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Lemma 1 Suppose that for the functions f1, f2, . . . , fN , which are differentiable
at any order, we have:

f1(a1x + b1y) + f2(a2x + b2y) · · ·+ fN (aNx + bNy) = A(x) + B(y) ∀x, y (1)

where a1, . . . , aN , b1, . . . , bN are non-zero constants such that:

aibj − ajbi 6= 0 ∀ i 6= j (2)

Then, all the functions fi are polynomials with the degree at most N .

Proof: It is easy to seen that A(x) and B(y) will be differentiable at any
order too. Now, suppose that there is small variations in x and y such that
aNx + bNy remains constant, that is, let:

x← x + δ
(1)
1

y ← y + δ
(1)
2

aNδ
(1)
1 + bNδ

(1)
2 = 0

(3)

(graphically, we are approaching the point (x, y) on the line aNx + bNy = 0).
But the arguments of all the other fi’s (i = 1, . . . , N−1) has changed by a small
value ε

(1)
i which is not zero (because of assumption (2)). Hence by subtracting

the new equation from (1) we will have:

∆
ε
(1)
1

f1(a1x + b1y) + ∆
ε
(1)
2

f2(a2x + b2y) · · ·+ ∆
ε
(1)
N−1

fN−1(aN−1x + bN−1y)

= A1(x) + B1(y) ∀x, y
(4)

where ∆hf(x) is the first order difference (something like derivative) of the
function f at the point x, defined by:

∆hf(x) = f(x + h)− f(x) (5)

Now, we note that (4) is something like (1) but fN is disappeared. By
repeating this procedure, we obtain:

∆
ε
(N−1)
1

. . .∆
ε
(2)
1

∆
ε
(1)
1

f1(a1x + b1y) = AN−1(x) + BN−1(y) ∀x, y (6)

Repeating the procedure two more times, one for a small variation only in x
and one for a small variation only in y, we will have:

∆
ε
(N+1)
1

. . .∆
ε
(2)
1

∆
ε
(1)
1

f1(a1x + b1y) = 0 ∀x, y (7)

In other words, the ‘N + 1’-th order difference of the function f1 (and hence its
‘N + 1’-th order derivative) is zero, therefore it is a polynomial, and its degree
is at most N . The proof is similar for all the other fi’s.

1



Theorem 1 (Lévy-Cramer) Let X1 and X2 be two independent random vari-
ables and Y = X1 + X2. Then, if Y has a Gaussian distribution, then X1 and
X2 will be Gaussian, too.

Recall: The characteristic function of the random variable X is defined as:

ΦX(ω) = E
{
ejωX

}
(8)

and its second characteristic function is:

ΨX(ω) = lnΦX(ω) (9)

Theorem 2 (Marcinkiewics-Dugué) The only random variables which have
the characteristic functions of the form ep(ω) where p(ω) is a polynomial, are the
constant random values and Gaussian random variables (and hence the degree
of p is less than or equal to 2).

Theorem 3 (Darmois-Skitovic) Let X1, . . . , XN be N independent random
variables. Let: {

Y1 = a1X1 + · · ·+ aNXN

Y2 = b1X1 + · · ·+ bNXN
(10)

and suppose that Y1 and Y2 are independent. Now, if for an i we have aibi 6= 0,
then Xi must be Gaussian.

This theorem, which is the base of blind source separation (from it, the separa-
bility of linear instantaneous mixtures is obvious), states that a random variable
which is not Gaussian cannot appears as a summation term in two independent
random variables.

Proof: Without losing the generality, we can assume aibj − ajbi 6= 0 for all
i 6= j (otherwise, we can combine two random variables to define another one,
Guassianity of this random variable, proves the Gaussianity of both, because of
Lévy-Cramer theorem). Now, we write:

ΦY1Y2(ω1, ω2) = E
{

ej(ω1Y1+ω2Y2)
}

= E
{

ej
∑

i(aiω1+biω2)Xi

}
= ΦX1(a1ω1 + b1ω2)ΦX2(a2ω1 + b2ω2) · · ·ΦXN

(aNω1 + bNω2)
(11)

The last equation arises from the independence of Xi’s. But, independence of
Y1 and Y2 implies that:

ΦY1Y2(ω1, ω2) = ΦY1(ω1)ΦY2(ω2) (12)

and hence:

ΦX1(a1ω1 + b1ω2)ΦX2(a2ω1 + b2ω2) · · ·ΦXN
(aNω1 + bNω2) = ΦY1(ω1)ΦY2(ω2)

(13)
taking the logarithm of the both sides gives us:

ΨX1(a1ω1+b1ω2)+ΨX2(a2ω1+b2ω2)+· · ·+ΨXN
(aNω1+bNω2) = ΨY1(ω1)+ΨY2(ω2)

(14)
Now if we first move all the term of the left side for them aibi = 0 to the right
side, and then apply the Lemma 1, we conclude that if for an i, aibi 6= 0, then
ΨXi

must be a polynomial. Hence, from Marcinkiewics-Dugué theorem, it must
be a Gaussian random variable.
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