Where the story begins......

Under-determined System of Linear Equations (USLE)

As=X, Unknowns $>$ Equations

- Generally non-unique solution (infinite number of solutions)
- However, Sparse solution is unique, under some mild conditions

■ \Rightarrow Many many applications!

Application 1:

Compressed Sensing

Traditional Sampling vs. Compressed Sensing

- Traditional Signal Acquisition:

- Compressed Sensing (CS)

Analog
Digital

CS: Sample \rightarrow Measurement

Sample

Measurement

CS: A (smaller) set of random measurements

- $1^{\text {st }}$ measurement $\rightarrow x_{1}=\varphi_{11} s_{1}+\varphi_{12} s_{2}+\ldots+\varphi_{1 n} s_{m}$
- $2^{\text {nd }}$ measurement $\rightarrow x_{2}=\varphi_{21} \mathrm{~s}_{1}+\varphi_{22} \mathrm{~s}_{2}+\ldots+\varphi_{2 n} \mathrm{~s}_{\mathrm{m}}$
- $n^{\text {th }}$ measurement $\rightarrow x_{n}=\varphi_{n 1} s_{1}+\varphi_{n 2} s_{2}+\ldots+\varphi_{n m} s_{m}$ $\mathrm{n}<\mathrm{m} \Rightarrow$ USLE

CS: A (smaller) set of random measurements

CS: A (smaller) set of random measurements

$\Phi \underset{?}{\mathbf{s}}=\mathbf{x}$

- $\Psi_{m \times m} \rightarrow$ sparsifying transform:

$$
\mathbf{s}=\Psi \theta,
$$

where θ is sparse

($\Phi \Psi$) $\theta=\mathbf{x}$
(USLE with sparsity)

Application 2 (of USLE):

Error Correcting Codes (Real-field coding)

Coding Terminology

- $\mathbf{u}=\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}\right) \rightarrow$ the message to be sent (k symbols)
- $\mathbf{G} \rightarrow$ Code Generator matrix ($\mathrm{n} \times \mathrm{k}, \mathrm{n}>\mathrm{k}$)
- $\mathbf{v}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \rightarrow$ Codeword:

$$
\begin{gathered}
\mathbf{v}=\mathbf{G . u} \\
\text { (adding n-k "parity" symbols) }
\end{gathered}
$$

- $\mathbf{H} \rightarrow$ Parity check matrix ((n-k) $\times n$): HG=0
- \mathbf{v} is a codeword if and only if: $\mathrm{H} . \mathbf{v}=\mathbf{0}$

Error Correction

- v sent, r = v + e received
(e is the error \rightarrow assumed sparse)
- Syndrome of $\mathbf{r} \rightarrow \quad \mathbf{s}=\mathbf{H} . \mathbf{r}$

$$
\Rightarrow \mathbf{s}=\mathbf{H} .(\mathbf{v}+\mathbf{e})=\mathrm{H} . \mathrm{e}
$$

Error Correction

The receiver:

- Receives $\mathbf{r}=\mathbf{v}+\mathbf{e}$
- Computes s=H.r
- Finds sparse solution of USLE H.e=s
- Error Correction

Sparsity of e?

- Galois fields (binary) codes \Leftrightarrow small probability of error
- Real-field codes \Leftrightarrow Impulsive noise, Laplace noise

