Darmois-Skitovic theorem and its proof

Massoud BABAIE-ZADEH

January 18, 2002

Lemma 1 Suppose that for the functions $f_{1}, f_{2}, \ldots, f_{N}$, which are differentiable at any order, we have:

$$
f_{1}\left(a_{1} x+b_{1} y\right)+f_{2}\left(a_{2} x+b_{2} y\right) \cdots+f_{N}\left(a_{N} x+b_{N} y\right)=A(x)+B(y) \quad \forall x, y
$$

where $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}$ are non-zero constants such that:

$$
\begin{equation*}
a_{i} b_{j}-a_{j} b_{i} \neq 0 \quad \forall i \neq j \tag{2}
\end{equation*}
$$

Then, all the functions f_{i} are polynomials with the degree at most N.
Proof: It is easy to seen that $A(x)$ and $B(y)$ will be differentiable at any order too. Now, suppose that there is small variations in x and y such that $a_{N} x+b_{N} y$ remains constant, that is, let:

$$
\begin{gather*}
x \leftarrow x+\delta_{1}^{(1)} \\
y \leftarrow y+\delta_{2}^{(1)} \tag{3}\\
a_{N} \delta_{1}^{(1)}+b_{N} \delta_{2}^{(1)}=0
\end{gather*}
$$

(graphically, we are approaching the point (x, y) on the line $a_{N} x+b_{N} y=0$). But the arguments of all the other f_{i} 's $(i=1, \ldots, N-1)$ has changed by a small value $\epsilon_{i}^{(1)}$ which is not zero (because of assumption (2)). Hence by subtracting the new equation from (1) we will have:

$$
\begin{gather*}
\Delta_{\epsilon_{1}^{(1)}} f_{1}\left(a_{1} x+b_{1} y\right)+\Delta_{\epsilon_{2}^{(1)}} f_{2}\left(a_{2} x+b_{2} y\right) \cdots+\Delta_{\epsilon_{N-1}^{(1)}} f_{N-1}\left(a_{N-1} x+b_{N-1} y\right) \\
=A_{1}(x)+B_{1}(y) \quad \forall x, y \tag{4}
\end{gather*}
$$

where $\Delta_{h} f(x)$ is the first order difference (something like derivative) of the function f at the point x, defined by:

$$
\begin{equation*}
\Delta_{h} f(x)=f(x+h)-f(x) \tag{5}
\end{equation*}
$$

Now, we note that (4) is something like (1) but f_{N} is disappeared. By repeating this procedure, we obtain:

$$
\begin{equation*}
\Delta_{\epsilon_{1}^{(N-1)}} \ldots \Delta_{\epsilon_{1}^{(2)}} \Delta_{\epsilon_{1}^{(1)}} f_{1}\left(a_{1} x+b_{1} y\right)=A_{N-1}(x)+B_{N-1}(y) \quad \forall x, y \tag{6}
\end{equation*}
$$

Repeating the procedure two more times, one for a small variation only in x and one for a small variation only in y, we will have:

$$
\begin{equation*}
\Delta_{\epsilon_{1}^{(N+1)}} \ldots \Delta_{\epsilon_{1}^{(2)}} \Delta_{\epsilon_{1}^{(1)}} f_{1}\left(a_{1} x+b_{1} y\right)=0 \quad \forall x, y \tag{7}
\end{equation*}
$$

In other words, the ' $N+1$ '-th order difference of the function f_{1} (and hence its ' $N+1$ '-th order derivative) is zero, therefore it is a polynomial, and its degree is at most N. The proof is similar for all the other f_{i} 's.

Theorem 1 (Lévy-Cramer) Let X_{1} and X_{2} be two independent random variables and $Y=X_{1}+X_{2}$. Then, if Y has a Gaussian distribution, then X_{1} and X_{2} will be Gaussian, too.

Recall: The characteristic function of the random variable X is defined as:

$$
\begin{equation*}
\Phi_{X}(\omega)=E\left\{e^{j \omega X}\right\} \tag{8}
\end{equation*}
$$

and its second characteristic function is:

$$
\begin{equation*}
\Psi_{X}(\omega)=\ln \Phi_{X}(\omega) \tag{9}
\end{equation*}
$$

Theorem 2 (Marcinkiewics-Dugué) The only random variables which have the characteristic functions of the form $e^{p(\omega)}$ where $p(\omega)$ is a polynomial, are the constant random values and Gaussian random variables (and hence the degree of p is less than or equal to 2).
Theorem 3 (Darmois-Skitovic) Let X_{1}, \ldots, X_{N} be N independent random variables. Let:

$$
\left\{\begin{array}{l}
Y_{1}=a_{1} X_{1}+\cdots+a_{N} X_{N} \tag{10}\\
Y_{2}=b_{1} X_{1}+\cdots+b_{N} X_{N}
\end{array}\right.
$$

and suppose that Y_{1} and Y_{2} are independent. Now, if for an i we have $a_{i} b_{i} \neq 0$, then X_{i} must be Gaussian.

This theorem, which is the base of blind source separation (from it, the separability of linear instantaneous mixtures is obvious), states that a random variable which is not Gaussian cannot appears as a summation term in two independent random variables.

Proof: Without losing the generality, we can assume $a_{i} b_{j}-a_{j} b_{i} \neq 0$ for all $i \neq j$ (otherwise, we can combine two random variables to define another one, Guassianity of this random variable, proves the Gaussianity of both, because of Lévy-Cramer theorem). Now, we write:

$$
\begin{align*}
\Phi_{Y_{1} Y_{2}}\left(\omega_{1}, \omega_{2}\right) & =E\left\{e^{j\left(\omega_{1} Y_{1}+\omega_{2} Y_{2}\right)}\right\} \\
& =E\left\{e^{j \sum_{i}\left(a_{i} \omega_{1}+b_{i} \omega_{2}\right) X_{i}}\right\} \\
& =\Phi_{X_{1}}\left(a_{1} \omega_{1}+b_{1} \omega_{2}\right) \Phi_{X_{2}}\left(a_{2} \omega_{1}+b_{2} \omega_{2}\right) \cdots \Phi_{X_{N}}\left(a_{N} \omega_{1}+b_{N} \omega_{2}\right) \tag{11}
\end{align*}
$$

The last equation arises from the independence of $X_{i}{ }^{\prime}$ s. But, independence of Y_{1} and Y_{2} implies that:

$$
\begin{equation*}
\Phi_{Y_{1} Y_{2}}\left(\omega_{1}, \omega_{2}\right)=\Phi_{Y_{1}}\left(\omega_{1}\right) \Phi_{Y_{2}}\left(\omega_{2}\right) \tag{12}
\end{equation*}
$$

and hence:

$$
\begin{equation*}
\Phi_{X_{1}}\left(a_{1} \omega_{1}+b_{1} \omega_{2}\right) \Phi_{X_{2}}\left(a_{2} \omega_{1}+b_{2} \omega_{2}\right) \cdots \Phi_{X_{N}}\left(a_{N} \omega_{1}+b_{N} \omega_{2}\right)=\Phi_{Y_{1}}\left(\omega_{1}\right) \Phi_{Y_{2}}\left(\omega_{2}\right) \tag{13}
\end{equation*}
$$

taking the logarithm of the both sides gives us:
$\Psi_{X_{1}}\left(a_{1} \omega_{1}+b_{1} \omega_{2}\right)+\Psi_{X_{2}}\left(a_{2} \omega_{1}+b_{2} \omega_{2}\right)+\cdots+\Psi_{X_{N}}\left(a_{N} \omega_{1}+b_{N} \omega_{2}\right)=\Psi_{Y_{1}}\left(\omega_{1}\right)+\Psi_{Y_{2}}\left(\omega_{2}\right)$
Now if we first move all the term of the left side for them $a_{i} b_{i}=0$ to the right side, and then apply the Lemma 1 , we conclude that if for an $i, a_{i} b_{i} \neq 0$, then $\Psi_{X_{i}}$ must be a polynomial. Hence, from Marcinkiewics-Dugué theorem, it must be a Gaussian random variable.

