

Blind Source Separation (BSS) and Independent Componen Analysis (ICA)

Massoud BABAIE-ZADEH

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.1/39

- Part I Introduction
- Part II Separability
- Part III Some famous approaches for solving BSS problem
- Part IV Extensions to ICA
- Part V Applications, my works and perspectives

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.2/39

Part I

Introduction to BSS and ICA

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.3/39

Part I Blind Source Separation (BSS)

- s_i : Original source (assumed to be independent).
- x_i : Received (mixed) signals.
- y_i : Estimated sources.

Goal: $y_i = s_i$

Is it possible? Isn't it ill-posed?

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.4/39

✓ Observation in 1982: The angular position (p(t)) and the angular velocity (v(t) = dp(t)/dt) of a joint is represented by two nervous signals $f_1(t)$ and $f_2(t)$, each one is a linear combination of position and velocity:

$$\begin{aligned}
f_1(t) &= a_{11}p(t) + a_{12}v(t) \\
f_2(t) &= a_{21}p(t) + a_{22}v(t)
\end{aligned}$$

At each instant the nervous system knows p(t) and $v(t) \Rightarrow$

p(t) and v(t) must be recoverable only from $f_1(t)$ and $f_2(t)$

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.5/39

Part I Herault and Jutten (HJ) Algorithm

- Presented in GRETSI'85, COGNITAVA'85 and Snowbird'86.
- Choosing m_{12} and m_{21} correctly results in separation:

$$\begin{cases} y_1 = x_1 - m_{12}y_2 \\ y_2 = x_2 - m_{21}y_1 \end{cases} \rightarrow \mathbf{y} = \mathbf{x} - \mathbf{M}\mathbf{y} \rightarrow \mathbf{y} = (\mathbf{I} + \mathbf{M})^{-1}\mathbf{x}$$

■ Main Idea: $E \{f(y_1)g(y_2)\} = 0 \Leftrightarrow$ Independence (ICA)

The algorithm:

 $m_{12} \leftarrow m_{12} - \mu f(y_1)g(y_2)$ $m_{21} \leftarrow m_{21} - \mu f(y_2)g(y_1)$

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.6/39

- mid 80's-mid 90's: Slow development:
 - Neural networks scientists were challenging some other topics!
 - Mainly French scientists.
 - 1988: J.-L Lacoume work based on cumulant.
 - Starting 1989: P. Comon and J.-F. Cardoso's papers.
- 1994: Bell & Sejnowsky work.
- From mid 90's: Exploring interest.
- 1999: First international conference, ICA'99 (France), collecting more than 100 researchers.
- ICA2000 (Finland), ICA2001 (USA), ICA2003 (Japan) and upcoming ICA2004 (Spain).

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.7/39

Part II

Separability

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.8/39

Part II Linear (instantaneous) mixtures

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.9/39

Part II Linear (instantaneous) mixtures

- Main assumption: The sources (s_i's) are statistically *independent*.
- Separability: Does the independence of the outputs (ICA) imply the separation of the sources (BSS)?

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.10/39

Part II Counter-example

- s_1 and s_2 independent $\sim N(0,1)$.
- C an orthonormal (rotation) matrix.
- $\mathbf{R}_{\mathbf{y}} = E \{ \mathbf{y}\mathbf{y}^T \} = \mathbf{C}\mathbf{R}_{\mathbf{s}}\mathbf{C}^T = \mathbf{C}\mathbf{C}^T = \mathbf{I}$ $\Rightarrow y_1 \text{ and } y_2 \text{ are independent.}$

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.11/39

$$y_1 = a_1 s_1 + a_2 s_2 + \dots + a_N s_N$$
$$y_2 = b_1 s_1 + b_2 s_2 + \dots + b_N s_N$$

- \bullet s_i 's are independent
- \checkmark y_1 and y_2 are independent
- If for an *i* we have $a_i b_i \neq 0 \Rightarrow s_i$ is Gaussian.

If y_1 and y_2 are independent, a Non-Gaussian source cannot be present in both of them.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.12/39

Part II Separability of linear mixtures

the outputs

✓ Linear mixtures are separable, provided that there is no more than 1 Gaussian source ([Comon 91 & 94] inspired from [Darmois 1947]):
 Independence of ______ Separation of

✓ Indeterminacies are trivial: Permutation and Scale.

the sources

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.13/39

Part II Geometric Interpretation [Puntonet et. al. GRETSI 95]

Bounded sources:

 $\begin{array}{l} p_{s_1s_2}(s_1,s_2) = p_{s_1}(s_1)p_{s_2}(s_2) \\ p_{s_2|s_1}(s_2|s_1) = p_{s_2}(s_2) \end{array} \Rightarrow \begin{array}{l} \text{The distribution of } (s_1,s_2) \\ \text{forms a rectangular region} \end{array}$

$$\mathbf{x} = \mathbf{As}, \ \mathbf{A} = \begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$$

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.14/39

Non-Gassianity, isn't it too restrictive?

- Many practical signals (speech, PSK, bounded signals, ...) are not Gaussian.
- Cramer's Theorem:
 - $X = X_1 + X_2 + \dots + X_N$.
 - X_i 's independent.
 - X is Gaussian \Rightarrow All X_i's must be Gaussian.
- Gaussian sources can be separated if there is some time dependence (non-iid) or non-stationarity.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.15/39

Question: Can we use decorrelation (2nd order independence) for source separation? \rightarrow NO!

Example:

- x_i 's are decorrelated ($\mathbf{R}_{\mathbf{x}} = \mathbf{I}$).
- **B** any orthogonal (rotation) matrix.
- $\mathbf{y} = \mathbf{B}\mathbf{x} \Rightarrow \mathbf{R}_{\mathbf{y}} = \mathbf{B}\mathbf{R}_{\mathbf{x}}\mathbf{B}^T = \mathbf{I} \Rightarrow y_i$'s decorrelated.
 - Decorrelation property remains unchanged under any orthogonal mixing matrix.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.16/39

Principle Component Analysis (PCA) = Karhunen-Loève Transform = Hotelling transform = Whitening

•
$$\mathbf{R}_{\mathbf{x}} = E\left\{\mathbf{x}\mathbf{x}^{T}\right\}$$
: Covariance matrix of \mathbf{x} .

- E and A: Eigenvector and eigenvalue matrices of R_x .
- **•** $\mathbf{W} \triangleq \mathbf{E}^T$: The whitening matrix.

$$\mathbf{y} = \mathbf{W}\mathbf{x} \Rightarrow \mathbf{R}_{\mathbf{y}} = \mathbf{\Lambda}$$
 (diagonal)
 $\Rightarrow y_i$'s are decorrelated.

PCA is NOT sufficient for ICA (it leaves an unknown rotation).

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.17/39

Part II Another interpretation

$$\mathbf{y} = \mathbf{B}\mathbf{x} \to \mathbf{B} = \begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$$

 \checkmark 2 unkowns (*a* and *b*) must be determined.

✓ Decorrelation property ($E \{y_1 y_2\} = 0$) gives only 1 equation ⇒ Not sufficient.

 \Rightarrow Decorrelation (2nd order independence) is not sufficient \Rightarrow Higher Order Statistics (HOS).

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.18/39

Part II Summary of Part II

- Linear mixtures can be separated (At most 1 Gaussian source).
- Remaining indeterminacies: Scale, Permutation.
- Output independence is sufficient for source separation.
- Independence cannot be reduced to decorrelation.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.19/39

Part III

Some famous approaches for solving BSS problem

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.20/39

- 4th order independence is sufficient.
- Higher order characteristics of a random variable is usually described using its cumulants.
- cumulants: Coefficients of Taylor series of the second characteristic function $\Psi_x(s) = \ln \Phi_x(s) = \ln E \{e^{sx}\}.$
- Cross-cumulants: Coefficients of Taylor series of $\Psi_{x_1x_2}(s_1, s_2) = \ln E \{e^{s_1x_1+s_2x_2}\}.$
- 4th order independence ≡ Cancelling Cum₁₃(y₁, y₂), Cum₂₂(y₁, y₂) and Cum₃₁(y₁, y₂).
- Requires non-zero 4th order statistics, Only for linear mixtures.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.21/39

Part III Mutual Information, an independence criterion

Independence of $\mathbf{x} = (x_1, \dots, x_N)^T \Leftrightarrow p_{\mathbf{x}}(\mathbf{x}) = \prod_{i=1}^N p_{x_i}(x_i)$

$$I(\mathbf{x}) = \mathsf{KL}\left(p_{\mathbf{x}}(\mathbf{x}) \| \prod_{i=1}^{N} p_{x_i}(x_i)\right) = \int_{\mathbf{x}} p_{\mathbf{x}}(\mathbf{x}) \ln \frac{p_{\mathbf{x}}(\mathbf{x})}{\prod_i p_{x_i}(x_i)} d\mathbf{x}$$
$$= \sum_i H(x_i) - H(\mathbf{x})$$

H Shannon's entropy $\rightarrow H(\mathbf{x}) = -E\{p_{\mathbf{x}}(\mathbf{x})\}$

Main property:

•
$$I(\mathbf{x}) \ge 0$$
.

• $I(\mathbf{x}) = 0$ iff x_1, \ldots, x_N are independent.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.22/39

Part III Minimizing output mutual information

•
$$\frac{\partial}{\partial \mathbf{B}} I(\mathbf{y}) = E \left\{ \boldsymbol{\psi}_{\mathbf{y}}(\mathbf{y}) \mathbf{x}^T \right\} - \mathbf{B}^{-T}.$$

• $\boldsymbol{\psi}_{\mathbf{y}}(\mathbf{y}) \triangleq (\boldsymbol{\psi}_{y_1}(y_1), \dots, \boldsymbol{\psi}_{y_N}(y_N))^T.$
• $\boldsymbol{\psi}_{y_i}(y_i) \triangleq -\frac{d}{dy_i} \ln p_{y_i}(y_i).$

- Steepest descent: $\mathbf{B} \leftarrow \mathbf{B} \mu \frac{\partial}{\partial \mathbf{B}} I(\mathbf{y})$.
- Equivarient algorithm [Cardoso&Laheld 96]: $\mathbf{B} \leftarrow \mathbf{B} - \mu \nabla_{\mathbf{B}} I(\mathbf{y}) \mathbf{B}$

•
$$\nabla_{\mathbf{B}}I(\mathbf{y}) = \frac{\partial}{\partial \mathbf{B}}I(\mathbf{y})\mathbf{B}^T = E\left\{\psi_{\mathbf{y}}(\mathbf{y})\mathbf{y}^T\right\} - \mathbf{I}.$$

• Not applicable for more complicated mixtures $(I(\mathbf{y} + \boldsymbol{\Delta}) - I(\mathbf{y}) = ?).$

• Score function of a random variable x: $\psi_x(x) \triangleq -\frac{d}{dx} \ln p_x(x)$

- For a random vector $\mathbf{x} = (x_1, \dots, x_N)^T$:
 - Marginal Score Function (MSF):

$$\boldsymbol{\psi}_{\mathbf{x}}(\mathbf{x}) \triangleq (\psi_{x_1}(x_1), \dots, \psi_N(x_N))^T, \quad \psi_i(x_i) \triangleq -\frac{d}{dx_i} \ln p_{x_i}(x_i)$$

Joint Score Function (JSF):

- $\boldsymbol{\varphi}_{\mathbf{x}}(\mathbf{x}) \triangleq (\varphi_1(x_1), \dots, \varphi_N(x_N))^T, \quad \varphi_i(\mathbf{x}) \triangleq -\frac{\partial}{\partial x_i} \ln p_{\mathbf{x}}(\mathbf{x})$
 - Score Function Difference (SFD):

$$\boldsymbol{\beta}_{\mathbf{x}}(\mathbf{x}) \triangleq \boldsymbol{\psi}_{\mathbf{x}}(\mathbf{x}) - \boldsymbol{\varphi}_{\mathbf{x}}(\mathbf{x})$$

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.24/39

Part III Differential of mutual information $I(\mathbf{x} + \boldsymbol{\Delta}) - I(\mathbf{x}) = E\left\{\boldsymbol{\Delta}^{T}\boldsymbol{\beta}_{\mathbf{x}}(\mathbf{x})\right\} + o(\boldsymbol{\Delta})$ For a differentiable multi-variate function: $f(\mathbf{x} + \boldsymbol{\Delta}) - f(\mathbf{x}) = \boldsymbol{\Delta}^{T} \cdot (\nabla f(\mathbf{x})) + o(\boldsymbol{\Delta})$

SFD can be called the stochastic gradient of the mutual information.

✓ Maximizing Non-Gaussianity of the outputs.

- $x_1 = a_{11}s_1 + a_{12}s_2 + \cdots + a_{1N}s_N$: each x_i is 'more Gaussian' than all sources.
- $y_1 = b_{11}x_1 + b_{12}x_2 + \cdots + b_{1N}x_N$: Determine b_{1i} 's to produce as non-Gaussian as possible $y_1 \Rightarrow$ Separation.
- Measure of non-Gaussianity: Neg-entropy.
- Example: FastICA algorithm [Hyvärinen 99].

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.26/39

✓ Second order approaches (applicable for Gaussian sources, too):

- Exploiting time correlation
 - $E\{y_1(n)y_2(n)\} = 0 \text{ and } E\{y_1(n)y_2(n-1)\} = 0.$
 - Requires time correlation (non-applicable for iid sources).
- Exploiting non-stationarity: Joint diagonalization of Covariance matrix [Pham 2001].
 - Requires non-stationarity.

✓ Non-separable if ALL these three properties:

Gaussian.

- 🥑 iid.
- stationary.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.28/39

Algorithms based on output independence:

- Cancelling 4th order cross-cumulants.
- Minimizing mutual information.
- Algorithms based on non-Gaussianity.
- Second order algorithms:
 - Algorithms based on time correlation.
 - Algorithms based on non-stationarity.

Part IV

Extensions to ICA

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.30/39

Part IV Extensions to linear instantaneous mixtures

- Complex signals.
- Noisy ICA:

$$\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n}$$

- Different number of sources and sensors:
 - Overdetermined mixtures.
 - Estimating number of sources?
 - Underdetermined mixtures.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.31/39

Part IV Convolutive Mixtures

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.32/39

Part IV Convolutive Mixtures

✓ Separation system:

$$\mathbf{y}(n) = \mathbf{B}_0 \mathbf{x}(n) + \mathbf{B}_1 \mathbf{x}(n-1) + \dots + \mathbf{B}_M \mathbf{x}(n-M)$$

✓ Extension to the Widrow's noise canceller system.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.32/39

Part IV Convolutive Mixtures

- ✓ Separation system:
 - $\mathbf{y}(n) = \mathbf{B}_0 \mathbf{x}(n) + \mathbf{B}_1 \mathbf{x}(n-1) + \dots + \mathbf{B}_M \mathbf{x}(n-M)$

✓ Extension to the Widrow's noise canceller system.

✓ Convolutive mixtures are separable, too [Yellin, Weinstein, 95]: Output independence \rightarrow Separation.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.33/39

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.33/39

✓ In general, non-linear mixtures are not separable:

Output Independence ⇒ source separation

✓ Independence is not strong enough for source separation.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.33/39

How to overcome this problem?

- Regularization techniques (smoothness)?
- Structural constraints
- Others (temporal correlation? non-stationarity?)

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.33/39

Part IV PNL (Post Non-Linear) mixtures

✓ Separability theorem [Taleb & Jutten, IEEE trans. SP, 99]:
 The outputs are independent iff:

$$g_i = f_i^{-1}$$

BA = PD

Provided that: The sources are really mixed (at least 2 non-zero entries in each row of A).

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.34/39

Part IV CPNL (Convolutive PNL) mixtures

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.35/39

Part V

Applications, my works and perspectives

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.36/39

Part V Applications

- Feature Extraction.
- Image denoising (using noisy ICA methods).
- Medical engineering applications (ECG, EEG, MEG, Artifact separation).
- Telecommunications (Blind Channel Equalization, CDMA).
- Financial applications.
- Audio separation.
- Seismic applications.
- Astronomy.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.37/39

Part V My works, mainly at my PhD thesis

- Gradient of mutual information (SFD):
 - General approach for any (separable) parametric model.
 - Gradient approach.
 - Minimization-Projection approach.
 - Special cases: Linear, convolutive and PNL.
- Proof of separability of PNL mixtures.
- A geometric method for separating PNL mixtures (compensating sensors' nonlinearities before separation).
- Post Convolutive mixtures and their properties.
- Even smooth non-linear systems may preserve the independence.
- (Not at my PhD thesis) Blind estimation of a Wiener telecommunication channel (linear channel + nonlinear receiver).
 - Manuscript downloadable from:

http://www.lis.inpg.fr/theses

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.38/39

Part V Perspectives

Continuation of my previous works

- Writing 2 papers.
- Adaptive algorithms.
- Underdetermined mixtures: it seems that the minimization-projection approach can be used for identifying (but not separating) such systems.
- Working on PNL-L mixtures:

- PNL mixtures: Compensating sensor non-linearities before separation.
- Further work on developed algorithms (improvements, convergence analysis, ...)
- Searching for £nding better (maybe optimal) SFD estimators.
- A few other small ideas.
- Working on audio source separation.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.39/39