
© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Chip Design

Mahdi Shabany

Department of Electrical Engineering

Sharif University of technology

Verilog for Synthesis

© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Design Flow

1. HDL Coding

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

2. Simulation

3. Synthesis 4. Placement & routing

5. Timing Analysis & Verification

 In this course we learn all the above steps in detail for

 ASIC Platform

 FPGA Platform

Front-End Back-End

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

RTL Coding
Simulation

Pass?

Test Bench

Specifications

Synthesis

Standard
Cells

Timing
Constraints

Pre-Layout
Timing

Alanysis
Pass?

APR
Back

Annotation

Post-Layout
Timing

Alanysis
Pass?

Logic
verification

Tapeout

Yes

NO

Yes

NO

Yes

NO

 Synthesis tool:
 Analyzes a piece of Verilog code and converts it into optimized logic gates

 This conversion is done according to the “language semantics”

 We have to learn these language semantics, i.e., Verilog code.

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

 Why using synthesis tools?

 It is an important tool to improve designers’ productivity to
meet today’s design complexity.

 If a designer can design 150 gates a day, it will take 6666 man’s
day to design a 1-million gate design, or almost 2 years for 10
designers! This is assuming a linear grow of complexity when
design get bigger.

© M. Shabany, ASIC/FPGA Chip Design

Synthesis in Different Levels

 Synthesis can be done in different levels:

 High-level Synthesis
 To convert an algorithm-level description to an RTL code

 RTL Synthesis
 To convert an RTL code to a gate-level netlist

 Logic Synthesis
 To convert the gate-level description to a specific logic library

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

 Synthesis tool: (RTL & Logic Synthesis)

 Input:

 HDL Code

 “Technology library” file Standard cells (known by transistor size, 90nm)

o Basic gates (AND, OR, NOR, …)

o Macro cells (Adders, Muxes, Memory, Flip-flops, …)

 Constraint file (Timing, area, power, loading requirement, optimization Alg.)

 Output:

 A gate-level “Netlist” of the design

 Timing files (.sdf)

This process is done using various optimization algorithms

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

 Synthesis = Translation + Logic Optimization + Technology Mapping

 Translation: going from RTL to Boolean function

 Logic Optimization : Optimizing and minimizing Boolean function

 Technology Mapping (TM): Map the Boolean function to the target library

Translation
Logic

Optimization

Technology

Mapping

Synthesis

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

 Synthesis = Translation + Logic Optimization + Technology Mapping

always @ (a, b)
 case ({a,b})

 2’b00: out = 1;
 2’b01: out = 1;
 2’b11: out = 1;
 default: out = 0;
endcase

baabbaout 

baout 

Translation

Logic
Optimization

a

b
Out

Technology
Mapping

0

1

0

1

Out
0

1

b

1

1

0

1

a

2-input LUT

ASIC

FPGA

© M. Shabany, ASIC/FPGA Chip Design

Synthesis Tools

 Example: A 2-to-1 Multiplexer (2x1-MUX)

If (s==0)
 f = a;
else
 f = b;

Verilog code
(has to comply with certain structures)

a

b

s
f

Synthesized gate-level

Synthesis
Tool

a

b

s

f

0

1

Schematic

Synthesis

Tool

HDL Tech Lib Constraints

Gate-level Netlist

 Synthesis tool:

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

© M. Shabany, ASIC/FPGA Chip Design

Synthesis is Constraint-Driven

 (Delay)سرعت

 (Area) هساحت

 (Power Consumption)تواى هصرفی

Area

Large

Small

Delay Long Short

You should
specify your
constraints

Synthesizer optimizes the design to
 meet the constraints

Synthesis

Constraint

© M. Shabany, ASIC/FPGA Chip Design

Synthesis is Constraint-Driven

 Synthesis process takes some time

 Synthesis time is a function of the target critical path
 Clock period: 10nsec synthesis time: 10 minutes

 Clock period: 5 nsec synthesis time: 40 minutes

© M. Shabany, ASIC/FPGA Chip Design

Synthesis is Constraint-Driven

 The designer guides the synthesis tool by providing design constraints:

 Timing requirements (max. expected clock frequency)

 Area requirements

 Maximum power consumption

 The synthesis tool uses this information and tries to generate the

 smallest possible design that will satisfy the timing requirements

 Without any constraints specified, the synthesis tool will generate a

 non-optimal netlist, which might not satisfy the designer’s requirements

© M. Shabany, ASIC/FPGA Chip Design

Synthesis Tools

 Commercial Synthesis Tools:

Vendor Name Product Name Platform

Altera Quartus II FPGA

Xilinx ISE FPGA

Mentor Graphics Modelsim, Precision FPGA/ASIC

Synopsys Design Compiler ASIC

Synplicity Synplify ASIC

Cadence Ambit ASIC

© M. Shabany, ASIC/FPGA Chip Design

Divide and Conquer for Optimal Synthesis

 To achieve the best synthesis result, the design is better to be partitioned

 into smaller parts.

 Partitioning: the process of dividing complex designs into smaller parts

 Ideally, all partitions would be planned prior to writing any HDL:

Initial partitions are defined by the HDL

Initial partitions can be modified using Synthesis Tool

© M. Shabany, ASIC/FPGA Chip Design

Partitioning

 Partition a design into different modules based on the functionality

 Pros:

 Separation of the cores that have different functionality

 More manageability of smaller modules

 Easier managements of a design implementation by a team

 Focus to write optimized HDL code for each module

 Possibility of reusing smaller IPs/Block in other designs

 Cons:

 Routing congestion or increased die size due to more signaling b/w modules

 Not too small not too large modules (~10Kgates)

© M. Shabany, ASIC/FPGA Chip Design

Partitioning in Verilog

 module statement defines hierarchical blocks (partitions):

Instantiation of an entity or module creates a new level of hierarchy

 Inference of Arithmetic Circuits (+, -, *) can create a new level of hierarchy

 Always statements do not create hierarchy

module ADR_BLK (….

DEC U1 (ADR, CLK, INST);

OK U2 (ADR, CLK, AS, OK);

endmodule;

ADR_BLK

U1

U2

DEC

OK

ADR

CLK

AS

INST

OK

© M. Shabany, ASIC/FPGA Chip Design

Good Partitioning (Partition at Register Boundaries)

 Try to design so the hierarchy boundaries follow register outputs.

 Related combinational logics in the middle are merged into the same block

Combinational optimization techniques can still be fully exploited

© M. Shabany, ASIC/FPGA Chip Design

Poor Partitioning (Partition at Combinational Logic)

 Try not to break the Comb. Logics into several hierarchies

 Synthesis tool must preserve port definitions

 Logic optimization does not cross block boundaries

 Adjacent blocks of combinational logic cannot be merged

 Path from REG A to REG C may be larger and slower than necessary!

© M. Shabany, ASIC/FPGA Chip Design

Good Partitioning (Avoid Glue Logic)

 The NAND gate at the top-level serves

 only to “glue” the instantiated cells.

 Optimization is limited because the

 glue logic cannot be “absorbed”

 Additional compile needed at top-level

 The glue logic can now be optimized

 with other logic

 Top-level design is only a structural

 netlist, it does not need to be compiled

© M. Shabany, ASIC/FPGA Chip Design

Good Partitioning

 . را از هن جذا کٌیذ JTAG، کلاکها، پذها، Core Logicدر جسءبٌذی،

 Top_level

Mid_level

Functional Core

v

v

TOP

Mid

Functional Core

Clock Gen.

JTAG
Asynch.

 سلسله هراتب طرح

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis
 “Bad” HDL code does not allow efficient optimization during synthesis

 Garbage in, garbage out!

 Logic synthesizer doesn’t do magic! designer has to take some responsibility in coding.

 Example:

 input sub;
input [3:0] a,b;
output [3:0] y;
assign y = sub ? (a-b) : (a+b)

input sub;
input [3:0] a,b;
output [3:0] y;
wire [3:0] tmp;
assign tmp = sub ? ~b : b;
assign y = a + tmp + {3’b0,sub}

b[3:0]

a[3:0]

sub

0

1

Y[3:0]
4

4

b[3:0]

a[3:0]

sub

0

1

Y[3:0]
4

4

Ci

Y[3:0]

More efficient

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (General Guidelines)

 Think Hardware:

 Write HDL hardware descriptions

 Think of the topology implied by the code

 Do not write HDL simulation models

 No explicit delays

 No file I/O

 Think RTL:

 Writing in an RTL coding style means describing:

 Register architecture

 Circuit topology

 Functionality between registers

 Synthesis tool optimizes logic between registers:

 It does not optimize the register placement

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (General Guidelines)

 است لازم کاراهذ برًاهه یک ًوشتي برای
 که افساری سخت برای هٌاسبی توپولوشی

 کٌین ارائه شود، سازی پیاده است قرار

 که هذلهایی از خود فسار سخت کذ ًوشتي در
 هاًٌذ شود هی استفاده آًها از سازی شبیه در

 .بپرهیسیذ سیگٌالها تاخیر اعوال

© M. Shabany, ASIC/FPGA Chip Design

Synthesizable Constructs

 Not all Verilog constructs are synthesizable because:
 Does not make sense in hardware (e.g. $display, initial block)
 Not possible to achieve (e.g. delay control like #10)
 Not support by design flow (e.g. use of tran in P&R)
 Too difficult or too abstract for the synthesis software (e.g. A / B)

• Ports (input, output, inout)
• Parameter
• module
• wire, reg, tri
• function, task
• always, if, else, case
• assign
• for, while

Synthesizable Constructs

© M. Shabany, ASIC/FPGA Chip Design

Non-Synthesizable Constructs

 Initial (used only in testbenches)

 real (real type data type)

 time (time data type)

 assign for reg data types

 comparison to X and Z are ignored (e.g., a == 1’bz)

 delays “#” are ignored by synthesis tools as if it is not there

Non-Synthesizable Constructs

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (Priority logic)

 The order in which assignments are written in an always block may affect the logic

 that is synthesized.

 Example:

always @ (s, clr, d, q)
 begin
 Q = q;
 if (s) Q = d;
 if (clr) Q = 0;
 end

always @ (s, clr, d, q)
 begin
 Q = q;
 if (clr) Q = 0;
 if (s) Q = d;
 end

s clr Q

0 0 q
0 1 0
1 0 d
1 1 0

s clr Q

0 0 q
0 1 0
1 0 d
1 1 d

q

0

clr

0

1

d

s

0

1

Q

q

d

s

0

1

0

clr

0

1

Q

Different

Non of the above infer latch, why?

Priority

Priority

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (Priority logic)

 The order in which assignments are written in an always block may affect the logic

 that is synthesized.

 Example:

always @ (s0,s1, d0, d1)
 begin
 Q = 0;
 if (s0) Q = d0;
 else if (s1) Q = d1;
 end

0

d1

s1

0

1

d0

s0

0

1

Q

Different

Non of the above infer latch, why?

always @ (s0,s1, d0, d1)
 begin
 Q = 0;
 if (s1) Q = d1;
 else if (s0) Q = d0;
 end

0

d0

s0

0

1

d1

s1

0

1

Q

Priority

Priority

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (Priority logic) : Poor Coding

1st Priority
2ndPriority
3rd Priority
4th Priority

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis (Priority logic) : Good Coding

© M. Shabany, ASIC/FPGA Chip Design

Flatten Logic Structure

 Applies to the logic that is chained due to the priority encoding
 Synthesis and layout tools are smart enough to duplicate logic to reduce
fan-out, but they are not smart enough to break up logic structures that are
coded in a serial Fashion

module regwrite(
output reg [2:0] Rout,
input clk, in,
input [2:0] Ctrl);
always @ (posedge clk)
if (Ctrl[0]) Rout[0] <= in;
else if (Ctrl[1]) Rout[1] <= in;
else if (Ctrl[2]) Rout[2] <= in;
endmodule

Clk

Ctrl[0]

0

1xin Rout[0]

Clk

0

1xin Rout[1]

Ctrl[0]

Ctrl[1]

Clk

0

1xin Rout[2]

Ctrl[1]

Ctrl[2]

Ctrl[0]

© M. Shabany, ASIC/FPGA Chip Design

Flatten Logic Structure

 Flatten the logic (when conditions are mutually exclusive)

 No priority logic (each register is controlled independently)

 Less logic delay

module regwrite(
output reg [2:0] rout,
input clk, in,
input [2:0] ctrl);
always @(posedge clk)
 if(ctrl[0]) rout[0] <= in;
 if (ctrl[1]) rout[1] <= in;
 if (ctrl[2]) rout[2] <= in;
endmodule

Clk

Ctrl[0]

0

1xin Rout[0]

Clk

0

1xin Rout[1]

Clk

0

1xin Rout[2]

Ctrl[1]

Ctrl[2]

© M. Shabany, ASIC/FPGA Chip Design

HDL for Synthesis
 It is possible to derive gate-level implementation of “+”, “-”, “*” operations and

 write them in Verilog. However, it is better to use just “+, “-”, “*” and let the

 synthesis tool to decide which block to use to meet the performance

 Example:

module multi3x3 (a, b, y)
input [2:0] a, b;
output [5:0] y;
assign y = a * b;

More efficient

 Unsigned operations
 Performance:

 Power
 Area
 Speed

a[0]a[1]a[2]

a[0]a[1]a[2]

a[0]a[1]a[2]

b[0]

b[1]

b[2]

y[0]y[1]y[2]y[3]y[4]y[5]

© M. Shabany, ASIC/FPGA Chip Design

Design for Synthesis (No Timing Loop)
 Do not use timing loops in the circuit

 Timing loop: when an output of a combinational logic loops back to its input

 Results in oscillation

 Complicated timing analysis

 Timing glitches

 Solution: Add a flip-flop on the feedback path

Out
In2

In1

T1

T2

Out
In2

In1

Clk

Oscillates with f=1/(T1+T2)
(Not desired) No Oscillation (Desired)

always @ (posedge gated)
 Out <= (In1 & Out) | In2;

always @ (*)
 Out = (In1 & Out) | In2;

© M. Shabany, ASIC/FPGA Chip Design

Latch Inference in Combinational Logic
 When realizing combinational logic with always block using if-else or case

 constructs care has to be taken to avoid latch inference after synthesis

 The latch is inferred when “incomplete” if-else or case statements are declared

 This latch is “unwanted” as the logic is combinational not sequential

 To avoid latch inference make sure to specify all possible cases “explicitly”

 Two practical approaches to avoid latch inference:

 For if-else construct:

1. Initialize the variable before the if-else construct

2. Use else to explicitly list all possible cases

 For case constructs:

1. Use default to make sure no case is missed!

 If there is some logic path through the always block that does not assign a value

 to the output a latch is inferred

 Do NOT let it up to the synthesis tool to act in unspecified cases and do specify

 all cases explicitly.

© M. Shabany, ASIC/FPGA Chip Design

Avoid Latch Inference in If-else Statements

Example:

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
begin
 if (S==1)
 out = A;
 else
 out =B;
end
endmodule

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
begin
 if (S==1)
 out = A;
end
endmodule

module DUT (A, B, S, out);
input A, B, S;
output reg out;
always @(*)
Begin
 out = B;
 if (S==1)
 out = A;
end
endmodule

B

S

A

out

B

S

A

out

1

2

Latch Inference

No Latch

No Latch

outA

S

Q

Clk

D

© M. Shabany, ASIC/FPGA Chip Design

Avoid Latch Inference in Case Statements

Example:

module DUT (A, B, S, out);
input A, B;
Input [1:0] S;
output reg out;

always @(A, B, S)
begin
 case (S)
 2’b00: out = A;
 2’b01: out = B;
 endcase
end
endmodule

module DUT (A, B, S, out);
input A, B;
Input [1:0] S;
output reg out;
always @(A, B, S)
begin
 case (S)
 2’b00: out = A;
 2’b01: out = B;
 default: out = 1’b0;
 endcase
end
endmodule

B

S[0]

A

out

S[1]

Latch Inference No Latch

out
Q

Clk

A

B

S[0]

0

1

S[1]

D

© M. Shabany, ASIC/FPGA Chip Design

Clock

 Clock is the most important signal in the design (golden)

 Why is it different from other signals?

 It is a global signal, i.e., it is routed across all modules in the design

 Treat clock as a golden signal

 No buffering should be done on clock during coding and synthesis

 Clock buffering to fix the clock skew is done during clock tree synthesis

 (part of APR in ASIC flow, which is done automatically)

 No “clock gating”:

 Clock should be directly connected to flip-flops without any logic gating

 Otherwise, it results in clock skew in the design (undesired!)

© M. Shabany, ASIC/FPGA Chip Design

Clock (No Internally Generated Clock)

 Do not use internally generated clocks

 Complicates the timing analysis

 Setup time

 Hold time

 Difficult to deal with during synthesis

 Clk

in1

in2

Out2
Out1

Internally generated clock

always @ (posedge Clk)
 Out1 <= In1;

 always @ (posedge Out1)

 Out2 <= In2;

© M. Shabany, ASIC/FPGA Chip Design

Clock (No Gating)

 Gated clock: clock that is enabled by an enable signal

 Applications:

 Used for power saving to switch off part of the chip in fraction of time

 Avoid clock gating as much as possible

 Because results in clock skew

 Not a golden signal anymore!

assign gated = Clk & Enable

always @ (posedge gated)
 Out <= In;

Gated clock

 Clk

in Out

Enable

gated

© M. Shabany, ASIC/FPGA Chip Design

Clock (No Gating)

 If clock gating is used avoid large fan-outs

 Large fan-out (deriving 32 flip flops)

 Large delay high clock skew

assign gated = Clk & Enable;

always @ (posedge gated)
 Out[31:0] <= In[31:0];

 Clk

in0 Out0

Enable

gated

in1 Out1

in31 Out31

© M. Shabany, ASIC/FPGA Chip Design

Clock (No Gating)

 Low Fan-out Alternative:

 Clk

in0 Out0

Enable

gated1

in1 Out1

in2 Out2

in3 Out3

 Clk

in28 Out28

Enable

gated8

in29 Out29 in31 Out31

in30 Out30

and U1 (gated1, Clk, Enable);
and U2 (gated2, Clk, Enable);

and U8 (gated8, Clk, Enable);

always @ (posedge gated1)
 Out[3:0] <= In[3:0];
always @ (posedge gated2)
 Out[7:4] <= In[7:4];

always @ (posedge gated8)
 Out[31:28] <= In[31:28];

Explicit “and” instantiation

© M. Shabany, ASIC/FPGA Chip Design

Clock

 Do not use clock as an input or selector (results in an inefficient clock tree)

A

B

Clk

0

1

Q1

Q2

posedge Clk

negedge Clk

A

B

Clk-like

0

1

Different from Clock

Clk

Q1

Q2

Clk-like

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Critical Path

 Critical path in any design is the longest path between

1. Any two internal latches/flip-flops

2. An input pad and an internal latch

3. An internal latch and an output pad

4. An input pad and an output pad

Use FFs right after/before

input/out pads to avoid

the last three cases

(off-chip and packaging delay)
3

Comb. Logic

1

2

4

Output
Pad

Input
Pad

The maximum delay between any
two sequential elements in a

design will determine the max
clock speed

© M. Shabany, ASIC/FPGA Chip Design

Digital Design Metrics

 Three primary physical characteristics of a digital design:

 Speed
 Throughput
 Latency
 Timing

 Area
 Power

© M. Shabany, ASIC/FPGA Chip Design

Digital Design Metrics

 Speed

 Throughput :
 The amount of data that is processed per clock cycle (bits per second)

 Latency

 The time between data input and processed data output (clock cycle)

 Timing
 The logic delays between sequential elements (clock period)
 When a design does not meet the timing it means the delay of the
critical path is greater than the target clock period

© M. Shabany, ASIC/FPGA Chip Design

Maximum Clock Frequency: Critical Path

 Maximum Clock Frequency:

skewroutingsetuplogicqclk

max
TTTTT

1
F






 Tclk-q : time from clock arrival until data arrives at Q

 Tlogic : propagation delay through logic between flip-flops

 Trouting : routing delay between flip-flops

 Tsetup : minimum time data must arrive at D before the next rising edge of clock

 Tskew : propagation delay of clock between the launch flip-flop and the capture flip-flop.

© M. Shabany, ASIC/FPGA Chip Design

Pipelining (to Improve Throughput)

 Pipelining:
 Comes from the idea of a water pipe: continue sending water without
 waiting the water in the pipe to be out
 Used to reduce the critical path of the design

 Advantageous:
 Reduction in the critical path
 Higher throughput (number of computed results in a give time)
 Increases the clock speed (or sampling speed)
 Reduces the power consumption at same speed

Water PipeWater In Water Out

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques :Pipelining

 Pipelining:

 Very similar to the assembly line in the auto industry

 The beauty of a pipelined design is that new data can begin processing
before the prior data has finished, much like cars are processed on an
assembly line.

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques :Pipelining

 Original System: (Critical path = τ1 Max operating freq: f1=1/τ1)

 Pipelined version: (Critical path = τ2 Max operating freq: f2=1/τ2)
 Smaller Critical Path higher throughput (τ2<τ1 f2>f1)
 Longer latency

2 cycles
later

3 cycles
later

Comb. Logic

Clk

X

Critical path = τ1 Max operating freq: f1=1/τ1

f

Comb. Logic

Clk

X Comb. Logic
f

Pipelining Register

Critical path = τ2 Max operating freq: f2=1/τ2

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipeline depth

 Pipeline depth: 0 (No Pipeline)

 Critical path: 3 Adders

 Latency : 0

X(1)

Y(1)

X(2)

Y(2)

timet1 t2 t3

X(3)

Y(3)

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2

wire w1, w2;
assign w1 = X + a;
assign w2 = w1 + b;
assign Y = w2 + c;

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipeline depth

 Pipeline depth: 1 (One Pipeline register Added)

 Critical path: 2 Adders

 Latency : 1

X(1)

Y(1)

X(2)

Y(2)

timet1 t2 t3

X(3)

Y(3)

t4

wire w1;
reg w2;
assign w1 = X + a;
assign Y = w2 + c;

always @(posedge Clk)
 w2 <= w1 + b;

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipeline depth

 Pipeline depth: 2 (One Pipeline register Added)

 Critical path: 1 Adder

 Latency : 2

X(1)

Y(1)

X(2)

Y(2)

t1 t2 t3

X(3)

Y(3)

t4 t5

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2

reg w1, w2;
assign Y = w2 + c;

always @(posedge Clk)
 begin
 w1 <= X + a;
 w2 <= w1 + b;
 end

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques :Pipelining

 Clock period and throughput as a function of pipeline depth:

 Clock period :

 Throughput:

nT

3 4 5 6

Pipeline Depth

Clock Period

Throughput

n

1
Clk 

Adding register layers improves
timing by dividing the critical path

into two paths of smaller delay

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

 General Rule:

 Pipelining latches can only be placed across feed-forward cutsets
of the circuit.

 Cutset:

A set of paths of a circuit such that if these paths are removed, the
circuit becomes disjoint (i.e., two separate pieces)

 Feed-Forward Cutset:

 A cutset is called feed-forward cutset if the data moves in the
forward direction on all the paths of the cutset

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

 Example:

 FIR Filter

 Three feed-forward cutsets are shown

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c

X(n)

a b

Y(n)

X(n-1) X(n-2)

NOT a feed-forward cutset

c

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

Critical Path: 1M+2A Critical Path: 2A

assign w1 = a*Xn;
assign w2 = b*Xn_1 ;
assign w3 = w1 + w2;
assign w4 = c*Xn_2;
assign Y = w3 + w4;
always @(posedge Clk)
 begin
 Xn_1 <= Xn;
 Xn_2 <= Xn_1;
 end

X(n)

a b

Y(n)

X(n-1) X(n-2)

r1 r2 r3

c

W1

assign Y = r3 + w1;
assign w1 = r1 + r2;
always @(posedge Clk)
 begin
 Xn_1 <= Xn;
 Xn_2 <= Xn_1;
 r1 <= a*Xn;
 r2 <= b*Xn_1;
 r3 <= c*Xn_2;
 end

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

w1 w2

w3

w4

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

Cloc
k

Input 1 2 3 4 5 Output

0 X(0) aX(0) - aX(0) - aX(0) Y(0)

1 X(1) aX(1) bX(0) aX(1)+bX(0) - aX(1)+bX(0) Y(1)

2 X(2) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2)

3 X(3) aX(3) bX(2) aX(3)+bX(2) cX(1) aX(3)+bX(2)+cX(1) Y(3)

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1
2

3
4

5

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

Cloc
k

Input 1 2 3 4 5 Output

0 X(0) - - - - - -

1 X(1) aX(0) - aX(0) - aX(0) Y(0)

2 X(2) aX(1) bX(0) aX(1)+bX(0) - aX(1)+bX(0) Y(1)

3 X(3) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2)

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1 2 3 4
5

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Pipelining

Clock Input 1 2 3 4 5 Output

0 X(0) - - - - - -

1 X(1) aX(0) - - - - -

2 X(2) aX(1) bX(0) aX(0) - aX(0) Y(0)

3 X(3) aX(2) bX(1) aX(1)+bX(0) - aX(1)+bX(0) Y(1)

4 X(3) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2)

 Even more pipelining

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1 2 3 4
5

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Fine-Grain Pipelining

 Pipelining at the operation level

 Break the multiplier into two parts

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c

X(n)

a b

Y(n)

X(n-1) X(n-2)

c
m1

m2

m1

m2

m1

m2

Fine-Grain
Pipelining

© M. Shabany, ASIC/FPGA Chip Design

Unrolling the Loop Using Pipelining

 Calculation of X3

Throughput = 8/3, or 2.7 bits/clock
Latency = 3 clocks
Timing = One multiplier in the critical path

 Iterative implementation:
 No new computations can begin until the
 previous computation has completed

module power3(
output reg [7:0] X3,
output finished,
input [7:0] X,
input clk, start);
reg [7:0] ncount;
reg [7:0] Xpower, Xin;
assign finished = (ncount == 0);

always@(posedge clk)
if (start) begin
XPower <= X; Xin<=X;
ncount <= 2;
X3 <= XPower;
end
else if(!finished) begin
ncount <= ncount - 1;
XPower <= XPower * Xin;
End

endmodule Clk

start

0

1X[0:7] xpower

© M. Shabany, ASIC/FPGA Chip Design

Unrolling the Loop Using Pipelining

 Calculation of X3

Throughput = 8/1, or 8 bits/clock (3X improvement)
Latency = 3 clocks
Timing = One multiplier in the critical path

 Penalty: More Area

module power3(
output reg [7:0] XPower,
input clk,
input [7:0] X);
reg [7:0] XPower1, XPower2;
reg [7:0] X2;
always @(posedge clk) begin
// Pipeline stage 1
XPower1 <= X;
// Pipeline stage 2
XPower2 <= XPower1 * XPower1 ;
X2 <= XPower1 ;
// Pipeline stage 3
XPower <= XPower2 * X2;
end
endmodule

Clk

X[0:7]

Clk

xpower

xpower1 xpower2

X2

Unrolling an algorithm with n iterative loops increases
throughput by a factor of n

© M. Shabany, ASIC/FPGA Chip Design

Removing Pipeline Registers (to Improve Latency)

 Calculation of X3

Throughput = 8 bits/clock (3X improvement)
Latency = 0 clocks
Timing = Two multipliers in the critical path

module power3(
Output [7:0] XPower,
input [7:0] X);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;
always @(*)
 XPower1 = X;
always @(*)
begin
 X2 = XPower1;
 XPower2 = XPower1*XPower1;
end

assign XPower = XPower2 * X2;

endmodule

Latency can be reduced by removing pipeline registers

X[0:7] xpower

xpower1 xpower2

X2

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Parallel Processing
 In parallel processing the same hardware is duplicated to

 Increases the throughput without changing the critical path

 Increases the silicon area

X(n)

a(n) b(n)

Y(n)

X(n)

a(n) b(n)

Y(n)

X(2k)

a(2k) b(2k)

Y(2k)

X(2k+1)

a(2k+1) b(2k+1)

Y(2k+1)

Pipelining Parallel Processing

Clock Freq: 2f

Throughput: 2M samples

Clock Freq: f

Throughput: M samples

Clock Freq: f

Throughput: 2M samples

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Parallel Processing

 Parallel processing for a 3-tap FIR filter

 Both have the same critical path (M+2A)
X(3k)

a b

Y(3k+2)

c

X(3k+1)X(3k+2)

c a

Y(3k+1)

b

b c

Y(3k)

a

X(3k-2) X(3k-1)

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

Parallel Factor:3

© M. Shabany, ASIC/FPGA Chip Design

Register Balancing (to Improve Timing)

 Redistribute logic evenly between registers to minimize the worst-case
delay between any two registers

b/c clock is limited by only the worst-case delay

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rA, rB, rC;
always @(posedge clk) begin
rA <= A;
rB <= B;
rC <= C;
Sum <= rA + rB + rC;
end
endmodule

Clk

Sum

A

Clk

Clk

B

C

rA

rB

rC

© M. Shabany, ASIC/FPGA Chip Design

Register Balancing (to Improve Timing)

 Redistribute logic evenly between registers to minimize the worst-case
delay between any two registers

b/c clock is limited by only the worst-case delay

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rABSum, rC;
always @(posedge clk) begin
rABSum <= A + B;
rC <= C;
Sum <= rABSum + rC;
end
endmodule

Clk

A

Clk

B

C Sum

rABSum

rC

© M. Shabany, ASIC/FPGA Chip Design

Speed-related Techniques: Summary

 Throughput-related:
 A high-throughput architecture is one that maximizes the number of bits
 per second that can be processed by a design.
 Unrolling an iterative loop increases throughput.
 The penalty for unrolling an iterative loop is an increase in area.

 Latency-related:

A low-latency architecture is one that minimizes the delay from the input
 of a module to the output.
 Latency can be reduced by removing pipeline registers.
 The penalty for removing pipeline registers is an increase in combinatorial
 delay between registers.

© M. Shabany, ASIC/FPGA Chip Design

Speed-related Techniques: Summary

 Timing-related:

Timing refers to the clock speed of a design. A design meets timing when
 the maximum delay between any two sequential elements is smaller than
 the minimum clock period.
 Adding register layers improves timing by dividing the critical path into
 two paths of smaller delay.
 Separating a logic function into a number of smaller functions that can be
 evaluated in parallel reduces the delay to the longest of the substructures.
 By removing priority encodings where they are not needed, the logic
 structure is flattened, and the path delay is reduced.
 Register balancing improves timing by moving combinatorial logic from the
 critical path to an adjacent path.

© M. Shabany, ASIC/FPGA Chip Design

Area-related Techniques:

 Area is the second primary factors of a digital design

 A topology that targets area is one that reuses the logic resources to the
greatest extent possible, often at the expense of throughput (speed).

 This requires a recursive data flow, where the output of one stage is fed back
to the input for similar processing.

© M. Shabany, ASIC/FPGA Chip Design

Area-related Techniques: Rolling Up the Pipeline

 Opposite to the unrolling the loop to increase throughput

 Unrolling the loop achieved by adding more registers to hold intermediate
 values, i.e., more area

 Thus to reduce the area the reversed action should be done (i.e., Sharing)

 Resource Sharing is used where there are functional blocks that
 can be used in other areas of the design or even in different modules

 Sharing logic resources requires special control circuitry to determine which
 elements are input to the particular structure

© M. Shabany, ASIC/FPGA Chip Design

Rolling Up the Pipeline

 Calculation of P = A*B

 A: a normal integer with the fixed point just to the right of the LSB (8 bits)
 B: a fractional number with a fixed point just to the left of the MSB (8 bits)
 P: the product, which requires only 8-bits

 One implementation alternative:

 Critical path: one multiplier (complex itself)
 One product every clock cycle (high throughput)

module mult8(
output [7:0] P,
input [7:0] A,
input [7:0] B,
input clk);
reg [15:0] prod16;
assign P= prod16[15:8];
always @(posedge clk)
prod16 <= A * B;
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Rolling Up the Pipeline : Resource Sharing
 Rolling Up the Pipeline:

 Using series of shift-and-add operations
 Smaller critical path
 Less area due to the simple operations and sharing
 One product every 8 clock cycles! (low throughput)

module mult8(output done,output reg [7:0] product,
input [7:0] A, input [7:0] B, input clk, input start);
reg [4:0] multcounter; // number of shift/adds
reg [7:0] shiftB; // shift register for B
reg [7:0] shiftA; // shift register for A
wire adden; // enable addition
assign adden = shiftB[7] & !done;
assign done = multcounter[3];
always @(posedge clk) begin
if(start) multcounter <= 0;
else if(!done) multcounter <= multcounter + 1;
// shift register for B
if(start) shiftB <= B;
else shiftB[7:0] <= {shiftB[6:0], 1’b0};

// shift register for A
if(start) shiftA <= A;
else shiftA[7:0] <= {shiftA[7], shiftA[7:1]};
// calculate multiplication
if(start) product <= 0;
else if(adden) product <= product + shiftA;
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

 Back to FIR Filter:

 Three multiplications, two adders, two registers

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

 Sharing the Multiply-Accumulate (MAC) to reduce area:

 One multiplication, one adder, one register

 Requires some control logic to determine which input is inserted (FSM)

DataIn

Coeff

MAC

DataIn=X[0], 0,0,0, X[1], 0,0,0,X[2], ….

Coeff= a, b, c, 0,a, b, c, 0, ...

Out

DataIn

Coeff

multcoeff

multdat

multout
accumsum

accum

State == 0

0

1
16'b0

State

X0

X1

X2
State == 0

0

1
16'b0

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

module sharing(
output reg [15:0] Out,
input clk,
input [7:0] datain, // X[0]
input [7:0] coeffA, coeffB, coeffC); // coeffs for low pass filter
// define input/output samples
reg [7:0] X0, X1, X2;
reg [2:0] state; // holds state for sequencing through mults
wire [15:0] accum; // accumulates multiplier products
reg [15:0] accumsum;
wire [15:0] multout; // multiplier product
reg [7:0] multdat;
reg [7:0] multcoeff;

assign multout =(state==0)?16'b0:multcoeff * multdat;
// clearing and loading accumulator
assign accum = (state==0)?16'b0:accumsum;

always @(posedge clk)
accumsum <= accum + multout;

always @ (posedge clk) begin
case(state)
 0: begin // load new data
 X0 <= datain; X1 <= X0; X2 <= X1;
 multdat <= datain; multcoeff <= coeffA;
 state <= 1;
 Out <= accumsum;
 end
 1: begin // A*X[0] is done, load B*X[1]
 multdat <= X1; multcoeff <= coeffB;
 state <= 2;
 end
 2: begin // B*X[1] is done, load C*X[2]
 multdat <= X2; multcoeff <= coeffC;
 state <= 3;
 end
 3: begin // C*X[2] is done, load output
 state <= 0;
 end
 default
 state <= 0;
 endcase
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

Clk

State 0 1 2 3 0 1

X0 0 X[0]

X1 0

X2 0 0

multout

0

00

0

X[0] X[0] X[0] X[1]

0 0 X[0]

0 0

2 3

00

X[1] X[1]

X[0] X[0]

0 1

X[1] X[2]

X[1]

0

2 3

X[2] X[2]

X[1] X[1]X[0]

X[0] X[0] X[0]

0 1

X[2] X[3]

X[2]

2 3

X[3] X[3]

X[2] X[2]X[1]

X[1] X[1] X[1]X[0]

AX0

0accum 0

0

0accumsum 0

0 0 0 AX1 BX0 0 0 AX2 BX1 CX0 0 AX3 BX2 CX1

AX0

AX0

AX0

AX0

AX0

0

0out 0 0 0 0

0

0

AX1

AX1

AX1+BX2

AX1+BX2

AX1+BX2

0 0

0

AX1+BX2AX0 AX0 AX0 AX1+BX2 AX1+BX2 AX1+BX2

AX2

AX2

AX2+BX1

AX2+BX1

AX2+BX1
+CX0

0

AX0
AX2+BX1

+CX0

0

0

AX3

AX3

AX3+BX2

AX3+BX2

AX2+BX1
+CX0

AX2+BX1
+CX0

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

A B C A B D A B E

SUM1 SUM2 SUM3

A B C D E

SUM1 SUM2 SUM3

Sharing

 SUM1 <= A+B+C;
 SUM2 <= A+B+D;
 SUM3 <= A+B+E;

assign tmp = A+B;
SUM1 <= tmp +C;
SUM2 <= tmp +D;
SUM3 <= tmp +E;

 HDL coding style can force a specific topology to be synthesized

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

 Let’s assume we have two counters controlling different design sections

 CounterA, a free running 8-bit counter

 CounterB, an 11-bit counter, counting from 0 to 1666 and resets to zero

© M. Shabany, ASIC/FPGA Chip Design

Resource Sharing: Area Reduction Technique

 Resource-shared version of these two counters

For compact designs where area is the primary
requirement, search for resources that have
similar counterparts in other modules that can
be brought to a global point in the hierarchy and
shared between multiple functional areas.

Shared Part

© M. Shabany, ASIC/FPGA Chip Design

Area Techniques: Reset Issues

 Some predefined modules are optimized area-wise in all vendors

 These modules have a specific constraint, e.g., only support synchronous reset,

 or only support reset to zero

 If the same functionality is used but violating these constraints, the function can

 not be realizable using predefined optimized modules

 In this case, the function is realized using general LUTs, thus a lot more area

© M. Shabany, ASIC/FPGA Chip Design

Area Techniques: Reset Issues

 Multiply-Accumulate (MAC) module can be realized using built-in DSP blocks

module dsp(
output reg [15:0] oDat,
Input Reset, Clk,
input [7:0] Dat1, Dat2);
reg [15:0] multfactor;
always @(posedge Clk or negedge Reset)
if(!Reset) begin
multfactor <= 0;
oDat <= 0;
end
else begin
multfactor <= (Dat1 * Dat2);
oDat <= multfactor + oDat;
end
endmodule

Resources Amount

Total Pins 34

Combination LUTs 0

Dedicated Logic Registers 0

Total Register 0

9-bit DSP Block 4

© M. Shabany, ASIC/FPGA Chip Design

Area Techniques: Reset Issues

 Multiply-Accumulate (MAC) module can NOT be realized using built-in DSP blocks

 Because the DSP block is customized only for asynchronous reset.

module dsp(
output reg [15:0] oDat,
Input Reset, Clk,
input [7:0] Dat1, Dat2);
reg [15:0] multfactor;
always @(posedge Clk)
if(!Reset) begin
multfactor <= 0;
oDat <= 0;
end
else begin
multfactor <= (Dat1 * Dat2);
oDat <= multfactor + oDat;
end
endmodule

Resources Amount

Total Pins 34

Combination LUTs 16

Dedicated Logic Registers 32

Total Register 32

9-bit DSP Block 1

© M. Shabany, ASIC/FPGA Chip Design

Area Techniques: Reset Issues

 Multiply-Accumulate (MAC) module can NOT be realized using built-in DSP blocks

 Because asynchronous reset can be done only to zero not a non-zero value

module dsp(
output reg [15:0] oDat,
Input Reset, Clk,
input [7:0] Dat1, Dat2);
reg [15:0] multfactor;
always @(posedge Clk or negedge Reset)
if(!Reset) begin
multfactor <= 16’hffff;
oDat <= 16’hffff;
end
else begin
multfactor <= (Dat1 * Dat2);
oDat <= multfactor + oDat;
end
endmodule

Resources Amount

Total Pins 34

Combination LUTs 48

Dedicated Logic Registers 32

Total Register 32

9-bit DSP Block 1

© M. Shabany, ASIC/FPGA Chip Design

RAM Reset Issues

 Some vendors have either synchronous or asynchronous Block RAMs (BRAMs)

module resetckt(
output reg [15:0] oDat,
input iReset, iClk, iWrEn,
input [7:0] iAddr, oAddr,
input [15:0] iDat);
reg [15:0] memdat [0:255];
always @(posedge iClk)
if(!iReset)
oDat <= 0;
else begin
if(iWrEn)
memdat[iAddr] <= iDat;
oDat <= memdat[oAddr];
end
endmodule

Resources Amount

Total Pins 51

Combination LUTs 1652

Dedicated Logic Registers 4152

Total Register 4152

Total Block Memory Bits 0

© M. Shabany, ASIC/FPGA Chip Design

RAM Reset Issues

 Some vendors have either synchronous or asynchronous Block RAMs (BRAMs)

module resetckt(
output reg [15:0] oDat,
input iReset, iClk, iWrEn,
input [7:0] iAddr, oAddr,
input [15:0] iDat);
reg [15:0] memdat [0:255];
always @(posedge iClk or negedge iReset)
if(!iReset)
oDat <= 0;
else begin
if(iWrEn)
memdat[iAddr] <= iDat;
oDat <= memdat[oAddr];
end
endmodule

Resources Amount

Total Pins 51

Combination LUTs 17

Dedicated Logic Registers 1

Total Register 1

Total Block Memory Bits 4096

Summary: An optimized FPGA resource will not be used if an
incompatible reset is assigned to it. The function will be implemented
with generic elements and will occupy more area.

© M. Shabany, ASIC/FPGA Chip Design

Power Reduction Techniques:

 In CMOS technology, dynamic power consumption is related to charging and
 discharging parasitic capacitances on gates and metal traces.

P = C.f.V2

 C: Capacitance
 Related to the number of gates that are toggling at any given time and the lengths
 of the routes connecting the gates

 f: frequency (related to the clock frequency)
 V: voltage (usually fixed in FPGAs)

 All of the power-reduction techniques ultimately aim at
reducing one of these three components.

© M. Shabany, ASIC/FPGA Chip Design

Power Reduction Techniques: Clock Issues

 The most effective power reduction technique related to the clock is to dynamically
 disable the clock in specific regions that do not need to be active in specific times

 To do this use

 Clock enable pin on Flip-flops (available in most modern devices)
 Global clock mux
 Clock gating (not preferred)

By gating portions of circuitry, the designer reduces the dynamic power
dissipation proportional to the amount of logic (capacitance C) and the
average toggling frequency of the corresponding gates (frequency f).
Note that the clock tree dissipates a lot of power!

© M. Shabany, ASIC/FPGA Chip Design

Power Reduction Techniques: Clock Issues

 When a clock is gated, the new net on the clock generates a new clock
domain. This new clock net requires a low-skew path to all FFs in its domain.

 For ASIC, these low-skew lines can be built in the custom clock tree, but it is
problematic for FPGA b/c of the limited number/fixed layout of low-skew lines.

© M. Shabany, ASIC/FPGA Chip Design

Power Reduction Techniques: Gated Clock

 Some synthesis tools have an option called “fix gated clocks”.
 This feature will automatically move the gating operation off of the clock line and
into the data path.

Enable

dout

Clk

din

Enable

dout

Clk

din

0

1

Gated clock removed

MUX adds delay to
the data path

module clockstest(
output reg dout,
input Clk, Enable,
input Din);
wire gated_clock = Clk & Enable;
always @(posedge gated_clock)
dout <= din;
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Power Reduction Techniques: Clock Issues (skew)

module clockgating(
output dataout,
input clk, datain,
input ClockEnable);
reg ff0, ff1, ff2;
wire clk1;
assign clk1 = clk & ClockEnable;
assign dataout = ff2;
always @(posedge clk)
ff0 <= datain;
always @(posedge clk)
ff1 <= ff0;
always @(posedge clk1)
ff2 <= ff1;
endmodule

Clk

ClkEnable

datain dataout

dLogic

dClK

dClk>dLogic

 Hold time violation in FPGAs is mainly because of the excessive delay on the clock
 Hold time violation b/c of low logic delay is rare due to the built-in delays of the
 logic blocks and routing resources

© M. Shabany, ASIC/FPGA Chip Design

Clock Domain

 A clock domain is a section of logic where all synchronous elements
 (flip-flops, synchronous RAMs, pipelined multipliers) are clocked by the same net.

 If all flip-flops are clocked by a single global clock input to the FPGA, then
 there is one clock domain.

 Two clock domains for different interfaces:

© M. Shabany, ASIC/FPGA Chip Design

Crossing Clock Domains

 Crossing clock domains: passing signals between multiple clock domains

 Clock domain crossing can be a major source of problem b/c:

1. If there are two clock domains that are asynchronous, then failures are
 often related to the relative timing between the clock edges.

2. Problems will vary from technology to technology. Higher speed technologies
 with smaller setup and hold constraints will have statistically fewer problems

3. EDA tools typically do not detect these problems. Static timing
 analysis tools analyze timing based on individual clock zones

4. Cross-clock domain failures are difficult to detect and debug if
 they are not understood. It is very important that all inter-clock interfaces
 are well defined and handled before any implementation takes place.

© M. Shabany, ASIC/FPGA Chip Design

Crossing Clock Domains : Issues

 Two clock domains

 Consider a fine case, which works properly

 Phase difference is such that both hold time and setup time constraints are met

Combinational
Logic

Slow Clock

In
Out

Fast Clock

Din

© M. Shabany, ASIC/FPGA Chip Design

Crossing Clock Domains : Issues

 Consider a problematic case

 Phase difference is such that the setup time for the second FF is violated

Combinational
Logic

Slow Clock

In
Out

Fast Clock

Din

© M. Shabany, ASIC/FPGA Chip Design

Crossing Clock Domains: What happens with violation?

 A timing violation occurs when the data input to a flip-flop transitions within a
 window around the active clock edge as defined by the setup and hold times

 This timing violation exists b/c if the setup and hold times are violated, a node
 within the flip-flop can become suspended at a voltage that is not valid for
 either a logic-0 or logic-1.

 Rather than saturating at a high or low voltage, the transistors may dwell at
 an intermediate voltage before settling on a valid level (which may or
 may not be the correct level).

This is called Metastability

© M. Shabany, ASIC/FPGA Chip Design

Crossing Clock Domains: Metastability

 Data transition is not allowed within the setup/hold condition window

 The output may remain metastable for the entire clock period (functional failure)

 In an RTL simulation, no setup and hold violations occur and thus no signal

 will ever go metastable.

 Even harder to verify in the gate-level simulations.

 Undefined dwell time before the
signal settles

 This dwell time adds to the path’s
propagation delay

Dwell time

© M. Shabany, ASIC/FPGA Chip Design

How to Avoid Metastability?

 To resolve the metastability problem, three main solutions may be used:

 Case I: the period of one clock is a multiple of the other

 Using Phase Locked Loop (PLL) or Delay Locked Loop (DLL)

 Case II: Otherwise

 Double Flopping (pass a single-bit signal b/w asynchronous clock domains)

 Using a FIFO structure (pass multi-bit signals b/w asynchronous clocks)

© M. Shabany, ASIC/FPGA Chip Design

Avoid Metastability Using PLL or DLL

 DLL adjusts the phase of the faster (capture) clock domain to match that of the
 slower (transmitting) clock domain.

 The total amount of time available for data to pass between the two domains

 is always at its maximum possible value.

Condition: Propagation delay b/w FFs less than the period of the fast clock

Phase adjustment in general not possible

© M. Shabany, ASIC/FPGA Chip Design

Avoid Metastability by Double Flopping

 The dwell time before the signal settles adds to the path’s propagation delay
 This dwell time is unpredictable

Dsync Dout

By adding no logic between the two
FFs, we maximize the amount of
time provided to the signal to settle.

Used to pass a single bit

© M. Shabany, ASIC/FPGA Chip Design

Architectural Techniques : Resource Sharing

© M. Shabany, ASIC/FPGA Chip Design

Synthesis Tool Optimization (Target Library)

© M. Shabany, ASIC/FPGA Chip Design

Synthesis Tool Optimization (Target Library)

 The process by which Synthesis tool maps to sequential cells from the
technology library:

 Tries to save speed and area by using a more complex sequential cell

 May be slower but will reduce area

© M. Shabany, ASIC/FPGA Chip Design

Synthesis in Design Corners

 Library standard cells are typically characterized under “normal”
temperature and voltage

 Vendors allow for synthesis of circuits, which will not operate under
“nominal” conditions by embedding operating condition models in the
technology libraries

