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ASIC/FPGA Design Flow 

1. HDL Coding 
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2.  Simulation 

 

3. Synthesis 4. Placement & routing 

 

5. Timing Analysis & Verification 

 

 In this course we learn all the above steps in detail for 

 ASIC Platform  

 FPGA Platform 

 

Front-End Back-End 
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Synthesis 
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  Synthesis tool: 
 Analyzes a piece of Verilog code and converts it into optimized logic gates 

 This conversion is done according to the “language semantics” 

          We have to learn these language semantics, i.e., Verilog code. 
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Synthesis 

 Why using synthesis tools?  
 
 It is an important tool to improve designers’ productivity to 
meet today’s design complexity. 

 
 If a designer can design 150 gates a day, it will take 6666 man’s 
day to design a 1-million gate design, or almost 2 years for 10 
designers! This is assuming a linear grow of complexity when 
design get bigger. 
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Synthesis in Different Levels 

 Synthesis can be done in different levels: 
 

 High-level Synthesis 
 To convert an algorithm-level description to an RTL code 

 

 RTL Synthesis 
 To convert an RTL code to a gate-level netlist 

 

 Logic Synthesis 
  To convert the gate-level description to a specific logic library  
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Synthesis 

 Synthesis tool: (RTL & Logic Synthesis) 

 Input:  

 HDL Code 

 “Technology library” file           Standard cells (known by transistor size, 90nm) 

o  Basic gates (AND, OR, NOR, …) 

o  Macro cells (Adders, Muxes, Memory, Flip-flops, …) 

 Constraint file (Timing, area, power, loading requirement, optimization Alg.) 

 Output: 

  A gate-level “Netlist” of the design 

 Timing files (.sdf) 

This process is done using various optimization algorithms 
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Synthesis 

 Synthesis = Translation + Logic Optimization + Technology Mapping 

 Translation: going from RTL to Boolean function 

 Logic Optimization : Optimizing and minimizing Boolean function 

 Technology Mapping (TM): Map the Boolean function to the target library 
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Technology 

Mapping

Synthesis
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Synthesis 

 Synthesis = Translation + Logic Optimization + Technology Mapping 

 
 

always @ (a, b) 
          case ({a,b}) 

     2’b00: out = 1; 
     2’b01: out = 1; 
     2’b11: out = 1; 
     default: out = 0; 
endcase 

     

baabbaout 

baout 
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Synthesis Tools 

 

 Example: A 2-to-1 Multiplexer (2x1-MUX) 

If (s==0) 
    f = a; 
else 
    f = b; 

Verilog code 
(has to comply with certain structures) 

a

b

s
f

Synthesized gate-level 

Synthesis 
Tool 
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Schematic 
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HDL Tech Lib Constraints

Gate-level Netlist

 Synthesis tool: 
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Synthesis 
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Synthesis is Constraint-Driven 

 

 
  (Delay)سرعت

 
 (Area) هساحت 

 
  (Power Consumption)تواى هصرفی 
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Synthesis is Constraint-Driven 

 Synthesis process takes some time 

 

 Synthesis time is a function of the target critical path 
 Clock period: 10nsec           synthesis time: 10 minutes 

 Clock period: 5 nsec            synthesis time: 40 minutes 
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Synthesis is Constraint-Driven 

 The designer guides the synthesis tool by providing design constraints: 

 Timing requirements  (max. expected clock frequency) 

 Area requirements 

 Maximum power consumption 

 

 The synthesis tool uses this information and tries to generate the  

     smallest possible design that will satisfy the timing requirements 

  

 Without any constraints specified, the synthesis tool will generate a  

     non-optimal netlist, which might not satisfy the designer’s requirements 
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Synthesis Tools 

  Commercial Synthesis Tools: 

Vendor Name Product Name Platform 

Altera Quartus II FPGA 

Xilinx ISE FPGA 

Mentor Graphics Modelsim, Precision FPGA/ASIC 

Synopsys Design Compiler ASIC 

Synplicity Synplify ASIC 

Cadence Ambit ASIC 
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Divide and Conquer for Optimal Synthesis 

 To achieve the best synthesis result, the design is better to be partitioned 

     into smaller parts. 

 Partitioning: the process of dividing complex designs into smaller parts 
 

 Ideally, all partitions would be planned prior to writing any HDL: 

Initial partitions are defined by the HDL 

Initial partitions can be modified using Synthesis Tool 

 



© M. Shabany, ASIC/FPGA Chip Design 

Partitioning 

 Partition a design into different modules based on the functionality 

 Pros: 

 Separation of the cores that have different functionality 

 More manageability of smaller modules 

 Easier managements of a design implementation by a team 

 Focus to write optimized HDL code for each module 

 Possibility of reusing smaller IPs/Block in other designs 

 Cons: 

 Routing congestion or increased die size due to more signaling b/w modules 

 

 Not too small not too large modules (~10Kgates) 
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Partitioning in Verilog 

 module statement defines hierarchical blocks (partitions): 

Instantiation of an entity or module creates a new level of hierarchy 

 Inference of Arithmetic Circuits (+, -, *) can create a new level of hierarchy 

 Always statements do not create hierarchy 

 

module ADR_BLK (…. 

DEC U1 (ADR, CLK, INST); 

OK  U2 (ADR, CLK, AS, OK); 

endmodule; 

 

ADR_BLK 

 

U1 

 

 
U2 

 

 

 

DEC 

OK 

ADR 

CLK 

AS 

INST 

OK 
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Good Partitioning (Partition at Register Boundaries) 

 Try to design so the hierarchy boundaries follow register outputs. 

 Related combinational logics in the middle are merged into the same block 

Combinational optimization techniques can still be fully exploited 
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Poor Partitioning (Partition at Combinational Logic) 

 Try not to break the Comb. Logics into several hierarchies 

 Synthesis tool must preserve port definitions 

 Logic optimization does not cross block boundaries 

 Adjacent blocks of combinational logic cannot be merged 

 Path from REG A to REG C may be larger and slower than necessary! 
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Good Partitioning (Avoid Glue Logic) 

 The NAND gate at the top-level serves  

     only to “glue” the instantiated cells.  

 Optimization is limited because the  

     glue logic cannot be “absorbed”  

 Additional compile needed at top-level 

 

 The glue logic can now be optimized  

     with other logic 

 Top-level design is only a structural  

    netlist, it does not need to be compiled 
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Good Partitioning  

 .  را از هن جذا کٌیذ JTAG، کلاکها، پذها، Core Logicدر جسءبٌذی، 

 

 Top_level 

Mid_level 

Functional Core 

v 

v 

TOP 

Mid 

Functional Core 

Clock Gen. 

JTAG 
Asynch. 

 سلسله هراتب طرح 
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HDL for Synthesis 
 “Bad” HDL code does not allow efficient optimization during synthesis 

 Garbage in, garbage out! 

 Logic synthesizer doesn’t do magic! designer has to take some responsibility in coding. 

 Example: 

 input sub; 
input [3:0] a,b; 
output [3:0] y; 
assign y = sub ? (a-b) : (a+b)     

input sub; 
input [3:0] a,b; 
output [3:0] y; 
wire [3:0] tmp; 
assign tmp = sub ? ~b : b; 
assign y = a + tmp + {3’b0,sub} 

b[3:0]

a[3:0]

sub

0

1

Y[3:0]
4

4

b[3:0]

a[3:0]

sub

0

1

Y[3:0]
4

4

Ci

Y[3:0]

More efficient 
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HDL for Synthesis (General Guidelines) 

 Think Hardware: 

 Write HDL hardware descriptions 

 Think of the topology implied by the code 

 Do not write HDL simulation models 

 No explicit delays 

 No file I/O 

 Think RTL: 

 Writing in an RTL coding style means describing: 

 Register architecture 

 Circuit topology 

 Functionality between registers 

 Synthesis tool optimizes logic between registers: 

 It does not optimize the register placement 

 



© M. Shabany, ASIC/FPGA Chip Design 

HDL for Synthesis (General Guidelines) 

 است لازم کاراهذ برًاهه یک ًوشتي برای
 که افساری سخت برای هٌاسبی توپولوشی

 کٌین ارائه شود، سازی پیاده است قرار

 که هذلهایی از خود فسار سخت کذ ًوشتي در
 هاًٌذ شود هی استفاده آًها از سازی شبیه در

 .بپرهیسیذ سیگٌالها تاخیر اعوال
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Synthesizable Constructs 

 Not all Verilog constructs are synthesizable because: 
 Does not make sense in hardware (e.g. $display, initial block ) 
 Not possible to achieve (e.g. delay control like #10) 
 Not support by design flow (e.g. use of tran in P&R) 
 Too difficult or too abstract for the synthesis software (e.g. A / B) 

 

• Ports (input, output, inout) 
• Parameter 
• module 
• wire, reg, tri 
• function, task 
• always, if, else, case 
• assign 
• for, while 

Synthesizable Constructs 



© M. Shabany, ASIC/FPGA Chip Design 

Non-Synthesizable Constructs 

 Initial (used only in testbenches) 

 real (real type data type) 

 time (time data type) 

 assign for reg data types 

 comparison to X and Z are ignored (e.g., a == 1’bz) 

 delays “#” are ignored by synthesis tools as if it is not there 

Non-Synthesizable Constructs 
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HDL for Synthesis (Priority logic) 

 The order in which assignments are written in an always block may affect the logic 

     that is synthesized. 

 Example: 

 
always @ (s, clr, d, q) 
    begin 
         Q = q; 
         if (s)   Q = d; 
         if (clr) Q = 0; 
     end 

always @ (s, clr, d, q) 
    begin 
         Q = q; 
         if (clr) Q = 0; 
         if (s)   Q = d; 
     end 

s    clr        Q 

0      0              q 
0      1              0 
1      0              d 
1      1              0

s    clr        Q 

0      0              q 
0      1              0 
1      0              d 
1      1              d

q

0

clr

0

1

d

s

0

1

Q

q

d

s

0

1

0

clr

0

1

Q

Different 

Non of the above infer latch, why? 

Priority 

Priority 
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HDL for Synthesis (Priority logic) 

 The order in which assignments are written in an always block may affect the logic 

     that is synthesized. 

 Example: 

 
always @ (s0,s1, d0, d1) 
    begin 
         Q = 0; 
         if (s0)   Q = d0; 
         else if (s1) Q = d1; 
     end 

0

d1

s1

0

1

d0

s0

0

1

Q

Different 

Non of the above infer latch, why? 

always @ (s0,s1, d0, d1) 
    begin 
         Q = 0; 
         if (s1)   Q = d1; 
         else if (s0) Q = d0; 
     end 

0

d0

s0

0

1

d1

s1

0

1

Q

Priority 

Priority 
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HDL for Synthesis (Priority logic) : Poor Coding 

1st Priority 
2ndPriority 
3rd Priority 
4th Priority 
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HDL for Synthesis (Priority logic) : Good Coding 



© M. Shabany, ASIC/FPGA Chip Design 

Flatten Logic Structure 

 Applies to the logic that is chained due to the priority encoding 
 Synthesis and layout tools are smart enough to duplicate logic to reduce 
fan-out, but they are not smart enough to break up logic structures that are 
coded in a serial Fashion 

 

module regwrite( 
output reg [2:0] Rout, 
input clk, in, 
input [2:0] Ctrl); 
always @ (posedge clk) 
if          (Ctrl[0]) Rout[0] <= in; 
else if  (Ctrl[1]) Rout[1] <= in; 
else if  (Ctrl[2]) Rout[2] <= in; 
endmodule 

Clk

Ctrl[0]

0

1xin Rout[0]

Clk

0

1xin Rout[1]

Ctrl[0]

Ctrl[1]

Clk

0

1xin Rout[2]

Ctrl[1]

Ctrl[2]

Ctrl[0]
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Flatten Logic Structure 

 Flatten the logic (when conditions are mutually exclusive) 

 No priority logic (each register is controlled independently) 

 Less logic delay 
 

module regwrite( 
output reg [2:0] rout, 
input clk, in, 
input [2:0] ctrl); 
always @(posedge clk) 
 if(ctrl[0]) rout[0] <= in; 
 if (ctrl[1]) rout[1] <= in; 
 if (ctrl[2]) rout[2] <= in; 
endmodule 

Clk

Ctrl[0]

0

1xin Rout[0]

Clk

0

1xin Rout[1]

Clk

0

1xin Rout[2]

Ctrl[1]

Ctrl[2]
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HDL for Synthesis 
  It is possible to derive gate-level implementation of “+”, “-”, “*” operations and  

      write them in Verilog. However, it is better to use just “+, “-”, “*” and let the  

      synthesis tool to decide which block to use to meet the performance 

 Example: 

 
module multi3x3 (a, b, y) 
input [2:0] a, b; 
output [5:0] y; 
assign y = a * b;     

More efficient 

 Unsigned operations 
 Performance: 

 Power 
 Area 
 Speed 

a[0]a[1]a[2]

a[0]a[1]a[2]

a[0]a[1]a[2]

b[0]

b[1]

b[2]

y[0]y[1]y[2]y[3]y[4]y[5]
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Design for Synthesis (No Timing Loop) 
 Do not use timing loops in the circuit 

 Timing loop: when an output of a combinational logic loops back to its input 

 Results in oscillation 

 Complicated timing analysis 

 Timing glitches 

 Solution: Add a flip-flop on the feedback path 

 

 

 

 

 

 

 

Out
In2

In1

T1

T2

Out
In2

In1

Clk

Oscillates with f=1/(T1+T2) 
(Not desired) No Oscillation (Desired) 

always @ (posedge gated) 
      Out <= (In1 & Out) | In2; 

always @ (*) 
    Out = (In1 & Out) | In2; 
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Latch Inference in Combinational Logic 
 When realizing combinational logic with always block using if-else or case 

     constructs care has to be taken to avoid latch inference after synthesis 

 The latch is inferred when “incomplete” if-else or case statements are declared 

 This latch is “unwanted” as the logic is combinational not sequential 

 To avoid latch inference make sure to specify all possible cases “explicitly” 

 Two practical approaches to avoid latch inference: 

 For if-else construct: 

1. Initialize the variable before the if-else construct 

2. Use else to explicitly list all possible cases 

 For case constructs:  

1. Use default to make sure no case is missed! 

 If there is some logic path through the always block that does not assign a value 

     to the output a latch is inferred 

 Do NOT let it up to the synthesis tool to act in unspecified cases and do specify 

     all cases explicitly. 
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Avoid Latch Inference in If-else Statements 

Example:  

 

 

 

 

 

 

 

 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
begin 
    if (S==1) 
         out = A; 
    else 
         out =B; 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
begin 
    if (S==1) 
         out = A; 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B, S; 
output reg out; 
always @(*) 
Begin 
    out = B; 
    if (S==1) 
         out = A; 
end 
endmodule 

B

S

A

out

B

S

A

out

1 

2 

Latch Inference 

No Latch 

No Latch 

outA

S

Q

Clk

D
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Avoid Latch Inference in Case Statements 

Example:  

 

module DUT (A, B, S, out); 
input A, B; 
Input [1:0] S; 
output reg out; 
 
always @(A, B, S) 
begin 
    case (S) 
         2’b00: out = A; 
         2’b01: out = B; 
    endcase 
end 
endmodule 

module DUT (A, B, S, out); 
input A, B; 
Input [1:0] S; 
output reg out; 
always @(A, B, S) 
begin 
    case (S) 
         2’b00: out = A; 
         2’b01: out = B; 
         default: out = 1’b0; 
    endcase 
end 
endmodule 

B

S[0]

A

out

S[1]

Latch Inference No Latch 

out
Q

Clk

A

B

S[0]

0

1

S[1]

D
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Clock 

 Clock is the most important signal in the design (golden) 

 Why is it different from other signals? 

 It is a global signal, i.e., it is routed across all modules in the design 

 Treat clock as a golden signal  

 No buffering should be done on clock during coding and synthesis 

 Clock buffering to fix the clock skew is done during clock tree synthesis  

   (part of APR in ASIC flow, which is done automatically) 

 No “clock gating”: 

  Clock should be directly connected to flip-flops without any logic gating 

  Otherwise, it results in clock skew in the design (undesired!) 
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Clock (No Internally Generated Clock) 

 Do not use internally generated clocks 

 

 

 

 

 

 

 Complicates the timing analysis 

 Setup time 

 Hold time 

 Difficult to deal with during synthesis 

 

 

 

 

 Clk

in1

in2

Out2
Out1

Internally generated clock 

always @ (posedge Clk) 
           Out1 <= In1; 

 
  always @ (posedge Out1) 

           Out2 <= In2; 
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Clock (No Gating) 

 Gated clock: clock that is enabled by an enable signal  

 Applications: 

 Used for power saving to switch off part of the chip in fraction of time 

 Avoid clock gating as much as possible 

 Because results in clock skew 

 Not a golden signal anymore! 

assign  gated = Clk & Enable 
 

always @ (posedge gated) 
           Out <= In; 

Gated clock 

 Clk

in Out

Enable

gated
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Clock (No Gating) 

 If clock gating is used avoid large fan-outs 

 

 

 

 

 

 

 

 

 

  

 Large fan-out (deriving 32 flip flops) 

 Large delay          high clock skew 

assign gated = Clk & Enable; 
 
always @ (posedge gated) 
           Out[31:0] <= In[31:0]; 

 Clk

in0 Out0

Enable

gated

in1 Out1

in31 Out31
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Clock (No Gating) 

 Low Fan-out Alternative: 

 Clk

in0 Out0

Enable

gated1

in1 Out1

in2 Out2

in3 Out3

 Clk

in28 Out28

Enable

gated8

in29 Out29 in31 Out31

in30 Out30

and U1 (gated1, Clk, Enable); 
and U2 (gated2, Clk, Enable); 
 
and U8 (gated8, Clk, Enable); 
 
 
always @ (posedge gated1) 
           Out[3:0] <= In[3:0]; 
always @ (posedge gated2) 
           Out[7:4] <= In[7:4]; 
 
always @ (posedge gated8) 
           Out[31:28] <= In[31:28]; 
 

Explicit “and” instantiation 
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Clock 
 

 Do not use clock as an input or selector (results in an inefficient clock tree) 

 

 

 

 

 

 

 

A

B

Clk

0

1

Q1

Q2

posedge Clk

negedge Clk

A

B

Clk-like

0

1

Different from Clock 

Clk

Q1

Q2

Clk-like
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Architectural Techniques : Critical Path 

 Critical path in any design is the longest path between 

1.  Any two internal latches/flip-flops 

2.  An input pad and an internal latch 

3.  An internal latch and an output pad 

4.  An input pad and an output pad 

Use FFs right after/before  

input/out pads to avoid  

the last three cases 

(off-chip and packaging delay) 
3

Comb. Logic

1

2

4

Output
Pad

Input
Pad

The maximum delay between any 
two sequential elements in a 

design will determine the max 
clock speed 
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Digital Design Metrics 

  Three primary physical characteristics of a digital design:  
 

 Speed 
 Throughput 
 Latency 
 Timing 

 Area 
 Power 
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Digital Design Metrics 

 Speed 
 

 Throughput : 
 The amount of data that is processed per clock cycle (bits per second) 

 
 Latency 

 The time between data input and processed data output (clock cycle) 
 

 Timing 
 The logic delays between sequential elements (clock period) 
 When a design does not meet the timing it means the delay of the 
critical path is greater than the target clock period 
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Maximum Clock Frequency: Critical Path 

 Maximum Clock Frequency: 

 

 

skewroutingsetuplogicqclk

max
TTTTT

1
F






 Tclk-q :  time from clock arrival until data arrives at Q 
 

 Tlogic : propagation delay through logic between flip-flops 
 

 Trouting : routing delay between flip-flops 
 

 Tsetup : minimum time data must arrive at D before the next rising edge of clock 
 

 Tskew : propagation delay of clock between the launch flip-flop and the capture flip-flop. 
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Pipelining (to Improve Throughput) 

 Pipelining: 
 Comes from the idea of a water pipe: continue sending water without 
     waiting the water in the pipe to be out 
 Used to reduce the critical path of the design 
 
 
 
 

 Advantageous: 
 Reduction in the critical path 
 Higher throughput (number of computed results in a give time) 
 Increases the clock speed (or sampling speed) 
 Reduces the power consumption at same speed 

Water PipeWater In Water Out
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Architectural Techniques :Pipelining 

 Pipelining: 
 

 Very similar to the assembly line in the auto industry 
 

 The beauty of a pipelined design is that new data can begin processing 
before the prior data has finished, much like cars are processed on an 
assembly line. 
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Architectural Techniques :Pipelining 

 Original System: (Critical path = τ1      Max operating freq: f1=1/τ1) 

 

 
 
 
 

 Pipelined version: (Critical path = τ2      Max operating freq: f2=1/τ2) 
 Smaller Critical Path           higher throughput (τ2<τ1             f2>f1) 
 Longer latency 
 
 
 

 

 

 

 

 

 

 

2 cycles  
later 

3 cycles  
later 

Comb. Logic

Clk

X

Critical path = τ1      Max operating freq: f1=1/τ1

f

Comb. Logic

Clk

X Comb. Logic
f

Pipelining Register

Critical path = τ2           Max operating freq: f2=1/τ2
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Architectural Techniques : Pipeline depth 

 Pipeline depth: 0 (No Pipeline) 

 Critical path: 3 Adders 

 

 

 

 

 Latency : 0 

  

 
 

 

 

 

 

 

 

 

X(1)

Y(1)

X(2)

Y(2)

timet1 t2 t3

X(3)

Y(3)

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2

wire  w1, w2; 
assign  w1 = X + a; 
assign  w2 = w1 + b; 
assign  Y = w2 + c; 
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Architectural Techniques : Pipeline depth 

 Pipeline depth: 1 (One Pipeline register Added) 

 Critical path: 2 Adders 

 

 

 

 

 Latency : 1 

  

 
 

 

 

 

 

 

 

 

X(1)

Y(1)

X(2)

Y(2)

timet1 t2 t3

X(3)

Y(3)

t4

wire  w1; 
reg   w2; 
assign  w1 = X + a; 
assign  Y = w2 + c; 
 
always @(posedge Clk) 
     w2 <= w1 + b; 

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2
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Architectural Techniques : Pipeline depth 

 Pipeline depth: 2 (One Pipeline register Added) 

 Critical path: 1 Adder 

 

 

 

 

 Latency : 2 

  

 
 

 

 

 

 

 

 

 

X(1)

Y(1)

X(2)

Y(2)

t1 t2 t3

X(3)

Y(3)

t4 t5

X(n)

a(n) b(n) c(n)

Y(n)
w1 w2

reg   w1, w2; 
assign  Y = w2 + c; 
 
always @(posedge Clk) 
  begin 
      w1 <= X + a; 
      w2 <= w1 + b; 
   end 
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Architectural Techniques :Pipelining 

 Clock period and throughput as a function of pipeline depth: 

 

 Clock period : 

 

 Throughput:            

 

 
 

 

 

 

 

 

 

 

nT

3 4 5 6

Pipeline Depth

Clock Period

Throughput

n

1
Clk 

Adding register layers improves 
timing by dividing the critical path 

into two paths of smaller delay 
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Architectural Techniques : Pipelining 

 General Rule: 

  Pipelining latches can only be placed across feed-forward cutsets 
of the circuit. 

 

 Cutset:  

A set of paths of a circuit such that if these paths are removed, the 
circuit becomes disjoint (i.e., two separate pieces) 

 

 Feed-Forward Cutset: 

 A cutset is called feed-forward cutset if the data moves in the 
forward direction on all the paths of the cutset 
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Architectural Techniques : Pipelining 

 Example: 

 FIR Filter 

 Three feed-forward cutsets are shown 

 

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c

X(n)

a b

Y(n)

X(n-1) X(n-2)

NOT a feed-forward cutset

c
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Architectural Techniques : Pipelining 

Critical Path: 1M+2A Critical Path: 2A 

assign  w1 = a*Xn; 
assign  w2 = b*Xn_1 ; 
assign  w3 = w1 + w2; 
assign  w4 = c*Xn_2; 
assign  Y = w3 + w4; 
always @(posedge Clk) 
  begin 
      Xn_1 <= Xn; 
      Xn_2 <= Xn_1; 
   end 

X(n)

a b

Y(n)

X(n-1) X(n-2)

r1 r2 r3

c

W1

assign  Y = r3 + w1; 
assign  w1 = r1 + r2; 
always @(posedge Clk) 
  begin 
      Xn_1 <= Xn; 
      Xn_2 <= Xn_1; 
      r1 <= a*Xn;   
      r2 <= b*Xn_1; 
      r3 <= c*Xn_2; 
   end 

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

w1 w2

w3

w4
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Architectural Techniques : Pipelining 

Cloc
k 

Input 1 2 3 4 5 Output 

0 X(0) aX(0) - aX(0) - aX(0) Y(0) 

1 X(1) aX(1) bX(0) aX(1)+bX(0) - aX(1)+bX(0) Y(1) 

2 X(2) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2) 

3 X(3) aX(3) bX(2) aX(3)+bX(2) cX(1) aX(3)+bX(2)+cX(1) Y(3) 

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1
2

3
4

5
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Architectural Techniques : Pipelining 

Cloc
k 

Input 1 2 3 4 5 Output 

0 X(0) - - - - - - 

1 X(1) aX(0) - aX(0) - aX(0) Y(0) 

2 X(2) aX(1) bX(0) aX(1)+bX(0) - aX(1)+bX(0) Y(1) 

3 X(3) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2) 

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1 2 3 4
5
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Architectural Techniques : Pipelining 

Clock Input 1 2 3 4 5 Output 

0 X(0) - - - - - - 

1 X(1) aX(0) - - - - - 

2 X(2) aX(1) bX(0) aX(0) - aX(0) Y(0) 

3 X(3) aX(2) bX(1) aX(1)+bX(0) - aX(1)+bX(0) Y(1) 

4 X(3) aX(2) bX(1) aX(2)+bX(1) cX(0) aX(2)+bX(1)+cX(0) Y(2) 

 Even more pipelining 

 

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

1 2 3 4
5
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Architectural Techniques : Fine-Grain Pipelining 

 Pipelining at the operation level 

 Break the multiplier into two parts 

 

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c

X(n)

a b

Y(n)

X(n-1) X(n-2)

c
m1

m2

m1

m2

m1

m2

Fine-Grain 
Pipelining 
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Unrolling the Loop Using Pipelining 

 Calculation of X3 

Throughput  =  8/3, or 2.7 bits/clock 
Latency = 3 clocks 
Timing  = One multiplier in the critical path 

 

 Iterative implementation: 
 No new computations can begin until the 
     previous computation has completed 

module power3( 
output reg [7:0] X3, 
output finished, 
input [7:0] X, 
input clk, start);  
reg [7:0] ncount; 
reg [7:0] Xpower, Xin; 
assign finished = (ncount == 0); 

always@(posedge clk) 
if (start) begin 
XPower <= X; Xin<=X; 
ncount <= 2; 
X3 <= XPower; 
end 
else if(!finished) begin 
ncount <= ncount - 1; 
XPower <= XPower * Xin; 
End 

endmodule Clk

start

0

1X[0:7] xpower
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Unrolling the Loop Using Pipelining 

 Calculation of X3 

Throughput  =  8/1, or 8 bits/clock (3X improvement) 
Latency = 3 clocks 
Timing  = One multiplier in the critical path 

 

 Penalty: More Area 

module power3( 
output reg [7:0] XPower, 
input clk, 
input [7:0] X); 
reg [7:0] XPower1, XPower2; 
reg [7:0] X2; 
always @(posedge clk) begin 
// Pipeline stage 1 
XPower1 <= X; 
// Pipeline stage 2 
XPower2 <= XPower1 * XPower1 ; 
X2 <= XPower1 ; 
// Pipeline stage 3 
XPower <= XPower2 * X2; 
end 
endmodule 

Clk

X[0:7]

Clk

xpower

xpower1 xpower2

X2

Unrolling an algorithm with n iterative loops increases 
throughput by a factor of n 
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Removing Pipeline Registers (to Improve Latency) 

 Calculation of X3 

Throughput  =  8 bits/clock (3X improvement) 
Latency = 0 clocks 
Timing  = Two multipliers in the critical path 

 

module power3( 
Output [7:0] XPower, 
input [7:0] X); 
reg [7:0] XPower1, XPower2; 
reg [7:0] X1, X2; 
always @(*) 
    XPower1 = X; 
always @(*) 
begin 
    X2 = XPower1; 
    XPower2 = XPower1*XPower1; 
end 
 
assign XPower = XPower2 * X2; 
 
endmodule 

Latency can be reduced by removing pipeline registers 

X[0:7] xpower

xpower1 xpower2

X2
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Architectural Techniques : Parallel Processing 
 In parallel processing the same hardware is duplicated to 

 Increases the throughput  without changing the critical path 

 Increases the silicon area 

X(n)

a(n) b(n)

Y(n)

X(n)

a(n) b(n)

Y(n)

X(2k)

a(2k) b(2k)

Y(2k)

X(2k+1)

a(2k+1) b(2k+1)

Y(2k+1)

Pipelining Parallel Processing 

Clock Freq: 2f 

Throughput: 2M samples 

Clock Freq: f 

Throughput: M samples 

Clock Freq: f 

Throughput: 2M samples 
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Architectural Techniques : Parallel Processing 

 Parallel processing for a 3-tap FIR filter 

 Both have the same critical path (M+2A) 
X(3k)

a b

Y(3k+2)

c

X(3k+1)X(3k+2)

c a

Y(3k+1)

b

b c

Y(3k)

a

X(3k-2) X(3k-1)

X(n)

a b

Y(n)

X(n-1) X(n-2)

c

Parallel Factor:3 
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Register Balancing (to Improve Timing) 

 Redistribute logic evenly between registers to minimize the worst-case 
delay between any two registers 

b/c clock is limited by only the worst-case delay 
 

module adder( 
output reg [7:0] Sum, 
input [7:0] A, B, C, 
input clk); 
reg [7:0] rA, rB, rC; 
always @(posedge clk) begin 
rA <= A; 
rB <= B; 
rC <= C; 
Sum <= rA + rB + rC; 
end 
endmodule 

Clk

Sum

A

Clk

Clk

B

C

rA

rB

rC
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Register Balancing (to Improve Timing) 

 Redistribute logic evenly between registers to minimize the worst-case 
delay between any two registers 

b/c clock is limited by only the worst-case delay 
 

module adder( 
output reg [7:0] Sum, 
input [7:0] A, B, C, 
input clk); 
reg [7:0] rABSum, rC; 
always @(posedge clk) begin 
rABSum <= A + B; 
rC <= C; 
Sum <= rABSum + rC; 
end 
endmodule 

Clk

A

Clk

B

C Sum

rABSum

rC
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Speed-related Techniques: Summary 

 Throughput-related: 
 A high-throughput architecture is one that maximizes the number of bits 
     per second that can be processed by a design. 
 Unrolling an iterative loop increases throughput. 
 The penalty for unrolling an iterative loop is an increase in area. 

 
 Latency-related:  

A low-latency architecture is one that minimizes the delay from the input 
    of a module to the output. 
 Latency can be reduced by removing pipeline registers. 
 The penalty for removing pipeline registers is an increase in combinatorial   
     delay between registers. 
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Speed-related Techniques: Summary 

 Timing-related: 
 

Timing refers to the clock speed of a design. A design meets timing when 
    the maximum delay between any two sequential elements is smaller than 
    the minimum clock period. 
 Adding register layers improves timing by dividing the critical path into 
     two paths of smaller delay. 
 Separating a logic function into a number of smaller functions that can be 
    evaluated in parallel reduces the delay to the longest of the substructures. 
 By removing priority encodings where they are not needed, the logic  
     structure is flattened, and the path delay is reduced. 
 Register balancing improves timing by moving combinatorial logic from the  
     critical path to an adjacent path. 
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Area-related Techniques: 

 Area is the second primary factors of a digital design 
 

 A topology that targets area is one that reuses the logic resources to the 
greatest extent possible, often at the expense of throughput (speed). 

 
 This requires a recursive data flow, where the output of one stage is fed back 
to the input for similar processing. 
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Area-related Techniques: Rolling Up the Pipeline 

 Opposite to the unrolling the loop to increase throughput  
 

 Unrolling the loop achieved by adding more registers to hold intermediate  
     values, i.e., more area 
 
 Thus to reduce the area the reversed action should be done (i.e., Sharing) 

 
  Resource Sharing is used where there are functional blocks that 
     can be used in other areas of the design or even in different modules 
 
 Sharing logic resources requires special control circuitry to determine which   
     elements are input to the particular structure 
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Rolling Up the Pipeline 

 Calculation of  P = A*B 

 A: a normal integer with the fixed point just to the right of the LSB (8 bits) 
 B: a fractional number with a fixed point just to the left of the MSB (8 bits) 
 P: the product, which requires only 8-bits 

 
 One implementation alternative: 

 Critical path: one multiplier (complex itself) 
 One product every clock cycle (high throughput) 

module mult8( 
output [7:0] P, 
input [7:0] A, 
input [7:0] B, 
input clk); 
reg [15:0] prod16; 
assign P= prod16[15:8]; 
always @(posedge clk) 
prod16 <= A * B; 
endmodule 
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Rolling Up the Pipeline : Resource Sharing 
 Rolling Up the Pipeline: 

 Using series of shift-and-add operations 
 Smaller critical path 
 Less area due to the simple operations and sharing 
 One product every 8 clock cycles! (low throughput) 

 
 

module mult8(output done,output reg [7:0] product, 
input [7:0] A, input [7:0] B, input clk, input start); 
reg [4:0] multcounter; // number of shift/adds 
reg [7:0] shiftB; // shift register for B 
reg [7:0] shiftA; // shift register for A 
wire adden; // enable addition 
assign adden = shiftB[7] & !done; 
assign done = multcounter[3]; 
always @(posedge clk) begin 
if(start) multcounter <= 0; 
else if(!done) multcounter <= multcounter + 1; 
// shift register for B 
if(start) shiftB <= B; 
else shiftB[7:0] <= {shiftB[6:0], 1’b0}; 

// shift register for A 
if(start) shiftA <= A; 
else shiftA[7:0] <= {shiftA[7], shiftA[7:1]}; 
// calculate multiplication 
if(start) product <= 0; 
else if(adden) product <= product + shiftA; 
end 
endmodule 
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Resource Sharing: Area Reduction Technique 

 Back to  FIR Filter: 

 Three multiplications, two adders, two registers 

X(n)

a b

Y(n)

Y(n) = ax(n) + bx(n-1) + cx(n-2)

X(n-1) X(n-2)

c
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Resource Sharing: Area Reduction Technique 

 Sharing the Multiply-Accumulate (MAC) to reduce area: 

 One multiplication, one adder, one register 

 Requires some control logic to determine which input is inserted (FSM) 

DataIn

Coeff

MAC

DataIn=X[0], 0,0,0, X[1], 0,0,0,X[2], ….

Coeff= a, b, c, 0,a, b, c, 0, ...

Out

DataIn

Coeff

multcoeff

multdat

multout
accumsum

accum

State == 0

0

1
16'b0

State

X0

X1

X2
State == 0

0

1
16'b0
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Resource Sharing: Area Reduction Technique 

module sharing( 
output reg [15:0] Out, 
input clk, 
input [7:0] datain, // X[0] 
input [7:0] coeffA, coeffB, coeffC); // coeffs for low pass filter 
// define input/output samples 
reg [7:0] X0, X1, X2; 
reg [2:0] state; // holds state for sequencing through mults 
wire [15:0] accum; // accumulates multiplier products 
reg [15:0] accumsum; 
wire [15:0] multout; // multiplier product 
reg [7:0] multdat; 
reg [7:0] multcoeff;  
 
assign multout =(state==0)?16'b0:multcoeff * multdat; 
// clearing and loading accumulator 
assign accum = (state==0)?16'b0:accumsum; 
 
always @(posedge clk) 
accumsum <= accum + multout; 

always @ (posedge clk) begin 
case(state) 
        0: begin // load new data 
 X0 <= datain; X1 <= X0; X2 <= X1; 
 multdat <= datain; multcoeff <= coeffA; 
 state <= 1; 
  Out <= accumsum;  
        end 
        1: begin // A*X[0] is done, load B*X[1] 
 multdat <= X1; multcoeff <= coeffB; 
 state <= 2; 
         end 
         2: begin // B*X[1] is done, load C*X[2] 
 multdat <= X2; multcoeff <= coeffC; 
 state <= 3; 
          end 
          3: begin // C*X[2] is done, load output 
 state <= 0; 
           end 
           default 
 state <= 0; 
           endcase 
end 
endmodule 
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Resource Sharing: Area Reduction Technique 

Clk

State 0 1 2 3 0 1

X0 0 X[0]

X1 0

X2 0 0

multout

0

00

0

X[0] X[0] X[0] X[1]

0 0 X[0]

0 0

2 3

00

X[1] X[1]

X[0] X[0]

0 1

X[1] X[2]

X[1]

0

2 3

X[2] X[2]

X[1] X[1]X[0]

X[0] X[0] X[0]

0 1

X[2] X[3]

X[2]

2 3

X[3] X[3]

X[2] X[2]X[1]

X[1] X[1] X[1]X[0]

AX0

0accum 0

0

0accumsum 0

0 0 0 AX1 BX0 0 0 AX2 BX1 CX0 0 AX3 BX2 CX1

AX0

AX0

AX0

AX0

AX0

0

0out 0 0 0 0

0

0

AX1

AX1

AX1+BX2

AX1+BX2

AX1+BX2

0 0

0

AX1+BX2AX0 AX0 AX0 AX1+BX2 AX1+BX2 AX1+BX2

AX2

AX2

AX2+BX1

AX2+BX1

AX2+BX1
+CX0

0

AX0
AX2+BX1

+CX0

0

0

AX3

AX3

AX3+BX2

AX3+BX2

AX2+BX1
+CX0

AX2+BX1
+CX0
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Resource Sharing: Area Reduction Technique 

A B C A B D A B E

SUM1 SUM2 SUM3

A B C D E

SUM1 SUM2 SUM3

Sharing 

  SUM1 <= A+B+C; 
  SUM2 <= A+B+D; 
  SUM3 <= A+B+E; 

assign  tmp = A+B; 
SUM1 <= tmp +C; 
SUM2 <= tmp +D; 
SUM3 <= tmp +E; 

 HDL coding style can force a specific topology to be synthesized 
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Resource Sharing: Area Reduction Technique 

 Let’s assume we have two counters controlling different design sections 

 CounterA, a free running 8-bit counter 

 CounterB, an 11-bit counter, counting from 0 to 1666 and resets to zero 
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Resource Sharing: Area Reduction Technique 

 Resource-shared version of these two counters 

For compact designs where area is the primary 
requirement, search for resources that have 
similar counterparts in other modules that can 
be brought to a global point in the hierarchy and 
shared between multiple functional areas. 

Shared Part 
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Area Techniques: Reset Issues 

 Some predefined modules are optimized area-wise in all vendors 

 

 These modules have a specific constraint, e.g., only support synchronous reset, 

     or only support reset to zero 

 

 If the same functionality is used but violating these constraints, the function can  

     not be realizable using predefined optimized modules 

 

 In this case, the function is realized using general LUTs, thus a lot more area 
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Area Techniques: Reset Issues 

 Multiply-Accumulate (MAC) module can be realized using built-in DSP blocks 

module dsp( 
output reg [15:0] oDat, 
Input Reset, Clk, 
input [7:0] Dat1, Dat2); 
reg [15:0] multfactor; 
always @(posedge Clk or negedge Reset) 
if(!Reset) begin 
multfactor <= 0; 
oDat <= 0; 
end 
else begin 
multfactor <= (Dat1 * Dat2); 
oDat <= multfactor + oDat; 
end 
endmodule 

Resources Amount 

Total Pins 34 

Combination LUTs 0 

Dedicated Logic Registers 0 

Total Register 0 

9-bit DSP Block 4 
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Area Techniques: Reset Issues 

 Multiply-Accumulate (MAC) module can NOT be realized using built-in DSP blocks 

 Because the DSP block is customized only for asynchronous reset. 

module dsp( 
output reg [15:0] oDat, 
Input Reset, Clk, 
input [7:0] Dat1, Dat2); 
reg [15:0] multfactor; 
always @(posedge Clk) 
if(!Reset) begin 
multfactor <= 0; 
oDat <= 0; 
end 
else begin 
multfactor <= (Dat1 * Dat2); 
oDat <= multfactor + oDat; 
end 
endmodule 

Resources Amount 

Total Pins 34 

Combination LUTs 16 

Dedicated Logic Registers 32 

Total Register 32 

9-bit DSP Block 1 
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Area Techniques: Reset Issues 

 Multiply-Accumulate (MAC) module can NOT be realized using built-in DSP blocks 

 Because asynchronous reset can be done only to zero not a non-zero value 

module dsp( 
output reg [15:0] oDat, 
Input Reset, Clk, 
input [7:0] Dat1, Dat2); 
reg [15:0] multfactor; 
always @(posedge Clk or negedge Reset) 
if(!Reset) begin 
multfactor <= 16’hffff; 
oDat <= 16’hffff; 
end 
else begin 
multfactor <= (Dat1 * Dat2); 
oDat <= multfactor + oDat; 
end 
endmodule 

Resources Amount 

Total Pins 34 

Combination LUTs 48 

Dedicated Logic Registers 32 

Total Register 32 

9-bit DSP Block 1 
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RAM Reset Issues 

 Some vendors have either synchronous or asynchronous Block RAMs (BRAMs) 

module resetckt( 
output reg [15:0] oDat, 
input iReset, iClk, iWrEn, 
input [7:0] iAddr, oAddr, 
input [15:0] iDat); 
reg [15:0] memdat [0:255]; 
always @(posedge iClk) 
if(!iReset) 
oDat <= 0; 
else begin 
if(iWrEn) 
memdat[iAddr] <= iDat; 
oDat <= memdat[oAddr]; 
end 
endmodule 

Resources Amount 

Total Pins 51 

Combination LUTs 1652 

Dedicated Logic Registers 4152 

Total Register 4152 

Total Block Memory Bits 0 
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RAM Reset Issues 

 Some vendors have either synchronous or asynchronous Block RAMs (BRAMs) 

module resetckt( 
output reg [15:0] oDat, 
input iReset, iClk, iWrEn, 
input [7:0] iAddr, oAddr, 
input [15:0] iDat); 
reg [15:0] memdat [0:255]; 
always @(posedge iClk or negedge iReset) 
if(!iReset) 
oDat <= 0; 
else begin 
if(iWrEn) 
memdat[iAddr] <= iDat; 
oDat <= memdat[oAddr]; 
end 
endmodule 

Resources Amount 

Total Pins 51 

Combination LUTs 17 

Dedicated Logic Registers 1 

Total Register 1 

Total Block Memory Bits 4096 

Summary: An optimized FPGA resource will not be used if an 
incompatible reset is assigned to it. The function will be implemented 
with generic elements and will occupy more area. 



© M. Shabany, ASIC/FPGA Chip Design 

Power Reduction Techniques: 

 In CMOS technology, dynamic power consumption is related to charging and  
     discharging parasitic capacitances on gates and metal traces. 
 

P = C.f.V2 

 

 C: Capacitance  
 Related to the number of gates that are toggling at any given time and the lengths  
   of the routes connecting the gates 

 f: frequency (related to the clock frequency) 
 V: voltage (usually fixed in FPGAs) 

 

 All of the power-reduction techniques ultimately aim at 
reducing one of these three components. 
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Power Reduction Techniques: Clock Issues 

 The most effective power reduction technique related to the clock is to dynamically 
     disable the clock in specific regions that do not need to be active in specific times 
 
 To do this use 

 Clock enable pin on Flip-flops (available in most modern devices) 
 Global clock mux 
 Clock gating (not preferred) 

By gating portions of circuitry, the designer reduces the dynamic power 
dissipation proportional to the amount of logic (capacitance C) and the 
average toggling frequency of the corresponding gates (frequency f). 
Note that the clock tree dissipates a lot of power! 
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Power Reduction Techniques: Clock Issues 

 When a clock is gated, the new net on the clock generates a new clock 
domain. This new clock net requires a low-skew path to all FFs in its domain. 

 

 For ASIC, these low-skew lines can be built in the custom clock tree, but it is 
problematic for FPGA b/c of the limited number/fixed layout of low-skew lines.  



© M. Shabany, ASIC/FPGA Chip Design 

Power Reduction Techniques: Gated Clock 

 Some synthesis tools have an option called “fix gated clocks”. 
 This feature will automatically move the gating operation off of the clock line and 
into the data path. 

 
 

Enable

dout

Clk

din

Enable

dout

Clk

din

0

1

Gated clock removed 

MUX adds delay to  
the data path 

module clockstest( 
output reg dout, 
input Clk, Enable, 
input Din); 
wire gated_clock = Clk & Enable; 
always @(posedge gated_clock) 
dout <= din; 
endmodule 
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Power Reduction Techniques: Clock Issues (skew) 

module clockgating( 
output dataout, 
input clk, datain, 
input ClockEnable); 
reg ff0, ff1, ff2; 
wire clk1; 
assign clk1 = clk & ClockEnable; 
assign dataout = ff2; 
always @(posedge clk) 
ff0 <= datain; 
always @(posedge clk) 
ff1 <= ff0; 
always @(posedge clk1) 
ff2 <= ff1; 
endmodule 

Clk

ClkEnable

datain dataout

dLogic

dClK

dClk>dLogic

 Hold time violation in FPGAs is mainly because of the excessive delay on the clock 
 Hold time violation b/c of low logic delay is rare due to the built-in delays of the  
     logic blocks and routing resources 
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Clock Domain 

 A clock domain is a section of logic where all synchronous elements  
    (flip-flops, synchronous RAMs, pipelined multipliers) are clocked by the same net. 

 
 If all flip-flops are clocked by a single global clock input to the FPGA, then  
     there is one clock domain. 

 
 Two clock domains for different interfaces: 
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Crossing Clock Domains 

  Crossing clock domains: passing signals between multiple clock domains 

  Clock domain crossing can be a major source of problem b/c: 
 

1. If there are two clock domains that are asynchronous, then failures are  
       often related to the relative timing between the clock edges.  
 

2.    Problems will vary from technology to technology. Higher speed technologies 
       with smaller setup and hold constraints will have statistically fewer problems 
 

3.    EDA tools typically do not detect these problems. Static timing 
        analysis tools analyze timing based on individual clock zones 
 

4.    Cross-clock domain failures are difficult to detect and debug if 
        they are not understood. It is very important that all inter-clock interfaces 
        are well defined and handled before any implementation takes place. 
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Crossing Clock Domains : Issues 

 Two clock domains  

 Consider a fine case, which works properly 

 

 

 

 

 Phase difference is such that both hold time and setup time constraints are met 

 

 

Combinational
Logic

Slow Clock

In
Out

Fast Clock

Din
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Crossing Clock Domains : Issues 

 Consider a problematic case 

 

 

 

 

 Phase difference is such that the setup time for the second FF is violated 

 

 

Combinational
Logic

Slow Clock
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Out

Fast Clock

Din



© M. Shabany, ASIC/FPGA Chip Design 

Crossing Clock Domains: What happens with violation? 

 A timing violation occurs when the data input to a flip-flop transitions within a 
        window around the active clock edge as defined by the setup and hold times 

 

 This timing violation exists b/c if the setup and hold times are violated, a node 
        within the flip-flop can become suspended at a voltage that is not valid for 
        either a logic-0 or logic-1. 

 

 Rather than saturating at a high or low voltage, the transistors may dwell at  
        an intermediate voltage before settling on a valid level (which may or  
        may not be the correct level). 

 
This is called Metastability 
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Crossing Clock Domains: Metastability 

 Data transition is not allowed within the setup/hold condition window 

 The output may remain metastable for the entire clock period (functional failure) 

    In an RTL simulation, no setup and hold violations occur and thus no signal  

       will ever go metastable.  

 

    Even harder to verify in the gate-level simulations. 

 

 

 

 Undefined dwell time before the 
signal settles 

 
 This dwell time adds to the path’s 
propagation delay  

Dwell time 
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How to Avoid Metastability? 

 To resolve the metastability problem, three main solutions may be used: 

 

 Case I: the period of one clock is a multiple of the other 

 Using Phase Locked Loop (PLL) or Delay Locked Loop (DLL) 

 Case II: Otherwise 

 Double Flopping (pass a single-bit signal b/w asynchronous clock domains) 

 Using a FIFO structure (pass multi-bit signals b/w asynchronous clocks) 
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Avoid Metastability Using PLL or DLL 

 DLL adjusts the phase of the faster (capture) clock domain to match that of the 
    slower (transmitting) clock domain.  

 The total amount of time available for data to pass between the two domains 

     is always at its maximum possible value. 

 

 

 

Condition: Propagation delay b/w FFs less than the period of the fast clock 

Phase adjustment in general not possible 
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Avoid Metastability by Double Flopping 

 The dwell time before the signal settles adds to the path’s propagation delay 
 This dwell time is unpredictable 

 

 

 

Dsync Dout 

By adding no logic between the two 
FFs, we maximize the amount of 
time provided to the signal to settle. 

Used to pass a single bit 
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Architectural Techniques : Resource Sharing 
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Synthesis Tool Optimization (Target Library) 
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Synthesis Tool Optimization (Target Library) 

 The process by which Synthesis tool maps to sequential cells from the 
technology library: 

  Tries to save speed and area by using a more complex sequential cell 

  May be slower but will reduce area 
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Synthesis in Design Corners 

 Library standard cells are typically characterized under “normal” 
temperature and voltage 

 Vendors allow for synthesis of circuits, which will not operate under 
“nominal” conditions by embedding operating condition models in the 
technology libraries 

 


