Blind Source Separation (BSS) and Independent Componen Analysis (ICA)

Massoud BABAIE-ZADEH

Outline

- PartI Introduction
- Part II Separability
- Part III Some famous approaches for solving BSS problem
- Part IV Extensions to ICA
- Part V Applications, my works and perspectives

Part I

Introduction to BSS and ICA

Part I Blind Source Separation (BSS)

- s_{i} : Original source (assumed to be independent).
- x_{i} : Received (mixed) signals.
- y_{i} : Estimated sources.

Goal: $y_{i}=s_{i}$

- Is it possible? Isn't it ill-posed?

Part I Some historical notes: Herault, Jutten and Ans' work

\checkmark Observation in 1982: The angular position $(p(t))$ and the angular velocity $(v(t)=d p(t) / d t)$ of a joint is represented by two nervous signals $f_{1}(t)$ and $f_{2}(t)$, each one is a linear combination of position and velocity:

$$
\left\{\begin{array}{l}
f_{1}(t)=a_{11} p(t)+a_{12} v(t) \\
f_{2}(t)=a_{21} p(t)+a_{22} v(t)
\end{array}\right.
$$

At each instant the nervous system knows $p(t)$ and $v(t) \Rightarrow$
$p(t)$ and $v(t)$ must be recoverable only from $f_{1}(t)$ and $f_{2}(t)$

Part I Herault and Jutten (HJ) Algorithm

- Presented in GRETSI'85, COGNITAVA'85 and Snowbird'86.
- Choosing m_{12} and m_{21} correctly results in separation:

$$
\left\{\begin{array}{l}
y_{1}=x_{1}-m_{12} y_{2} \\
y_{2}=x_{2}-m_{21} y_{1}
\end{array} \rightarrow \mathbf{y}=\mathbf{x}-\mathbf{M} \mathbf{y} \rightarrow \mathbf{y}=(\mathbf{I}+\mathbf{M})^{-1} \mathbf{x}\right.
$$

- Main Idea: $E\left\{f\left(y_{1}\right) g\left(y_{2}\right)\right\}=0 \Leftrightarrow$ Independence (ICA)
- The algorithm:

$$
\begin{aligned}
& m_{12} \longleftarrow m_{12}-\mu f\left(y_{1}\right) g\left(y_{2}\right) \\
& m_{21} \longleftarrow m_{21}-\mu f\left(y_{2}\right) g\left(y_{1}\right)
\end{aligned}
$$

Part I Growing up interest

- mid 80's-mid 90's: Slow development:
- Neural networks scientists were challenging some other topics!
- Mainly French scientists.
- 1988: J.-L Lacoume work based on cumulant.
- Starting 1989: P. Comon and J.-F. Cardoso's papers.
- 1994: Bell \& Sejnowsky work.
- From mid 90's: Exploring interest.
- 1999: First international conference, ICA'99 (France), collecting more than 100 researchers.
- ICA2000 (Finland), ICA2001 (USA), ICA2003 (Japan) and upcoming ICA2004 (Spain).

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.7/39

Part II

Separability

Part II Linear (instantaneous) mixtures

$$
\xrightarrow{\mathrm{s}} \underset{\mathrm{~A}}{\mathrm{x}} \mathrm{~B} \xrightarrow{\mathrm{y}}
$$

- $\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right)^{T}$: source vector.
- $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{T}$: observation vector.
- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)^{T}$: output vector.
- $\mathrm{x}=$ As: unknown mixing system.
- $\mathrm{y}=\mathrm{Bx}$: separating system.

Part II Linear (instantaneous) mixtures

- Main assumption: The sources (s_{i} 's) are statistically independent.
- Separability: Does the independence of the outputs (ICA) imply the separation of the sources (BSS)?

Part II Counter-example

- s_{1} and s_{2} independent $\sim N(0,1)$.
- C an orthonormal (rotation) matrix.
- $\mathbf{R}_{\mathbf{y}}=E\left\{\mathbf{y y}^{T}\right\}=\mathbf{C R}_{\mathrm{s}} \mathbf{C}^{T}=\mathbf{C C}^{T}=\mathbf{I}$ $\Rightarrow y_{1}$ and y_{2} are independent.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.11/39

Part II Darmois' Theorem (1947)

$$
\left\{\begin{array}{l}
y_{1}=a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{N} s_{N} \\
y_{2}=b_{1} s_{1}+b_{2} s_{2}+\cdots+b_{N} s_{N}
\end{array}\right.
$$

- s_{i} 's are independent
- y_{1} and y_{2} are independent
- If for an i we have $a_{i} b_{i} \neq 0 \Rightarrow s_{i}$ is Gaussian.
\Downarrow
If y_{1} and y_{2} are independent, a Non-Gaussian source cannot be present in both of them.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.12/39

Part II Separability of linear mixtures

\checkmark Linear mixtures are separable, provided that there is no more than 1 Gaussian source ([Comon 91 \& 94] inspired from [Darmois 1947]):

Independence of the outputs
\qquad Separation of the sources
\checkmark Indeterminacies are trivial: Permutation and Scale.

Part II Geometric Interpretation [Puntonet et. al. GRETSI 95]

Bounded sources:

$$
\begin{gathered}
p_{s_{1} s_{2}}\left(s_{1}, s_{2}\right)=p_{s_{1}}\left(s_{1}\right) p_{s_{2}}\left(s_{2}\right) \\
p_{s_{2} \mid s_{1}}\left(s_{2} \mid s_{1}\right)=p_{s_{2}}\left(s_{2}\right)
\end{gathered} \Rightarrow \begin{aligned}
& \text { The distribution of }\left(s_{1}, s_{2}\right) \\
& \text { forms a rectangular region }
\end{aligned}
$$

$$
\mathbf{x}=\mathbf{A} \mathbf{s}, \quad \mathbf{A}=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]
$$

Part II Non-Gaussianity

- Non-Gassianity, isn't it too restrictive?
- Many practical signals (speech, PSK, bounded signals, ...) are not Gaussian.
- Cramer's Theorem:
- $X=X_{1}+X_{2}+\cdots+X_{N}$.
- X_{i} 's independent.
- X is Gaussian \Rightarrow All X_{i} 's must be Gaussian.
- Gaussian sources can be separated if there is some time dependence (non-iid) or non-stationarity.

Part II Independence versus Decorrelation

Question: Can we use decorrelation (2nd order independence) for source separation? $\rightarrow \mathrm{NO}$!

Example:

- x_{i} 's are decorrelated $\left(\mathrm{R}_{\mathrm{x}}=\mathrm{I}\right)$.
- B any orthogonal (rotation) matrix.
- $\mathrm{y}=\mathrm{Bx} \Rightarrow \mathrm{R}_{\mathrm{y}}=\mathrm{BR}_{\mathrm{x}} \mathbf{B}^{T}=\mathbf{I} \Rightarrow y_{i}$'s decorrelated.
\checkmark Decorrelation property remains unchanged under any orthogonal mixing matrix.

Part II PCA

Principle Component Analysis (PCA) = Karhunen-Loève
Transform = Hotelling transform = Whitening

- $\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x x}^{T}\right\}$: Covariance matrix of \mathbf{x}.
- E and Λ : Eigenvector and eigenvalue matrices of R_{x}.
- $\mathbf{W} \triangleq \mathbf{E}^{T}$: The whitening matrix.

$$
\begin{aligned}
\mathbf{y}=\mathbf{W} \mathbf{x} & \Rightarrow \mathbf{R}_{\mathbf{y}}=\boldsymbol{\Lambda} \text { (diagonal) } \\
& \Rightarrow y_{i} \text { 's are decorrelated. }
\end{aligned}
$$

- PCA is NOT sufficient for ICA (it leaves an unknown rotation).

Part II Another interpretation

$$
\mathbf{y}=\mathbf{B} \mathbf{x} \rightarrow \mathbf{B}=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]
$$

$\checkmark 2$ unkowns (a and b) must be determined.
\checkmark Decorrelation property $\left(E\left\{y_{1} y_{2}\right\}=0\right)$ gives only 1 equation \Rightarrow Not sufficient.
\Rightarrow Decorrelation (2nd order independence) is not sufficient \Rightarrow Higher Order Statistics (HOS).

Part II Summary of Part II

- Linear mixtures can be separated (At most 1 Gaussian source).
- Remaining indeterminacies: Scale, Permutation.
- Output independence is sufficient for source separation.
- Independence cannot be reduced to decorrelation.

Part III

Some famous approaches for solving BSS problem

Part III Using Higher Order Statistics (HOS) techniques

- 4th order independence is sufficient.
- Higher order characteristics of a random variable is usually described using its cumulants.
- cumulants: Coefficients of Taylor series of the second characteristic function $\Psi_{x}(s)=\ln \Phi_{x}(s)=\ln E\left\{e^{s x}\right\}$.
- Cross-cumulants: Coefficients of Taylor series of $\Psi_{x_{1} x_{2}}\left(s_{1}, s_{2}\right)=\ln E\left\{e^{s_{1} x_{1}+s_{2} x_{2}}\right\}$.
- 4th order independence \equiv Cancelling $\operatorname{Cum}_{13}\left(y_{1}, y_{2}\right)$, $\operatorname{Cum}_{22}\left(y_{1}, y_{2}\right)$ and $\operatorname{Cum}_{31}\left(y_{1}, y_{2}\right)$.
- Requires non-zero 4th order statistics, Only for linear mixtures.

Part III Mutual Information, an independence criterion

Independence of $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{T} \Leftrightarrow p_{\mathbf{x}}(\mathbf{x})=\prod_{i=1}^{N} p_{x_{i}}\left(x_{i}\right)$

$$
\begin{aligned}
I(\mathbf{x}) & =\mathrm{KL}\left(p_{\mathbf{x}}(\mathbf{x}) \| \prod_{i=1}^{N} p_{x_{i}}\left(x_{i}\right)\right)=\int_{\mathbf{x}} p_{\mathbf{x}}(\mathbf{x}) \ln \frac{p_{\mathbf{x}}(\mathbf{x})}{\prod_{i} p_{x_{i}}\left(x_{i}\right)} d \mathbf{x} \\
& =\sum_{i} H\left(x_{i}\right)-H(\mathbf{x})
\end{aligned}
$$

H Shannon's entropy $\rightarrow H(\mathrm{x})=-E\left\{p_{\mathbf{x}}(\mathrm{x})\right\}$
Main property:

- $I(\mathrm{x}) \geq 0$.
- $I(\mathrm{x})=0$ iff x_{1}, \ldots, x_{N} are independent.

Part III Minimizing output mutual information

- $\frac{\partial}{\partial \mathrm{B}} I(\mathbf{y})=E\left\{\boldsymbol{\psi}_{\mathbf{y}}(\mathbf{y}) \mathbf{x}^{T}\right\}-\mathbf{B}^{-T}$.
- $\psi_{\mathbf{y}}(\mathbf{y}) \triangleq\left(\psi_{y_{1}}\left(y_{1}\right), \ldots, \psi_{y_{N}}\left(y_{N}\right)\right)^{T}$.
- $\psi_{y_{i}}\left(y_{i}\right) \triangleq-\frac{d}{d y_{i}} \ln p_{y_{i}}\left(y_{i}\right)$.
- Steepest descent: $\mathbf{B} \leftarrow \mathbf{B}-\mu \frac{\partial}{\partial \mathbf{B}} I(\mathbf{y})$.
- Equivarient algorithm [Cardoso\&Laheld 96]:

$$
\mathbf{B} \leftarrow \mathbf{B}-\mu \nabla_{\mathbf{B}} I(\mathbf{y}) \mathbf{B}
$$

- $\nabla_{\mathbf{B}} I(\mathbf{y})=\frac{\partial}{\partial \mathbf{B}} I(\mathbf{y}) \mathbf{B}^{T}=E\left\{\boldsymbol{\psi}_{\mathbf{y}}(\mathbf{y}) \mathbf{y}^{T}\right\}-\mathbf{I}$.
- Not applicable for more complicated mixtures $(I(\mathbf{y}+\boldsymbol{\Delta})-I(\mathbf{y})=?)$.

Part III Some definitions

- Score function of a random variable x :

$$
\psi_{x}(x) \triangleq-\frac{d}{d x} \ln p_{x}(x)
$$

- For a random vector $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{T}$:
- Marginal Score Function (MSF):

$$
\psi_{\mathbf{x}}(\mathbf{x}) \triangleq\left(\psi_{x_{1}}\left(x_{1}\right), \ldots, \psi_{N}\left(x_{N}\right)\right)^{T}, \quad \psi_{i}\left(x_{i}\right) \triangleq-\frac{d}{d x_{i}} \ln p_{x_{i}}\left(x_{i}\right)
$$

- Joint Score Function (JSF):

$$
\varphi_{\mathbf{x}}(\mathbf{x}) \triangleq\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{N}\left(x_{N}\right)\right)^{T}, \quad \varphi_{i}(\mathbf{x}) \triangleq-\frac{\partial}{\partial x_{i}} \ln p_{\mathbf{x}}(\mathbf{x})
$$

- Score Function Difference (SFD):

$$
\boldsymbol{\beta}_{\mathbf{x}}(\mathrm{x}) \triangleq \psi_{\mathbf{x}}(\mathrm{x})-\varphi_{\mathrm{x}}(\mathrm{x})
$$

Part III Differential of mutual information

$$
I(\mathbf{x}+\boldsymbol{\Delta})-I(\mathbf{x})=E\left\{\boldsymbol{\Delta}^{T} \boldsymbol{\beta}_{\mathbf{x}}(\mathbf{x})\right\}+o(\boldsymbol{\Delta})
$$

For a differentiable multi-variate function:

$$
f(\mathbf{x}+\boldsymbol{\Delta})-f(\mathbf{x})=\boldsymbol{\Delta}^{T} \cdot(\nabla f(\mathbf{x}))+o(\boldsymbol{\Delta})
$$

SFD can be called the stochastic gradient of the mutual information.

Part III Some other ideas for source separation

\checkmark Maximizing Non-Gaussianity of the outputs.

- $x_{1}=a_{11} s_{1}+a_{12} s_{2}+\cdots+a_{1 N} s_{N}$: each x_{i} is 'more Gaussian' than all sources.
- $y_{1}=b_{11} x_{1}+b_{12} x_{2}+\cdots+b_{1 N} x_{N}$: Determine $b_{1 i}$'s to produce as non-Gaussian as possible $y_{1} \Rightarrow$ Separation.
- Measure of non-Gaussianity: Neg-entropy.
- Example: FastICA algorithm [Hyvärinen 99].

Part III Some other ideas for source separation (continued.)

\checkmark Second order approaches (applicable for Gaussian sources, too):

- Exploiting time correlation
- $E\left\{y_{1}(n) y_{2}(n)\right\}=0$ and $E\left\{y_{1}(n) y_{2}(n-1)\right\}=0$.
- Requires time correlation (non-applicable for iid sources).
- Exploiting non-stationarity: Joint diagonalization of Covariance matrix [Pham 2001].
- Requires non-stationarity.

Part III Non-separable source

\checkmark Non-separable if ALL these three properties:

- Gaussian.
- iid.
- stationary.

Part III Summary of Part III

- Algorithms based on output independence:
- Cancelling 4th order cross-cumulants.
- Minimizing mutual information.
- Algorithms based on non-Gaussianity.
- Second order algorithms:
- Algorithms based on time correlation.
- Algorithms based on non-stationarity.

Part IV

Extensions to ICA

Part IV Extensions to linear instantaneous mixtures

- Complex signals.
- Noisy ICA:

$$
\mathbf{x}=\mathbf{A} \mathbf{s}+\mathbf{n}
$$

- Different number of sources and sensors:
- Overdetermined mixtures.
- Estimating number of sources?
- Underdetermined mixtures.

Part IV Convolutive Mixtures

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.32/39

Part IV Convolutive Mixtures

\checkmark Separation system:

$$
\mathbf{y}(n)=\mathbf{B}_{0} \mathbf{x}(n)+\mathbf{B}_{1} \mathbf{x}(n-1)+\cdots+\mathbf{B}_{M} \mathbf{x}(n-M)
$$

\checkmark Extension to the Widrow's noise canceller system.

Part IV Convolutive Mixtures

\checkmark Separation system:

$$
\mathbf{y}(n)=\mathbf{B}_{0} \mathbf{x}(n)+\mathbf{B}_{1} \mathbf{x}(n-1)+\cdots+\mathbf{B}_{M} \mathbf{x}(n-M)
$$

\checkmark Extension to the Widrow's noise canceller system.
\checkmark Convolutive mixtures are separable, too [Yellin,
Weinstein, 95]: Output independence \rightarrow Separation.

Part IV Non-linear Mixtures

Part IV Non-linear Mixtures

Part IV Non-linear Mixtures

\checkmark In general, non-linear mixtures are not separable:

Output Independence \nRightarrow source separation

\checkmark Independence is not strong enough for source separation.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) - p.33/39

Part IV Non-linear Mixtures

How to overcome this problem?

- Regularization techniques (smoothness)?
- Structural constraints
- Others (temporal correlation? non-stationarity?)

Part IV PNL (Post Non-Linear) mixtures

\longleftarrow Mixing System \longrightarrow Separating System \longrightarrow
\checkmark Separability theorem [Taleb \& Jutten, IEEE trans. SP, 99]:
The outputs are independent iff:

- $g_{i}=f_{i}^{-1}$
- $\mathrm{BA}=\mathrm{PD}$

Provided that: The sources are really mixed (at least 2 non-zero entries in each row of \mathbf{A}).

Part IV CPNL (Convolutive PNL) mixtures

\longleftarrow Mixing System \longrightarrow Separating System \longrightarrow
Separability:

$$
\begin{aligned}
& \mathbf{s}=\left[\begin{array}{c}
\vdots \\
\mathbf{s}^{T}(n-1) \\
\mathbf{s}^{T}(n) \\
\mathbf{s}^{T}(n+1) \\
\vdots
\end{array}\right], \mathbf{e}=\left[\begin{array}{c}
\vdots \\
\mathbf{e}^{T}(n-1) \\
\mathbf{e}^{T}(n) \\
\mathbf{e}^{T}(n+1) \\
\vdots
\end{array}\right], \overline{\mathbf{A}}=\left[\begin{array}{ccccc}
\cdots & \ldots & \cdots & \cdots & \cdots \\
\cdots & \mathbf{A}_{n+1} & \mathbf{A}_{n} & \mathbf{A}_{n-1} & \cdots \\
\cdots & \mathbf{A}_{n+2} & \mathbf{A}_{n+1} & \mathbf{A}_{n} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \\
& \mathbf{A}(z)=\sum_{n} \mathbf{A}_{n} z^{-n}, \\
& \mathbf{e}=\mathbf{f}(\overline{\mathbf{A}} \mathbf{s})
\end{aligned}
$$

Part V

Applications, my works and perspectives

Part V Applications

- Feature Extraction.
- Image denoising (using noisy ICA methods).
- Medical engineering applications (ECG, EEG, MEG, Artifact separation).
- Telecommunications (Blind Channel Equalization, CDMA).
- Financial applications.
- Audio separation.
- Seismic applications.
- Astronomy.

Part V My works, mainly at my PhD thesis

- CPNL mixtures.
- Gradient of mutual information (SFD):
- General approach for any (separable) parametric model.
- Gradient approach.
- Minimization-Projection approach.
- Special cases: Linear, convolutive and PNL.
- Proof of separability of PNL mixtures.
- A geometric method for separating PNL mixtures (compensating sensors' nonlinearities before separation).
- Post Convolutive mixtures and their properties.
- Even smooth non-linear systems may preserve the independence.
- (Not at my PhD thesis) Blind estimation of a Wiener telecommunication channel (linear channel + nonlinear receiver).
- Manuscript downloadable from:

```
http://www.lis.inpg.fr/theses
```


Part V Perspectives

- Continuation of my previous works
- Writing 2 papers.
- Adaptive algorithms.
- Underdetermined mixtures: it seems that the minimization-projection approach can be used for identifying (but not separating) such systems.
- Working on PNL-L mixtures:

- PNL mixtures: Compensating sensor non-linearities before separation.
- Further work on developed algorithms (improvements, convergence analysis, ...)
- Searching for £nding better (maybe optimal) SFD estimators.
- A few other small ideas.
- Working on audio source separation.

