 output [3:0] S;
 output Cout;

 assign {Cout, S} = {1’b0, X} + {1’b0, Y} + {4’b0, Cin}

endmodule

Supported
Sequential
Structure

© M. Shabany, ASIC/FPGA Chip Design

Using Sub-Circuits (Sub-modules)

 A design can use multiple submodules or a module multiple times

 Using a module in another is called “instantiation”

 Top-level module: the module that has not been instantiated

 To use a module inside another, it should be explicitly instantiated

M1 M2

M3 M1 M1

M2 M1

Top Module

Inputs

Outputs

© M. Shabany, ASIC/FPGA Chip Design

Using Sub-modules

 There are some built-in primitive logic gates in Verilog that can be instantiated

 Built-in primitives means there is no need to define a module for these gates

 and, or, nor, ….

 Example:
module Myand(In1, In2, out)
 input In1, In2;
 output out;

 and myand (out, In1, In2);

 assign out = In1 & In2;

 reg out;
 always @(In1, In2)
 out = (In1 & In2);

endmodule

3. always block

2. assign

1. Gate instantiation

© M. Shabany, ASIC/FPGA Chip Design

Using Sub-modules : Gate-level Primitives

and buf nmos tran

nand not pmos tranif0

nor bufif0 cmos tranif1

or bufif1 rnmos rtran

xor notif0 rpmos rtranif0

xnor notif1 rcmos rtranif1

 Gate-Level primitives:

© M. Shabany, ASIC/FPGA Chip Design

Using Sub-modules

 Example: (4-input MUX using primitives)

© M. Shabany, ASIC/FPGA Chip Design

Sub-modules Instantiation

 To instantiate a module, two things have to be clearly specified

 module’s ports

 module’s parameters (considered as default if not specified)

 Format:

 If port connections are in the same order as the original module

 “.port_name” is not needed in the port list.

Module_name #(parameter_value) instance_name (.port_name(port-connection), .port_name(port-connection),….)

Module_name instance_name (.port_name(port-connection), .port_name(port-connection),….)
defparam instance_name.parameter_name = parameter_value

© M. Shabany, ASIC/FPGA Chip Design

Sub-modules Instantiation

 Example:

module RippleCarryAdderII (Cin, X, Y, S, Cout);
 parameter n = 4;
 input Cin;
 input [n-1:0] X, Y;
 output [n-1:0] S;
 output Cout;
 wire [n-1:0] C; Cin x y S Cout

 Full_Adder stage0 (Cin, X[0], Y[0], S[0], C[1]);
 Full_Adder stage1 (C[1], X[1], Y[1], S[1], C[2]);
 Full_Adder stage2 (C[2], X[2], Y[2], S[2], C[3]);
 Full_Adder stage3 (.Cout(Cout), .Cin(C[3]), .x(X[3]), .y(Y[3]), .S(S[3]));

endmodule

module Full_Adder (Cin, x, y, S, Cout);
 input x, y, Cin;
 output S, Cout;
 wire S, C;
 assign S = x ^ y ^ Cin;
 assign Cout = (x & y)|(x & Cin)|(y & Cin);
endmodule

Explicit list
(Order NOT important)

Implicit list
(Order IS important)

4-bit Ripple Carry
Adder

Can NOT be of type “reg”
(output of a submodule)

X[0]

S[0]

Y[0]

Cin

X[1]

S[1]

Y[1]X[2]

S[2]

Y[2]X[3]

S[3]

Y[3]

C[1]C[2]C[3]
Cout

© M. Shabany, ASIC/FPGA Chip Design

Sub-modules Instantiation

 Example: 5-bit Ripple Carry Adder:

module 5-BitRippleCarryAdder (Cin, X, Y, S, Cout)
 parameter n = 5;
 input Cin;
 input [n-1:0] X, Y;
 output [n-1:0] S;
 output Cout;
 wire C;

 RippleCarryAdderI #(3) stage0 (.Cin(Cin), .X(X[2:0]), .Y(Y[2:0]), .S(S[2:0]), .Cout(C));

 defparam stage1.n = 2;
 RippleCarryAdderI stage1 (.Cin(C), .X(X[4:3]), .Y(Y[4:3]), .S(S[4:3]), .Cout(Cout));

endmodule

defparam stage0.n = 3;

If two parameters : # (3,8)

© M. Shabany, ASIC/FPGA Chip Design

Sub-modules Instantiation

 Example:

M1
Parameter length =10;

in1

in2

out1

out2

module DUT (IN, OUT)
 input [2:0] IN;
 output [2:0] OUT;
 wire w1, w2, w3;

 defparam stage0.length = 6;
 M1 stage0 (IN[0], IN[1], w1, w2);

 defparam stage1.length = 3;
 M1 stage1 (.in1(w1), .in2(IN[2]), .out2(w3), .out1(OUT[2]));

 M1 stage2 (.in1(w2), .in2(w3), .out1(OUT[0]), .out2(OUT[1]));

endmodule

M1

(6)

M1

(10)

DUT

IN_0

IN_1

w1

w2

w3

OUT_0

M1

(3)

IN_2

OUT_1

OUT_2

© M. Shabany, ASIC/FPGA Chip Design

Function Construct

 function may be used to have a modular code without defining separate modules

 A function is defined inside a module

 Not crucial for Verilog but might facilitate modular coding

 A function can be called both in continuous and procedural assignments

 A function can have multiple inputs but does not have any output

 Function name serves as the output

© M. Shabany, ASIC/FPGA Chip Design

Function Construct

 Example: 16-to-1 multiplexer:

 module my16-to-1MUX (W, S, Out);
 input [0:15] W;
 input [3:0] S;
 output reg Out;
 reg [0:3] M;

 function my4-to-1MUX;
 input [0:3] W;
 input [1:0] s;
 if (s==0) my4-to-1MUX = W[0];
 else if (s==1) my4-to-1MUX = W[1];
 else if (s==2) my4-to-1MUX = W[2];
 else if (s==3) my4-to-1MUX = W[3];
 endfunction

 always@ (W, S)
 begin
 M[0] = my4-to-1MUX(W[0:3],S[1:0]);
 M[1] = my4-to-1MUX(W[4:7],S[1:0]);
 M[2] = my4-to-1MUX(W[8:11],S[1:0]);
 M[3] = my4-to-1MUX(W[12:15],S[1:0]);

 Out = my4-to-1MUX(M[0:3], S[3:2]);

 end
endmodule

 if (S[3:2]==0) Out= M[0];
 else if (S[3:2]==1) Out= M[1];
 else if (S[3:2]==2) Out= M[2];
 else if (S[3:2]==3) Out= M[3];

© M. Shabany, ASIC/FPGA Chip Design

Function Construct with multiple-bit output

 Example:

 module test_fcn (a, b, c, Out);
 input a, b, c;
 output reg [2:0] Out;

function [2:0] myfcn;
 input a, b, c;
 begin
 myfcn[0] = a^b;
 myfcn[1] = b^c;
 myfcn[2] = c^a;
 end
endfunction

always @(*)
 Out = myfcn(a,b,c);

endmodule

module test_fcn (a, b, c, Out);
 input a, b, c;
 output [2:0] Out;

function [2:0] myfcn;
 input a, b, c;
 begin
 myfcn[0] = a^b;
 myfcn[1] = b^c;
 myfcn[2] = c^a;
 end
endfunction

assign Out = myfcn(a,b,c);

endmodule

With always With assign

© M. Shabany, ASIC/FPGA Chip Design

Task Construct

 task may be used to have a modular code without defining separate modules

 A task is defined inside a module

 A task can only be called from inside and always (or initial) block

 A task can have multiple inputs and outputs

© M. Shabany, ASIC/FPGA Chip Design

Task Construct

 Example: 16-to-1 multiplexer:

module 16-to-1MUX (W, S, Out)
 input [0:15] W;
 input [3:0] S;
 output reg Out;
 reg [0:3] M;

 task 4-to-1MUX;
 input [0:3] W;
 input [1:0] s;
 output Result;
 begin
 if (s==0) Result= W[0];
 elseif (s==1) Result = W[1];
 elseif (s==2) Result = W[2];
 elseif (s==3) Result = W[3];
 end
 endtask
 always@ (W, S)
 begin
 4-to-1MUX(W[0:3],S[1:0], M[0]);
 4-to-1MUX(W[4:7],S[1:0] , M[1]);
 4-to-1MUX(W[8:11],S[1:0] , M[2]);
 4-to-1MUX(W[12:15],S[1:0] , M[3]);
 4-to-1MUX(M[0:3],S[3:2] , Out);
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (Priority logic)

 The order in which assignments are written in an always block may affect the logic

 that is synthesized. (both conditions in if and else if can be true!)

 Example:

always @ (s0,s1, d0, d1)
 begin
 Q = 0;
 if (s0) Q = d0;
 else if (s1) Q = d1;
 end

0

d1

s1

0

1

d0

s0

0

1

Q

Different

Non of the above infer latch, why?

always @ (s0,s1, d0, d1)
 begin
 Q = 0;
 if (s1) Q = d1;
 else if (s0) Q = d0;
 end

0

d0

s0

0

1

d1

s1

0

1

Q

© M. Shabany, ASIC/FPGA Chip Design

Example: Up & Down Counters

4-Bit unsigned down-counter
 with synchronous set

module D_counter (C, S, Q);

 input C, S;
 output [3:0] Q;
 reg [3:0] tmp;
 always @(posedge C)
 begin
 if (S)
 tmp <= 4’b1111;
 else
 tmp <= tmp - 1’b1;
 end
 assign Q = tmp;

endmodule

4-Bit up-counter with
asynchronous reset and

modulo maximum

module U_counter (C, CLR, Q);

 parameter
 MAX_SQRT = 4,
 MAX = (MAX_SQRT*MAX_SQRT);
 input C, CLR;
 output [MAX_SQRT-1:0] Q;
 reg [MAX_SQRT-1:0] cnt;
 always @ (posedge C or posedge CLR)
 begin
 if (CLR)
 cnt <= 0;
 else
 cnt <= (cnt + 1) %MAX;
 end
 assign Q = cnt;

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Accumulator
 Accumulates multiple successive k-bit values and stores them into a k-bit register
 The number of successive numbers (Num) as an input

module Accumulator (In, Num, Clk, Rst, Out);
 parameter k = 8;
 parameter m = 4;
 input [k-1:0] In;
 input [m-1:0] Num;
 input Clk, Rst;
 output reg [k-1:0] Out;
 wire [k-1:0] Sum;
 reg [m-1:0] C;
 wire En, Cout;
 defparam stage0.n = k;
 RippleCarryAdderI stage0 (.Cin(0), .X(In), .Y(Out), .S(Sum), .Cout(Cout));
 always@ (posedge Clk, negedge Rst)
 if (Rst == 0)
 begin
 C <= Num;
 Out <= {k{1‘b0}};
 end
 else if (En)
 begin
 C <= C-1;
 Out <= Sum;
 end
assign En = |C;
endmodule

Clk

Sum Out

Reset

In

Down

Counter

Num En

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 136

© M. Shabany, ASIC/FPGA Chip Design

Finite State Machine (FSM)

 Used to implement control sequencing

 An FSM is defined by
 set of inputs
 set of outputs
 set of states
 initial state
 transition function
 output function

 States are steps in a sequence of transitions

 There are “Finite”‖ number of states.

© M. Shabany, ASIC/FPGA Chip Design

Finite State Machine (FSM)

 The behavior of the circuit can be represented using a finite number of states

 Two types:

 Mealy:

 Output depends on the “current state” and the “input”

Comb.

Logic
Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

always block always block always block

© M. Shabany, ASIC/FPGA Chip Design

Finite State Machine (FSM)

 Moore:

 Output depends only on the “current state”

Comb.

Logic
Flip Flops

(FFs)

Comb.

Logic

Input

Next State
(NS) Current State

(CS)

Output

always block always block assign statement

 Therefore, to describe an FSM in Verilog we have to show how to derive:

 Next State (NC)

 Current State (CS)

 Output

© M. Shabany, ASIC/FPGA Chip Design

FSM Code Structure

always @(*)
……………
……………
……………

always @(*)
……………
……………
……………

NS & Output
Calculation

CS Calculation

Mealy

 Output depends on input
 Output declared as reg

always @(*)
……………
……………
……………

always @(*)
……………
……………
……………

assign ……………

NS Calculation

CS Calculation

Output
Calculation

Moore

 Output does not depend on input
 Output declared as wire

© M. Shabany, ASIC/FPGA Chip Design

FSM
module mealy (Clock, w, Resetn, z);
 input Clock, w, Resetn ;
 output reg z ;
 reg CS, NS;
 parameter A = 1'b0, B = 1'b1;
 always @(w, CS)
 case (CS)
 A: if (w == 0)
 begin
 NS = A; z = 0;
 end
 else
 begin
 NS = B; z = 0;
 end
 B: if (w == 0)
 begin
 NS = A; z = 0;
 end
 else
 begin
 NS = B; z = 1;
 end
 endcase
 always @(posedge Clock, negedge Resetn)
 if (Resetn == 0)
 CS <= A;
 else
 CS <= NS;
endmodule

 Example: Mealy Machine

NS & Output
Calculation

CS
Calculation

A B

Reset

W=1/z=0

W=0/z=0

W=1/z=1W=0/z=0

Combinational
(Blocking)

Sequential
(Non-Blocking)

Output: reg

© M. Shabany, ASIC/FPGA Chip Design

FSM

module moore (Clk, w, Resetn, z);
 input Clk, w, Resetn;
 output z;
 reg [1:0] CS, NS;
 parameter A = 2'b00, B = 2'b01, C = 2'b10;

 always @(w, CS)
 begin
 case (CS)
 A: if (w == 0) NS = A;
 else NS = B;
 B: if (w == 0) NS = A;
 else NS = C;
 C: if (w == 0) NS = A;
 else NS = C;
 default: NS = 2'bxx;
 endcase
 end
 always @(posedge Clk, negedge Resetn)
 begin
 if (Resetn == 0)
 CS <= A;
 else
 CS <= NS;
 end

 assign z = (CS == C);
endmodule

 Example: Moore Machine

A/z=0 B/z=0

C/z=1

Reset

W=0

W=0

W=0

W=1

W=1

W=1

NS
Calculation

CS
Calculation

Output
Calculation

Output: wire

Combinational
(Blocking)

Sequential
(Non-Blocking)

© M. Shabany, ASIC/FPGA Chip Design

Outline

 ASIC/FPGA Design Flow

 Hardware Description Language (HDL)

 Verilog

o Introduction

o Language Fundamentals

o Modeling Combinational & Sequential Logic Circuits

o Modeling Finite State Machines

o Verilog Operations

 143

© M. Shabany, ASIC/FPGA Chip Design

Tri-State Logic in Verilog
 Tri-state buffer:

 Tri-state driver inference:

module tri-buffer (A, y, EN)
 input A, EN;
 output Y;

 assign Y = (EN) ? A : 1’bZ;

endmodule

A EN = 1
Z EN = 0

Y =
Y

EN

A

always @ (ENa, a)
 begin
 if (ENa)
 out = a;
 else
 out = 1’bz;
 end
always @ (ENb, b)
 begin
 if (ENb)
 out = b;
 else
 out = 1’bz;
 end

outENa

a

ENb

b

 assign out = (ENa) ? a : 1’bz;
 assign out = (ENb) ? b : 1’bz;

© M. Shabany, ASIC/FPGA Chip Design

Tri-State Applications
1. Buffering:

2. Half-duplex communication:

3. Bus multiplexing:

Y

EN

A

Ena = 0

A

Enb = 1

Ena = 0Enb = 1

Ena = 1

A

Enb = 0

Ena = 1Enb = 0

Out[7:0]
s

a

b 8

8 8

8

8

© M. Shabany, ASIC/FPGA Chip Design

Tri-State Applications
 Example: Adder with four options

S_ab

a

b 8

8 8

8

8

S_cd

c

d 8

8 8

8

8

Out[7:0]

p

q

module tri-adder (a, b, c, d, S_ab, S_cd, Out);

 input S_ab, S_cd;
 input [7:0] a, b, c, d;
 output [8:0] Out;
 wire [7:0] p, q;

 assign p = ~S_ab ? a : 8’bzzzzzzzz;
 assign p = S_ab ? b : 8’bzzzzzzzz;
 assign q = ~S_cd ? c : 8’bzzzzzzzz;
 assign q = S_cd ? d : 8’bzzzzzzzz;

 assign Out = p + q;

endmodule

Z is an allowed logic value and implies
a tri-state driver for synthesis

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Right/Left Shift

 Verilog supports << for left and >> for right shift. (Only one position)

 Both of these operators use a zero for the shift input bit.

 We can also control the shift input

module LRShift (Si, L, R, In, Out);

 input Si, L, R;
 input [7:0] In;
 output [7:0] Out;

 always @ (L, R, In, Si)
 begin
 case({R,L})
 2’b01 : Out = {In[6:0], Si}; // Left shift
 2’b10 : Out = {Si, In[7:1]}; // Right shift
 default: Out = In;
 endcase
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Barrel Shifter

 Barrel shifter shifts a signal by multiple positions

 Example:

 32-bit left shift barrel shifter

 Left shifts by 0 to 31 positions based on the 5-bit s input

 Each of its stages corresponds to a fixed shift by a power of 2 (16, 8, 4, 2, 1)

 Simple HDL implementation, which illustrates the power of HDL to hide

 implementation details from a designer

module BarrelShifter (s, a, y);
 input [4:0] s;
 input [31:0] a;
 output [31:0] y;
 assign y = a<<s;
 endmodule

© M. Shabany, ASIC/FPGA Chip Design

Counters

 Stores an unsigned integer value
 Increments or decrements the value

 Used to count occurrences of
 Events
 Repetitions of a processing step

 Used as timers
 Count elapsed time intervals by incrementing periodically

© M. Shabany, ASIC/FPGA Chip Design

 Free-running Counter:

 Increments every rising edge of clock

 Up to 2𝑛–1, then wraps back to 0
 Counts modulo 2𝑛

 This counter is synchronous
 All outputs governed by clock edge

© M. Shabany, ASIC/FPGA Chip Design

Example: Periodic Control Signal

 Count modulo 16 clock cycles
 Control output = 1 every 8thand 12th cycle
 Decode count values 0111 and 1011

module decoded_counter (output ctrl,
input clk);
reg [3:0] count_value;
always@(posedge clk)

count_value <= count_value + 1;
assign ctrl = count_value == 4'b0111
|| count_value == 4'b1011;

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Fixed-point vs. Floating-point

 Fixed-point means allocating a fixed number of bits with a fixed pointer
position to represent numbers.

 Simpler for implementation

 Less accuracy

 Floating-point representation is provide a much more extensive means for
providing real number representations and tend to be used extensively in
scientific computation applications.

 More flexible/accuracy

 More complexity on implementation side (some times 10 times larger
hardware than fixed-point counterpart!)

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Fixed-Point Simulation

 For realization of DSP algorithms all variables should be converted

 to the fixed-point representation

 Normally 2’s complement representation is used to represent signed numbers

 A fixed-point 2’s complement representation of a number has two parts:

 Integer part (WI bits)

 Fractional part (WF bits)

 The length of WI and WF are calculated based on the dynamic range of variables

 Total length: WI + WF

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Fixed-Point Simulation

 Typical word lengths:

 Fixed word-length dynamic range:

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Fixed-Point Simulation

 2’s complement Representation: (WI , WF) format

 Good to represent quantized numbers in the range:

 Resolution :

 Example:

 in (3,3) 011101 represents 3.625 (smallest number: 0.125)

 in (3,5) 10111000 represents -2.25 (smallest number: 0.03125)

WI WF

Sign Bit =
0: positive

 1: negative

Sing Bit

F

II

W

1WW

2

1
2,2

FW

2

1

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Simulation: Rounding

 Eliminates LSB bits
 Need to reduce the number of bits due to word growth

 For example, if we multiply two 5‐bit words, the product will have 10 bits,
i.e., xxxxx × yyyyy = zzzzzzzzzz and we likely don’t want or need all that
precision

 Matlab rounding:
 round(∙): towards nearest integer

 Pos. and neg. numbers are rounded symmetrically about zero
 Generally the best possible rounding algorithm

 fix(∙): truncates towards zero
 Pos. and neg. numbers are rounded symmetrically about zero

 floor(∙): rounds towards negative infinity
 ceil(∙): rounds towards positive infinity

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Simulation: Matlab round(.)

 One of the best rounding modes
 “Unbiased” rounding
 Symmetric rounding for positive and negative numbers
 Max error ½ LSB

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Simulation: Matlab fix(.)

 Truncates toward zero
 Numerical performance poor
 Symmetric rounding for positive and negative numbers
 Max error 1 LSB

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Simulation: Matlab floor(.) or truncation

 Numbers rounded down towards –∞ (-infinity)
 Numerical performance poor
 Very simple hardware
 In:xxxxxx -> Out: xxxx--
 Max error 1 LSB

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Simulation: Matlab ceil(.)

 Numbers rounded up towards + ∞ (+infinity)
 Numerical performance poor
 Max error 1 LSB

© M. Shabany, ASIC/FPGA Chip Design

Hardware Rounding

 Easiest is truncation

 Maximum rounding error ~1 post‐rounded LSB

 Signed magnitude
 Positive and negative numbers both truncate towards zero
 Matlab fix(∙)

 2’s complement and unsigned
 All numbers truncate towards negative infinity
 Matlab floor(∙)

x x x x x x x x x x x x x

© M. Shabany, ASIC/FPGA Chip Design

Hardware Rounding

 Better rounding numerically is to add ½ lSB and then truncate

 Maximum rounding error ½ post‐rounded LSB
 Two cases:

a. When the input is xxxx.5000 (base 10) (or xxx.xx100 (base 2) in the
example above)

 Rounding is towards +∞ (for both positive and negative numbers)
 matlab ceil(∙)

b. Otherwise
 Performs best rounding: matlab round(∙)

x x x x x x x x

y y y y y

1

y y y y y y x x

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Modeling: Casting

 Care must be taken when dealing with fixed-point numbers

 Casting: To convert a number with a larger bit length to a smaller one

 Saturation happens if:

 “A” is positive and

 “A” is negative and

]}WW:2-WWA[1],-W{A[WB FFFIFI

WI WF

IW
FW

II WW

FF WW
B:

A:

one) (all 111...1111]WW:2-WA[W FIFI

01]WW:2-WA[W FIFI

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Modeling: Casting

 Example:

0 0 0 0 1 1 0 1 1 1 0 1 0 0

WI WF

1 1 0 1 1 1 0 10

(10,4)

(7,2)

0 0 0 1 1 0 1 1 1 0 1 0 0

WI WF

1 1 1 1 1 1 1 10

(10,4)

(7,2)

1

1 1 1 1 0 1 1 1 0 1 0 0

WI WF

0 0 0 0 0 0 0 01

(10,4)

(6,3)

101 1 1 1 0 1 1 1 0 1 0 0

WI WF

1 0 1 1 1 0 1 01

(10,4)

(6,3)

11

Saturation

© M. Shabany, ASIC/FPGA Chip Design

Fixed-Point Modeling: Sign Extension

 To convert a number with a smaller bit length to a larger one sign extension

 is required.

 assign

 Examples: Adding two numbers with different lengths:

b0}A,2'1]}},-W{{n{A[WB FI

wire [2:0] A;
wire [5:0] B;
wire [6:0] C;
assign C = {B[5],B} + {{4{A[2]}},A};

1 0 1 1 1 0 1 0

WI WF

(10,4)

1 0 1 1 1 0 1 01(6,3)

11111 0

WI WF

IW
FW

B:

A:
II WW

FF WW

00

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Addition with Same Length

 Adding two signed n-bit numbers and save it in a signed n-bit number:

 Might not be safe if two number are large

 Overflow condition should be checked

 Overflow may happen if:

 A[n-1]==1 and B[n-1]==1 and C[n-1]==0

 A[n-1]==0 and B[n-1]==0 and C[n-1]==1

assign SUM = B + A;
assign OV = (A[n-1]==1 && B[n-1]==1 && C[n-1]==0)||
 (A[n-1]==0 && B[n-1]==0 && C[n-1]==1);

assign C = (OV && A[n-1] == 1) ? MIN_NEG_n : SUM;
assign C = (OV && A[n-1] == 0) ? MAX_POS_n : SUM;

A[n-1:0]

B[n-1:0]

C[n-1:0]

+

0110

0111

1101

+
1010

1001
+

10011

© M. Shabany, ASIC/FPGA Chip Design

Floating-point

 In floating-point, the aim is to represent the real number using a sign (S),
exponent (Exp) and mantissa (or fraction).

 The most widely used form of floating-point is IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754) with two major formats:
 Single-precision (32-bit)
 Double-precision (64-bit)

𝑁 = 2𝐸𝑥𝑝−127 ×𝑀

© M. Shabany, ASIC/FPGA Chip Design

Floating-point: Example

 Converting a real number, −1082.5674 IEEE 754 floating-point representation:

 It can be determined that S = 1 as the number is negative.
 The number (1082) is converted to binary by successive division, 10000111010.
 The fractional part (0.65625) is computed in the same way as above, giving 10101.
 The parts are combined to give the value 10000111010.10101.
 The radix point is moved left, to leave a single 1 on the left, 1.000011101010101 × 210.
 Filling with 0s to get the 23-bit mantissa gives the value 10000111010101010000000.
 The exponent is 10 and with the 32-bit IEEE 754 format bias of 127, giving 137 which is

given as 10001001 in binary.

© M. Shabany, ASIC/FPGA Chip Design

Floating-point Implementation

 The floating-point implementation concurs a complicated hardware compared to
the fixed-point counterpart.

 Take into account as an example a floating-point adder!
 This additional logic is needed to perform the various normalization steps for the adder

implementation.

© M. Shabany, ASIC/FPGA Chip Design

Fixed-point vs. Floating-point

 The area comparison for floating-point is additionally complicated as the
relationship between multiplier and adder area is now changed.

 In fixed-point, multipliers are generally viewed to be N times bigger than
adders where N is the word length.

 However, in floating-point, the area of floating-point adders is comparable
to that of floating-point multipliers which corrupts the assumption at the
algorithmic stages to reduce number of multiplications in favor of additions.

 Table below gives some figures on area and speed figures for floating-point
addition and multiplication implemented in a Xilinx Virtex 4 FPGA
technology.

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: $signed and $unsigned

 A = $signed(B)

 Sign extends B and assigns it to A

 bit width(B) < bit width (A)

 Example

 A = $unsigned (B)

 Zero fill B and assign it to A

 bit width(B) < bit width (A)

 Example

wire [5:0] A;
assign A = $signed (3b’110);

wire [5:0] A;
assign A = $unsigned (3b’110);

A = 111110

A = 000110

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Signed Addition

 There are two ways to perform signed addition:

1. Sing Extension:

2. Using signed signals

 Wrong otherwise:

wire [2:0] A, B;
wire [3:0] SUM;
assign SUM = {B[2],B} + {A[2],A};

wire signed [2:0] A, B;
wire signed [3:0] SUM;
assign SUM = B + A;

Same result

wire [2:0] A, B;
wire [3:0] SUM;
assign SUM = B + A;

110

010

1000

(-2)

(+2)

(-8)

(Wrong)

1110

0010

10000

Discard Overflow

(-2)

(+2)

(0)

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Signed Addition with Carry-in

 There are two correct ways to perform signed addition with carry-in:

1. Sing Extension:

2. Using signed signals

wire [2:0] A, B;
wire Cin;
wire [3:0] SUM;
assign SUM = {B[2],B} + {A[2],A} + Cin;

wire signed [2:0] A, B;
wire Cin;
wire signed [3:0] SUM;
assign SUM = B + A + $signed({1’b0},Cin);

Same result

1110

0010

0001

10001

Discard Overflow

(-2)

(+2)

(1)

Cin

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Signed Addition with Carry-in

 Incorrect Codes:

wire signed [2:0] A, B;
wire Cin;
wire signed [3:0] SUM;
assign SUM = B + A + Cin;

If any operand of an operation is
unsigned, the entire operation is

performed unsigned

wire signed [2:0] A, B;
wire Cin;
wire signed [3:0] SUM;
assign SUM = B + A + $signed(Cin);

110

010

 1

1001

(-2)

(+2)

(9)

Cin

1110

0010

1111

1111

(-2)

(+2)

(-1)

Cin

wire signed [2:0] A, B;
wire signed Cin;
wire signed [3:0] SUM;
assign SUM = B + A + Cin;

1110

0010

1111

1111

(-2)

(+2)

(-1)

Cin

When Cin=1, it sign extends it, to
match the size of A and B,

 which is incorrect!

When Cin=1, it sign extends it, to
match the size of A and B,

 which is incorrect!

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Signed Multiplication

 Use signed construct as we used for signed addition:

1. Use Verilog constructs:

2. Write it manually as a module

 Complicated!

wire signed [16:0] A, B;
wire signed [31:0] MULT;
assign MULT = A*B;

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Signed Multiplication

 Multiplication of a signed number and an unsigned number:

 Correct:

 Incorrect:

wire signed [2:0] A;
wire [2:0] B;
wire signed [5:0] PROD;
assign PROD = A*$signed({1’b0,B});

wire signed [2:0] A;
wire [2:0] B;
wire signed [5:0] PROD;
assign PROD = A*$signed(B);

wire signed [2:0] A;
wire [2:0] B;
wire signed [5:0] PROD;
assign PROD = A*B;

When B[2]==1, treats it as a negative number! Entire operation is performed unsigned

110

111

101010

(-2)

(7)

(42)

110

111

000010

(-2)

(7) treat it as (-1)

(+2)

110

111

110010

(-2)

(7)

(-14)

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Fixed Multiplication

 Sometimes one input is fixed so remove partial products that are always zero
 We have to try to find the minimum number of power‐of‐2 numbers to add

together to equal the fixed multiplier input

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Fixed Multiplication

 Example: Multiply by 3:

input [7:0] in;
wire [9:0] product;
assign product = {in[7], in, 1’b0}
+ {in[7], in[7], in};

 Example: Multiply by 56:

input [7:0] in;
wire [13:0] product;
assign product =
{in[7], in, 5’b00000}
+ {in[7], in[7], in, 4’b0000}
+ {in[7], in[7], in[7], in, 3’b000};

56=32+16+8

input [7:0] in;
wire [13:0] product;
assign product =
{in, 6’b00000}
- {in[7], in[7], in[7], in, 3’b000};

56=64-8

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Constant Multiplication

 Multiplication with a set of constant numbers may be implemented more

 efficiently:

}-1,1,3,5,7{-7,-5,-3,b baP

0111

0101

0011

0001

1111

1101

1011

1001

3 24
M

S
B

1
L

S
B

b

b[4]

b[3]b[2]

b[4]b[3]b[4]b[3]

<<1 <<2

SUM SUM SUM

<<3

01 01 01

010

01

a

P=axb

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Constant Multiplication

 Simpler way for implementation:

}-1,1,3,5,7{-7,-5,-3,b baP

0111

0101

0011

0001

1111

1101

1011

1001

3 24
M

S
B

1
L

S
B

b
a

1 0

1 0 1 0

1 0

1 0

<<10 <<2 <<3

baP

b[4]

b[3]b[4]

b[3]b[2]

b

C.M.

Constant Multiplier

b[1]b[2]b[3]

+

b[3]b[2]b[1]

Multiplier Critical Path Area (um2)

Constant MUL 3.5 1800

Normal MUL 5.1 12000

© M. Shabany, ASIC/FPGA Chip Design

Verilog Operations: Complex Multiplication

 A complex multiplication is equivalent to four real multiplications

 However, it can be efficiently realized using only three real multiplications:

bc)j(adbd)(acjd)jb)(c(a

 bd)(ac-d)b)(c(ajbd)(acjd)jb)(c(a

a

b

a+b

c

d

bd

ac

c+d

-

(a+b)(c+d)

ac-bd

ac+bd

-

Imag

Real

© M. Shabany, ASIC/FPGA Chip Design

Pipelined Complex Multiplication

 Pipelined Implementation:

 bd)(ac-d)b)(c(ajbd)(acjd)jb)(c(a

a

b

a+b

c

d

bd

ac

c+d

-

(a+b)(c+d)

ac-bd

ac+bd

-

Imag

Real

© M. Shabany, ASIC/FPGA Chip Design

Squaring

 x2 can be done with about half the hardware of a full multiply (for a
dedicated squaring block, of course)

0x

0x

1x

1x

2x

2x

3x

3x

 Diagonals (x0 x0, x1 x1, …) can be replaced by the single input bit with
no computation for that bit b/c we have x0 AND x0= x0

0x
1x2x3x

0x

1x

2x

3x

© M. Shabany, ASIC/FPGA Chip Design

Squaring

 Pairs of equivalent bit products (x1 x0 and x0 x1, …) can be replaced by
one bit product shifted over one column

0x
1x2x3x

0x

1x

2x

3x

0x
1x2x3x

0x

1x

2x

3x

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Operands: 4 integer, 12 fraction bits
 Result: 8 pre-, 24 post-binary-point bits
 Subject to tight area constraints

 4 multiplies, 1 add, 1 subtract
 Perform sequentially using 1 multiplier, 1 adder/subtracter

© M. Shabany, ASIC/FPGA Chip Design

Digital Systems

General Architecture:

 Data Path:

 Transfer input data signals into outputs

 Normally combinational logic or counters

 Controller:

 Provides any control signal to determine the direction of data flow

 Examples: Reset, set, MUX select signals, …

 Sequential logic

Data Path

Controller

n m
inputs outputs

Clk

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Data Path VLSI Architecture:

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 HDL Code:

 Control Path:
1. a_r * b_r →pp1_reg
2. a_i * b_i →pp2_reg
3. pp1 –pp2 →p_r_reg
 a_r * b_i →pp1_reg
4. a_i * b_r →pp2_reg
5.pp1 + pp2 →p_i_reg

 Takes 5 clock cycles

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Control Logic (Timing Schedule):

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Control Logic Design:

 One state per step
 Separate idle state?

 Wait for input_rdy = 1
 Then proceed to steps 1, 2, ...
 But this wastes a cycle!

 Use step 1 as idle state
 Repeat step 1 if input_rdy ≠ 1
 Proceed to step 2 otherwise

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Control Logic Design:

© M. Shabany, ASIC/FPGA Chip Design

Resource-Shared Complex Multiplication

 Control Logic Design:

© M. Shabany, ASIC/FPGA Chip Design

Memories

 A memory is an array of storage locations
 Each with a unique address
 Like a register bank, but with optimized

implementation
 Address is unsigned-binary encoded
 n address bits ⇒ 2n locations
 All locations the same size
 2n×m bit memory

© M. Shabany, ASIC/FPGA Chip Design

Memory Sizes

 Use power-of-2 multipliers
 Kilo (K): 210= 1,024 ≈ 103

 Mega (M): 220= 1,048,576 ≈ 106

 Giga (G): 230= 1,073,741,824 ≈ 109

 Example:
 32K ×32-bit memory
 Capacity = 1,024K = 1Mbit
 Requires 15 address bits

 Size is determined by application requirements

© M. Shabany, ASIC/FPGA Chip Design

Basic Memory Operations

 a inputs: unsigned address
 d_in and d_out
 Type depends on application
Write operation

 en = 1, wr = 1
 d_in value stored in location given by address

inputs

 Read operation
 en = 1, wr = 0
 d_out driven with value of location given by

address inputs

 Idle: en = 0

© M. Shabany, ASIC/FPGA Chip Design

Wider Memories

 Memory components have a
fixed width

 E.g., ×1, ×4, ×8, ×16, ...

 Use memory components in
parallel to make a wider memory

 E.g, three 16K×16 components
for a 16K×48 memory

© M. Shabany, ASIC/FPGA Chip Design

Larger Memories

 To provide 2n locations with 2k-
location components

 Use 2n/2k components

© M. Shabany, ASIC/FPGA Chip Design

Larger Memories

 Example: 64K×8 memory
composed of 16K×8
components

© M. Shabany, ASIC/FPGA Chip Design

Memory Types

 Random-Access Memory (RAM)
 Can read and write
 Static RAM (SRAM)

 Stores data so long as power is supplied
 Asynchronous SRAM: not clocked
 Synchronous SRAM (SSRAM): clocked

 Dynamic RAM (DRAM)
 Needs to be periodically refreshed

 Read-Only Memory (ROM)
 Combinational
 Programmable and Flash rewritable

 Volatile and non-volatile

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Single-Port vs. Dual-Port RAM

 Single-port RAM (SPRAM):

 Can only be accessed at one address at one time

 Read or Write (not both) one memory cell at a time in each clock cycle

 Dual-port RAM (DPRAM):

 Can be accessed at two addresses at one time

 Read & Write different memory cells at different addresses simultaneously

DPRAM

In0 Out0

Add0

In1 Out1

Add1

SPRAM

In Out

Add

Read

Read

Write

Write

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Single-Port RAM

 256-Byte SPRAM:

 With chip select and read/write enable

module SPRAM (clk , address , data, cs, we , oe);
// cs:chip select, we:Write/Read Enable, oe: Output Enable
parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH;
input [ADDR_WIDTH-1:0] address ;
input clk, cs, we, oe ;
inout [DATA_WIDTH-1:0] data ;
reg [DATA_WIDTH-1:0] data_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];
//Tri-state buffer, Output: When we = 0 (read), oe = 1, cs = 1
assign data = (cs && oe && !we) ? data_out : 8'bz;

// CONTINUED
// Memory Write : when we = 1, cs = 1
always @ (posedge clk)
 begin : MEM_WRITE_READ
 if (cs && we)
 mem[address] <= data;
// Memory Read: when we = 0, oe = 1, cs = 1
 else if (cs && !we && oe)
 data_out <= mem[address];
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Single-Port RAM

 256-Byte SPRAM:

 With chip select and read/write enable

Clk

data_out

cs&!we&oe

EN

mem
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data

cs&!we&oe

cs&we

address

Clk CLK

oe

we

cs

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Dual-Port RAM

 256-Byte DPRAM:

 Two separate read/write operations

module SPRAM (clk , address_0 , data_0, cs_0, we_0 , oe_0,
 address_1 , data_1, cs_1, we_1 , oe_1);
// cs:chip select, we:Write/Read Enable, oe: Output Enable
parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH;
input [ADDR_WIDTH-1:0] address_0, address_1 ;
input clk, cs_0, we_0 , oe_0, cs_1, we_1 , oe_1 ;
inout [DATA_WIDTH-1:0] data_1, data_2 ;
reg [DATA_WIDTH-1:0] data_out _0, data_out _1;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];
//Tri-state buffer, Output: When we = 0, oe = 1, cs = 1
assign data _0= (cs_0 && oe_0 && !we_0) ? data_out _0: 8'bz;
assign data _1= (cs_1 && oe_1&& !we_1) ? data_out _1: 8'bz;

// CONTINUED
// Memory Write : when we = 1, cs = 1
always @ (posedge clk)
 begin : MEM_WRITE_READ
 if (cs_0 && we_0)
 mem[address_0] <= data_0;
 else if (cs_0 && !we_0 && oe_0)
 data_out_0 <= mem[address_0];
 end
 if (cs_1 && we_1)
 mem[address_1] <= data_1;
 else if (cs_1 && !we_1 && oe_1)
 data_out_1 <= mem[address_1];
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Dual-Port RAM

 256-Byte DPRAM:

Clk

data_out0

EN

mem
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data0

cs0 & we0

address0

Clk CLK

oe0

we0

cs0

cs0 & !we0 & oe0

cs0 & !we0 & oe0

Clk

data_out1

EN

mem_dual
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data1

cs1 & we1

address1

Clk CLK

oe1

we1

cs1

cs1 & !we1 & oe1

cs1 & !we1 & oe1

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Dual-Port RAM

 256-Byte DPRAM:

 One write two reads simultaneously

module SPRAM (clk , address_0 , data_0, cs_0, we_0 , oe_0,
 address_1 , data_1, cs_1, we_1 , oe_1);
// cs:chip select, we:Write/Read Enable, oe: Output Enable
parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH;
input [ADDR_WIDTH-1:0] address_0, address_1 ;
input clk, cs_0, we_0 , oe_0, cs_1, we_1 , oe_1 ;
inout [DATA_WIDTH-1:0] data_1, data_2 ;
reg [DATA_WIDTH-1:0] data_out _0, data_out _1;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];
//Tri-state buffer, Output: When we = 0, oe = 1, cs = 1
assign data _0= (cs_0 && oe_0 && !we_0) ? data_out _0: 8'bz;
assign data _1= (cs_1 && oe_1&& !we_1) ? data_out _1: 8'bz;

// CONTINUED
// Memory Write : when we = 1, cs = 1
always @ (posedge clk)
 begin : MEM_WRITE_READ
 if (cs_0 && we_0)
 mem[address_0] <= data_0;
 else if (cs_1 && we_1)
 mem[address_1] <= data_1;
 end
end
always @ (posedge clk)
 if (cs_0 && !we_0 && oe_0)
 data_out_0 <= mem[address_0];
 else
 data_out_0 <= 0;
always @ (posedge clk)
 if (cs_1 && !we_1 && oe_1)
 data_out_1 <= mem[address_1];
 else
 data_out_1 <= 0;
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: Dual-Port RAM

 256-Byte DPRAM:

Clk

data_out1

EN

mem_dual
(SYNC RAM)

DATAOUT[7:0]

DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

data1

cs1 & we1

address1

Clk CLK

oe1

we1

cs1

cs1 & !we1 & oe1

0

1

cs1 & !we1 & oe1

0

cs0 & we0 & !cs1 & !we1

Clk
EN

mem
(SYNC RAM)

DATAOUT[7:0]
DATAIN[7:0]

WADDR[7:0]

RADDR[7:0]

0

1

cs0 & !we0 & oe0

0
address0

Clk

oe0

we0

cs0

data_out0
data0

cs0 & !we0 & oe0

© M. Shabany, ASIC/FPGA Chip Design

FIFO

 First-In/First-Out buffer
 Connecting producer and consumer
 Decouples rates of production/consumption

 Implementation using dual-port RAM
 Circular buffer
 Full: write-addr = read-addr
 Empty: write-addr = read-addr

© M. Shabany, ASIC/FPGA Chip Design

FIFO Example

 Design a FIFO to store up to 256 data items of 16-bits each, using
256x 16-bit dual-port SSRAM for the data storage. Assume the
FIFO will not be read when it is empty, not to be written when it
is full, and that the write and read ports share a common clock.

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: ROM

 For constant data, or CPU programs

 Masked ROM
 Data manufactured into the ROM

 Programmable ROM (PROM)

 Use a PROM programmer

 Erasable PROM (EPROM)
 UV erasable
 Electrically erasable (EEPROM)
 Flash RAM

© M. Shabany, ASIC/FPGA Chip Design

Verilog Memories: ROM

 ROM can be realized using two methods:

 Initialized using a file

 Initialized explicitly using case statement

module ROMFile(address , data , read_en , ce);
 input [7:0] address;
output [7:0] data;
input read_en, ce;
reg [7:0] mem [0:255] ;
assign data = (ce && read_en) ? mem[address] : 8'b0;
initial
 begin
 $readmemb("memory.list", mem);
 // memory.list is the memory file
 end
endmodule

module ROMCase(address , data , read_en , ce);
 input [2:0] address;
output reg [7:0] data;
input read_en, ce;

always @ (ce or read_en or address) begin

case (address)
 0 : data = 10;
 1 : data = 55;
 2 : data = 244;
 3 : data = 0;
 4 : data = 1;
 5 : data = 8'hff;
 6 : data = 8'h11;
 7 : data = 8'h1;
 endcase

 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Function Implementation using look-up tables

 Complex or arbitrary functions are not uncommon
 Example:

always @ (input) begin
case (input)
 4’b0000: begin real=3’b100; imag=3’b001; end;
 4’b0001: begin real=3’b000; imag=3’b101; end;
 4’b0010: begin real=3’b110; imag=3’b011; end;
 ……
 default: begin real=3’bxxx; imag=3’bxxx; end;
endcase
 end

 One way is to implement it using Look-
up Tables

 Often best to write a Matlab program to
write the Verilog table as plain text

 Easy to adapt to other specifications
 Not efficient for very large tables
 Tables with data that is less random will

have smaller synthesized area

© M. Shabany, ASIC/FPGA Chip Design

Reviews and Notes
 Every Verilog statement must end with a semicolon “;”

 For comparison “==” has to be used not “=”

 When there are multiple assignments to the same variable in an always block,

 the last statement is evaluated

 Example:

module DUT(Count);
output reg [2:0] Count;
integer k;

always @ (*)
 begin

 Count <= 0;
 for (k=0; k<4; k=k+1)
 Count <= Count + k;

 end
endmodule

module DUT(Count);
output reg [2:0] Count;
integer k;

always @ (*)
 Count <= Count + 3;
endmodule

Counter
3

© M. Shabany, ASIC/FPGA Chip Design

Reviews and Notes

 Two codes with different simulation results might have the same synthesized circuit

 Therefore, to avoid mismatch b/w simulation and synthesized version, the sensivity

 list of always block should include all the signals on the RHS

always @ (a, b, c)
 if (a & b & c)

 Out =0;
 else

 Out = 1;

always @ (a, b)
 if (a & b & c)

 Out =0;
 else

 Out = 1;

a b c I II

0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1Out

a

b

c

Same Synthesized Circuit

Different Simulation

I II

© M. Shabany, ASIC/FPGA Chip Design

Coding Styles

 Do not mix blocking and non-blocking assignments in an always block

 Use parentheses to optimize logic structure

 Use meaningful names for signals, variables, and modules

 Define if-else and case statements explicitly to avoid latch inference

 Multiple procedural assignments (inside an always block) to a single variable is allowed.

 The last assignment is evaluated.

 Multiple continuous assignments (assign) to a single net in NOT allowed.

 Do not mix edge and level sensitive elements together

 Use assign statements for simple comb. logic and always block for complex comb. logic

 Avoid mixing positive-edge and negative-edge triggered flip-flops in one design

 Confuses the timing closure

© M. Shabany, ASIC/FPGA Chip Design

Coding Styles : Parentheses

© M. Shabany, ASIC/FPGA Chip Design

Coding Styles : Parentheses

© M. Shabany, ASIC/FPGA Chip Design

Difference b/w HDL and HLL (1)

 In HLL (high-level language) assignment order is important

 In HDL for “assign” and “non-blocking” assignments, order is NOT important

 Example:

a = 1; b=0; s=0; na=0; nb=0;
y = na|nb;
nb = b&s;
na = a&~s;
k = a&b;

a = 1; b=0; s=0; na=0; nb=0;
nb = b&s;
na = a&~s;
k = a&b;
y = na|nb;

Result: y=0; Result: y=1;

wire na, nb;

assign y = na|nb;
assign nb = b&s;
assign na = a&~s;
assign k = a&b;

wire na, nb;

assign na = a&~s;
assign k = a&b;
assign nb = b&s;
assign y = na|nb;

HLL:

HDL:

b

s

a

b

a

nb

na

y

k

The same!

© M. Shabany, ASIC/FPGA Chip Design

Difference b/w HDL and HLL (2)

 In HLL, multiple assignments to a single signal is allowed

 In HDL , multiple continuous assignments to a signal is NOT allowed.

 Example:

a = 1; b=0; s=0; na=0; nb=0;
y = na|nb;
na = b&s;
na = a&~s;

Result: na = a&~s;

wire na;

assign y = na|nb;
assign na = b&s;
assign na = a&~s;

HLL:

HDL:

b

s

a

na
Illegal
(only used for tri-state implementation)

