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rates taken so high that further increasing them produced no visible
changes in the figure. As can be seen, thea;b obtained in that way
turns from a well-behaved function for the valuesb = 1:5, 2:5 into a
quite irregularly behaved one whenb approaches2 or 3.
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Sparse Representations in Unions of Bases

Rémi Gribonval, Member, IEEE,and Morten Nielsen

Abstract—The purpose of this correspondence is to generalize a result
by Donoho and Huo and Elad and Bruckstein on sparse representations of
signals in a union of two orthonormal bases for . We consider general
(redundant) dictionaries for , and derive sufficient conditions for having
uniquesparserepresentationsofsignals insuchdictionaries.Thespecialcase
where the dictionary is given by the union of 2 orthonormal bases for

isstudiedinmoredetail.Inparticular,it isprovedthattheresultofDonoho
and Huo, concerning the replacement of the optimization problem with
a linear programming problem when searching for sparse representations,
has an analog for dictionaries that may be highly redundant.

Index Terms—Dictionaries, Grassmannian frames, linear programming,
mutually incoherent bases, nonlinear approximation, sparse representa-
tions.

I. INTRODUCTION

We consider vectors (also referred to as signals) inH=
N (resp.,

H=
N ). The goal is to find an efficient representation of a signals 2
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H. One well-known way to do this is to take an orthonormal basis� =

f�1; . . . ;�Ng for H and use the Fourier coefficientsfhs; �kigNk=1 to
represents. This approach is simple and works reasonably well in many
cases. However, one can also consider a more general type of expansion
where the orthonormal basis is replaced by a so-called dictionary forH.

Definition 1: A dictionary inH = N (resp.,H = N ) is a family
of K � N unit (column) vectorsfgkg that spansH. We will use the
matrix notationDDD = [g1; . . . ; gK ] for a dictionary.

By a representation ofs in DDD we mean a (column) vector� =
(�k) 2 K (resp., in K ) such thats = DDD�. We notice that when
K > N , the vectors ofDDD are no longer linearly independent and the
representation ofs is not unique. The hope is that among all possible
representations ofs there is avery sparserepresentation, i.e., a repre-
sentation with few nonzero coefficients. The tradeoff is that we have
to searchall possible representations ofs to find the sparse represen-
tations, and then determine whether there is a unique sparsest repre-
sentation. Following [1] and [2], we will measure the sparsity of a rep-
resentations = DDD� by two quantities: thè0 and the`1 norm of�,
respectively (thè0-norm simply counts the number of nonzero entries
of a vector). This leads to the following two minimization problems to
determine the sparsest representation ofs:

minimize k�k0 subject tos = DDD� (1)

and

minimize k�k1 subject tos = DDD�: (2)

It turns out that the optimization problem (2) is much easier to handle
than (1) through the use of linear programming (LP), so it is important
to know the relationship between the solution(s) of (1) and (2), and to
determine sufficient conditions for the two problems to have the same
unique solution. This problem has been studied in detail in [1] and later
has been refined in [2] in the special case where the dictionaryDDD is the
union of two orthonormal bases. In what follows, we generalize the
results of [1] and [2] to arbitrary dictionaries.1 The case whereDDD is
the union ofL � 2 orthonormal bases forH is studied in detail. This
leads to a natural generalization of the recent results from [2] valid for
L = 2.

In Section II, we provide conditions for a solution� of the problem

minimize k�k� subject tos = DDD� (3)

to be indeed the unique solution, with0 � � � 1 and an arbitrary
dictionaryDDD. We put a special emphasis on sufficient conditions of the
type k�k0 < f(DDD) and prove a sufficient condition for� 2 f0; 1g
with f(DDD) = (1 + 1=M(DDD))=2 where

M(DDD) := max
k 6=k

jhgk; gk ij (4)

is thecoherenceof the dictionary. The special case whereDDD is the
union ofL � 2 bases is studied in Section III, leading to explicit suf-
ficient conditions for� = 0 with

f(DDD) = 1=2 +
1

2(L� 1)
=M(DDD)

and for� 2 f0; 1g with

f(DDD) =
p
2� 1 +

1

2(L� 1)
=M(DDD):

1Parallel work done independently by Donoho and Elad [3] also addresses the
question of generalizing previous results to general dictionaries. Though there
are some similarities between this work to the work in [3], a somewhat different
perspective on the problem is adopted and the proofs use different techniques.
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In the caseL = 2 we simply recover the main result from [2], and for
L � 6 we obtain a condition that isless restrictivethan the condition
for arbitrary dictionaries. In Section IV, we construct highly redundant
dictionaries where the results of the present correspondence give fairly
relaxed conditions for (1) and (2) to have a unique solution.

II. SPARSE`� REPRESENTATIONS, 0 � � � 1

Any vectors 2 H has (possibly many) representationss = DDD�
with coefficient vector� 2 K (resp.,� 2 K ).

Definition 2: Thesupport of a coefficient vector� = (�k) 2
K

(resp., K ) is

S(�) := fk; �k 6= 0g: (5)

Thekernel of the dictionary will play a special role

Ker (DDD) := fx;DDDx = 0g (6)

as well as the integer quantity (calledsparkof the dictionary in [3])

Z(DDD) := min
x2Ker (DDD);x6=0

kxk0: (7)

By refining ideas from [2] we have the following lemma.

Lemma 1: Let DDD be a (possibly redundant) dictionary andS �
f1; . . . ; Kg a set of indexes. For0 � � � 1 define

P� (S;DDD) := max
x2Ker (DDD);x6=0

k2S

jxkj
�

k

jxkj
� (8)

where we use the convention00 = 0 andx0 = 1; x 6= 0.

1) If P� (S;DDD) < 1=2 then, for all� such thatS(�) � S, � is the
uniquesolution to the problem (3) withs := DDD�.

2) If P� (S;DDD) = 1=2 then, for all� such thatS(�) � S, � is a
solution to the problem (3) withs := DDD�.

3) If P� (S;DDD) > 1=2 there exists� such thatS(�) � S and�
such thatk�k� < k�k� andDDD� = DDD�.

Proof: The lemma was used without being stated explicitly in
[1] and [2], in the special case� = 1 and withDDD a union of two
orthonormal bases. The proof follows the same steps as in [1] and [2].
Under the assumptionP� (S;DDD) < 1=2 andS(�) � S, what we need
to prove is that for allx 2 Ker(DDD),

k

j�k + xkj
� >

k

j�kj
� :

This is equivalent to showing

k=2S

jxkj
� +

k2S

j�k + xkj
� � j�kj

� > 0:

For0� � �1, we have the quasi-triangle inequalityja+bj� � jaj�+
jbj� , from which we can derive the inequalityj�+yj��j�j� �� jyj� .
It is thus sufficient to prove that for allx2Ker (DDD)

k=2S

jxkj
� �

k2S

jxkj
� > 0

or equivalently

k2S

jxkj
� <

1

2
k

jxkj
� :

But this is exactly the assumptionP� (S;DDD) < 1=2. To prove the re-
sult for P� (S;DDD) = 1=2 we copy the above line of arguments and

simply replace strict inequalities with large ones. To prove the result
for P� (S;DDD) > 1=2, it is sufficient to take somex 2 Ker (DDD) so that

k2S

jxkj
� >

k

jxkj
� =2

and to consider fork 2 S, �k := �xk, �k := 0 and fork =2 S,
�k := 0, �k := xk. Becausex = ��� 2 Ker (DDD) one easily checks
thatDDD� = DDD�. Obviously

k

j�kj
� =

k=2S

jxkj
� <

k2S

jxkj
� =

k

j�kj
�

andS(�) � S.

Lemma 1 will be most useful to look for sufficient conditions on
S that ensure uniqueness of the sparsest`� expansion, i.e., conditions
such thatP� (S;DDD) < 1=2. Of particular interest are sufficient condi-
tions that take the form

if card (S) < f(DDD); thenP� (S;DDD) < 1=2 (9)

which correspond to uniqueness results of the form

if k�k0 < f(DDD); then� is the unique solution to(3):

The following lemma shows that such conditions are intimately related
to the sparkZ(DDD). We denote bydxe the smallest integer not smaller
thanx, i.e.,dxe � 1 < x � dxe.

Lemma 2:

1) If k�k0 < Z(DDD)=2, then� is the unique solution to (1). In other
words, (9) holds for� = 0 with f(DDD) = Z(DDD)=2.

2) If (9) holds true for some0 � � � 1 with somef(DDD), then it
holds true with the same constantf(DDD) for � = 0.

3) If (9) holds true for� = 0 with somef(DDD), thenf(DDD) �
dZ(DDD)=2e.

Proof: For anyS we observe that

P0(S;DDD) � max
x2Ker(DDD);x6=0

card(S)

kxk0
�

card(S)

Z
:

The first statement immediately follows.
The second statement is almost trivial. Assuming that condition (9)

holds true with� andf , we know that whenk�k0 < f , for all � 6= �
such thatDDD� = DDD� we havek�k� > k�k� . Assume� satisfies
DDD� = DDD� andk�k0 � k�k0: then in particulark�k0 < f so� is
also the unique minimizer of the samè� problem, hence,� = �. It
follows that� is indeed the unique minimizer of the`0 problem.

To conclude, let us prove the third statement. By definition, there
existsx 2 Ker (DDD) such thatkxk0 = Z. We can split its supportS(x)
into two disjoint setsS1 andS2 of same cardinalityZ=2 = dZ=2e (if
Z is even) or with

card (S1) = (Z � 1)=2 and card (S2) = (Z + 1)=2 = dZ=2e

(if Z is odd). Obviously,P0(S2;DDD) � 1=2, hence (9) cannot hold true
for � = 0 with f > card (S2) = dZ=2e.

There are two consequences of this lemma. The first one is that we
need to estimateZ(DDD). The second is that if we are able to prove that
(9) holds for some0 � � � 1 with some constantf(DDD), then it will
also hold for� = 0with the same constant. This fact will be extensively
used to find sufficient conditions so that a solution to the`1 problem
also solves uniquely thè0 problem.

In [1] and [2], the case ofDDD = [BBB1;BBB2] was considered where
BBB1 and BBB2 are two orthonormal matrices corresponding to or-
thonormal bases. Donoho and Huo proved anuncertainty principle
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Z([BBB1;BBB2]) � 1 + 1=M [1, Theorem VII.3] and obtained the
sufficient condition (9) for� 2 f0; 1g with

f([BBB1;BBB2]) =
1

2
(1 + 1=M(DDD)): (10)

Elad and Bruckstein improved the uncertainty principle by getting [2,
Theorem 1]Z([BBB1;BBB2]) � 2=M . Thus, they obtained the sufficient
condition (9) for� = 0 with the less restrictive constant

f([BBB1;BBB2]) = 1=M(DDD): (11)

Eventually, Elad and Bruckstein used another technique to obtain con-
dition (9) for � = 1 (and, thus, for� = 0) with

f([BBB1;BBB2]) =
p
2� 1=2 =M(DDD) � 0:914=M(DDD): (12)

Feuer and Nemirovsky [4] recently proved that the above constant is
essentially the best one to get condition (9) for� = 1, in particular it
cannot be replaced with the less restrictive constant (11).

Next we show that the result with the most restrictive of the con-
stants, that is, (10), extends to the case of arbitrary dictionaries. In the
next section, we will consider results for dictionaries built by taking
the union ofL � 2 orthonormal bases.

Theorem 1: For any dictionary, if

k�k0 < 1

2
(1 + 1=M(DDD)) (13)

then� is the (unique) solution to both thè0 and thè 1 minimization
problems.

Proof: As already noticed, we will just need to show that (9)
holds for� = 1 with f := (1 + 1=M)=2.

Considerx 2 Ker (DDD). For everyk we have

xkgk = �
k 6=k

xk gk

hence, taking the inner product of both hand sides withgk, jxkj �
M(DDD) �

k 6=k jxk j : It follows that

(1 +M) � jxkj �M � kxk1: (14)

Summing overk 2 S we getP1(S;DDD) � kxk1 � card(S)M
1+M

� kxk1, so

P1(S;DDD) � card (S)

1 + 1=M
< 1=2

as soon ascard (S) < (1 + 1=M)=2.

Note that the above line of arguments can be modified slightly to
prove that for arbitrary dictionaries we have the generalized uncertainty
principle

Z(DDD) � 1 + 1=M(DDD): (15)

Notice that, as soon as the dictionary contains an orthonormal basis and
an additional unit vector, the value ofM is at least1=

p
N . To see that,

let us assume, without loss of generality, that the orthonormal basis
corresponds to the firstN vectors ofDDD. By

N

k=1

jhgN+1; gkij2 = kgN+1k2 = 1

we see thatmaxNk=1 jhgN+1; gkij2 � 1=N , hence the inequality

M(DDD) � 1=
p
N: (16)

III. SPARSEREPRESENTATIONS INUNIONS OFBASES

We now switch to the special case ofDDD a union ofL orthonormal
bases, i.e.,DDD = [BBB1; . . . ;BBBL] whereBBBl is an orthonormal matrix,1 �
l � L. First, we concentrate on getting a result of the type (9) for� =
0. This will correspond to getting a sharper generalized uncertainty
principle by getting a lower bound onZ(DDD).

Lemma 3: LetDDD be a union ofL orthonormal bases. Let

x =

x1

. . .

xL
2 Ker (DDD)

with xl 2 N (resp., N ) and assumex 6= 0. Then

L

l=1

1

1 +M(DDD)kxlk0 � L� 1: (17)

Consequently

Z(DDD) � 1 +
1

L� 1

1

M(DDD)
: (18)

Proof: Becausex 2 Ker (DDD), for every l we haveBlxl =

�
l 6=l Bl x

l , hence,xl = �
l 6=l B

T

l Bl x
l . DenotingX l 2 N

the vector having as entries the absolute values of those of the original
vectorxl, we have for allx 2 Ker (DDD) and1 � l � L

X l �M(DDD) �
l 6=l

kX l k1 � 1N (19)

where1N 2 N is a column vector with all entries equal to one.
For eachl, summing over the nonzero coordinates ofX l we obtain
kX lk1 � MkX lk0 � l 6=l kX l k1. It follows that

(1 +MkX lk0) � kX lk1 �MkX lk0 �
l

kX l k1

hence

kxlk1 � Mkxlk0
1 +Mkxlk0 � kxk1:

Summing overlwe obtainkxk1 � l

Mkx k

1+Mkx k
�kxk1 from which

we get

L

l=1

Mkxlk0
1 +Mkxlk0 � 1:

This is easily rewritten L

l=1 g(Mkxlk0) � L � 1 with g(y) :=
1=(1 + y) and gives (17). By the convexity ofg and the fact that
Mkxk0 = L

l=1Mkxlk0, we haveg(Mkxk0=L) � (L � 1)=L
henceMkxk0 � L

L�1
and (18) follows.

Notice that for L = 2 the condition (17) can be rewritten
kx1k0kx2k0 � 1=M as in [2, Theorem 1]. There are examples of

pairs of bases withZ = 2=M , so the generalized uncertainty principle
(18) is sharp forL = 2. ForL � 3 it is an open problem whether there
exist examples ofL orthonormal bases for whichMZ is arbitrarily
close to1 + 1=(L � 1). Using (18) together with Lemma 2 we have
the following corollary.

Corollary 1: LetDDD be a union ofL orthonormal bases. If

k�k0 < 1

2
+

1

2(L� 1)

1

M(DDD)
(20)

then the unique solution to thè0 problem is�.
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ForL = 2, we find again the least restrictive condition (11) of Elad
and Bruckstein. As we increase the numberL of bases while keeping
M constant (we will see in Section IV that it is indeed possible to have
up toL = N + 1 orthonormal bases with perfect separationM =
1=
p
N , for N a power of two), Condition (20) gets more and more

restrictive. It is only natural that we have to pay a price for increasing
the redundancy of the dictionary. For small enough values ofL, (20)
is less restrictive than (13). ForL � 1 + 1=M , however, the bound
in Corollary 1 becomes more restrictive than the general result from
Theorem 1, so the latter should be used in this case.

Let us now consider thè1 minimization problem with unions of
orthonormal bases. For pairs of bases, the general result of Theorem
1 was improved in [2] to get the less restrictive sufficient condition
k�k0 < (

p
2 � 0:5)=M(DDD). The authors in [2] indeed proved a

stronger result which can be stated as follows: if we denote

� =
�1

�2

with �l 2 N (resp., N ) andKl := k�lk0, l = 1; 2, then a sufficient
condition to ensureP1(S(�);DDD) < 1=2 is that

2M2(DDD)K1K2 +M(DDD)max(K1;K2)� 1 < 0: (21)

Next we generalize this result to a union ofL bases.

Theorem 2: LetDDD be a union ofL orthonormal bases. Denote

� =

�1

. . .

�L

with �l 2 N (resp., N ). Without loss of generality, we can assume
that the basesBBBl have been numbered so thatk�1k0 � � � � � k�Lk0.
If

l�2

Mk�lk0
1 +Mk�lk0 <

1

2(1 +Mk�1k0) (22)

then� is the (unique) solution to thè1 minimization problem.
Proof: We follow [2, proof of Theorem 3] and start similarly to

the proof of Lemma 3. Consider

x =

x1

. . .

xL
2 Ker (DDD)

with xl 2 N (resp., N ). For everyl we have

Blx
l = �

l 6=l

Bl x
l

hence,

xl = �
l 6=l

BT
l Bl x

l :

DenotingX l 2 N the vector having as entries the absolute values
of those of the original vectorxl, we have for allx 2 Ker (DDD) and
1 � l � L

X l �M(DDD)
l 6=l

1N�NX
l (23)

where1N�N is anN -by-N matrix with all entries equal to one. By
definition,X l also satisfiesX l � 0. In addition, for allx 2 Ker (DDD)
with kxk1 = L

l=1 kxlk1 = 1, we have

L

l=1

1TNX
l = 1 (24)

and

L

l=1

1TS(� )X
l =

k2S(�)

jxkj ; (25)

where1N 2 N is a vector with all entries equal to one and1S 2 N

is a vector with ones on the index setS and zeroes elsewhere. Thus, it
is sufficient to show that under the condition (22) and the constraints
(23)–(24) andX l � 0 we have

max
X ;...;X

L

l=1

1TS(� )X
l <

1

2
:

Let us proceed as in [2]: by replacing the equality constraints (24) with
two inequalities, we now have a classical linear programming problem,
which can be put into canonical form

min
primal

:= minCTZ subject toAAAZ � B;Z � 0

with

Z =

X1

. . .

XL

CT = [�1S(� ); . . . ;�1S(� )]

AAA =

�IIIN M1N�N . . . . . . M1N�N

M1N�N �IIIN
. . . M1N�N

...
. . .

. . .
. . .

...
...

. . . �IIIN M1N�N

M1N�N . . . . . . M1N�N �IIIN
1TN . . . . . . . . . 1TN
�1TN . . . . . . . . . �1TN

and

BT = [0:1TN ; . . . ; 0:1
T
N ; 1;�1]:

What we need to prove isminprimal > � 1
2
. The dual linear program-

ming problem is

max
dual

:= maxBTU subject toAAATU � C;U � 0

and we know [5] thatmaxdual = minprimal, so the desired result will
be obtained if we can prove that there exists someU � 0 that satisfies
AAATU � C andBTU > �1=2.

We will look for such aU in a parametric form

UT := [a11
T
S(� ); . . . ; aL1

T
S(� ); b; c]

with al; b; c � 0. Noticing thatBTU = b � c, the goal will be to
chooseal; b; c so thatb� c > �1=2 andAAATU � C.

Straightforward computations show that the conditionAAATU � C is
equivalent to the inequalities for1 � l � L

(b� c)1N +M1N�N

l 6=l

al 1
T

S(� )
+ (1� al)1

T
S(� ) � 0:

By the equality1N�N1TS = card (S)1TN this becomes

b�c+M
l

al k�l k0 1TN�Malk�lk01TN+(1�al)1TS(� )�0

where we used the fact thatk�lk0 := card (S(�l)). Denotingy+ =
max(y; 0) and y� = min(y; 0), the positive and negative parts of
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y 2 , the constraint is eventually expressed, for1 � l � L such that
k�lk0 6= 0, as

b� c+M
l

al k�l k0 �Malk�lk0 + (al � 1)�: (26)

The constraint for alll such thatk�lk0 = 0 (if there is any) is

b� c+M
l

al k�l k0 � 0:

Now that the constraints have been established, let us buildal, b, and
c. We defineal = 1 when k�lk0 = 0 and use a “threshold” pa-
rameter� to defineal(�) := �=k�lk0 when1 � k�lk0 < � and
al(�) := (1 + M�)=(1 + Mk�lk0) whenk�lk0 � �. Let us also
define�(�) := l al(�)k�lk0. One can check case-by-case that for
all �, whenk�lk0 6= 0, the constraint (26) becomes

b� c+M�(�) �M�: (27)

If there is some value ofl for which k�lk0 = 0, the associated con-
straint is stronger and becomes

b� c+M�(�) � 0: (28)

Obviously, (27) (resp., (28)) can always be satisfied by takingb =
g(�)+ andc = �g(�)� with g(�) := M(���(�)) (resp.,g(�) :=
�M�(�)).

ForU = U(�) built in this parametric form,U(�) satisfies the con-
straintsU � 0 andAAAU � C, and we haveBTU(�) = g(�). Thus, the
problem is now whether

max
�

g(�) > �1=2: (29)

Let us deal first with the case wherek�lk0 6= 0 for all l. It is easy
to check that

g(k�1k0) = �
l�2

Mk�lk0
1 +Mk�lk0 (1 +Mk�1k0)

so the theorem is proved. Simple (but tedious) computations would
show that indeedmax� g(�) = max(g(0); g(k�1k0)), and that when
the maximum isg(0) it does not satisfy the constraint (29). So, in this
case, the sufficient conditiong(k�1k0) > �1=2 is, in a sense, optimal
for the type of argument we have presented.

In the case wherek�lk0 = 0 for somel (i.e.,k�1k0 = 0), we notice
that�(�) is a piecewise-linear increasing function, somax� g(�) =
g(0). Becausek�1k0 = 0 we conclude by estimatingg(0) as

�
L

l=1

Mk�lk0
1 +Mk�lk0 = �

l�2

Mk�lk0
1 +Mk�lk0 (1 +Mk�1k0):

In the case ofL = 2 bases, (22) is exactly the condition (21) proved
in [2] where it is proved that a simpler sufficient condition isk�k0 �
(
p
2� 1=2)=M . The general condition (22) is simple to check for any

given�. However, in order to benefit from Lemma 2 and get a sufficient
condition for� to simultaneously minimize thè0 and thè 1 problems,
let us look for a sufficient conditionk�k0 < f(DDD).

Corollary 2: For a dictionary that is the union ofL orthonormal
bases, if

k�k0 <
p
2� 1 +

1

2(L� 1)

1

M(DDD)
(30)

then� is the (unique) solution to both thè0 and thè 1 minimization
problems. With the notations of Theorem 2, the same conclusion is
reached if the above inequality is large but there exists an indexl � 2
such that(1 +Mk�lk0)=(1 +Mk�1k0) 6=

p
2.

Proof: Denotingyl := Mk�lk0 andy = (yl)
L
l=1, condition (22)

can be rewritten

g(y) :=

L

l=2

yl
1 + yl

� 1

2

1

1 + y1
� 0:

For anyc > 0 consider the setHc := fy j yl � 0; L
l=1 yl = cg and

let us compute

G(c) := sup
y2H

g(y):

Using Lagrange multipliers, we know that anyy? that corresponds to an
extremum ofg under the constraint l yl = cwill satisfy the equalities
@g
@y

= �, 1 � l � L. For l = 1, this becomes(1 + y?1)
�2=2 = �,

while for 2 � l � L, this corresponds to(1 + y?l )
�2 = �. Looking

at the second partial derivatives ofg we easily check that all extrema
are indeed maxima. The only maximum that satisfies the additional
constrainty?l � 0 is given by

y?1 =�
�1=2=

p
2� 1

y?l =�
�1=2 � 1; l � 2;

and we can check thaty?1 � y?2 = � � � = y?L. Let us express� as a
function ofc. By using the constraint we get

c =
l

y?l = ��1=2 1=
p
2 + (L� 1) � L

and it follows that
p
2(1 + y?1) = (1 + y?l ) = ��1=2 = (L+ c)(1=

p
2 + (L� 1)):

Then we get by direct computations

g(y?) =
1p

2(L+ c)
(L� 1)(

p
2c+

p
2� 2)� 1=

p
2

so the conditionG(c) = g(y?) � 0 is equivalent to(L� 1)(
p
2c +p

2 � 2) � 1=
p
2, that is,

c �
p
2� 1 +

1

2(L� 1)
:

To conclude, let us considery := (Mk�lk0)Ll=1 and assume the
strict inequality (30) is satisfied. Then by the above computations
g(y) � G(Mk�k0) < 0 hence the strict inequality (22) is satisfied. If
(30) is satisfied as a large inequality and there exists some indexl � 2
such that(1 + Mk�lk0)=(1 + Mk�1k0) 6=

p
2 (this is generally

the case!), theny 6= y? so we haveg(y) < G(Mk�k0) � 0 and
we get the same result. In both cases, we reach the conclusion using
Theorem 2.

The sufficient conditions in Corollary 1 and 2 are very similar, but
the latter is a bit more restrictive, with a gap1=2� (

p
2� 1) � 0:086

in the constant in front of1=M . Table I lists the values of the constant
in front of1=M(DDD) in Corollary 2. ForL = 2, we recover the constantp
2 � 1=2 from [2, Theorem 3]. For larger values ofL, we get more

restrictive constraints, i.e., with smaller constants. Indeed, forL � 7,
one can check that for any value ofM ,

p
2� 1 +

1

2(L� 1)
=M < (1 + 1=M)=2

so the general sufficient condition in Theorem 1 is less restrictive than
the specialized one in Corollary 2. ForL � 6 and small values ofM
(i.e., because of (16), in large dimensionN � 1), the condition in
Corollary 2 is less restrictive than that of Theorem 1, and we get an
improved result. For large values ofM andL � 6, one has to check
on a case-by-case basis which result is stronger.
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TABLE I
NUMERICAL VALUES OF THECONSTANT 2 1 + IN COROLLARY

2 FOR SMALL VALUES OF

IV. HIGHLY REDUNDANT DICTIONARIES

Let us show how to apply the extended result (Theorem 2) to highly
redundant dictionaries. It is perhaps not obvious that one can have a
large number of orthonormal bases inN with a small coherence factor
M(DDD), but this is possible (for certain values ofN ), and we will use
the following theorem to build examples of such dictionaries. We refer
to [6] and [7] for a proof of Theorem 3.

Theorem 3: Let N = 2j+1, j � 0, and considerH = N . There
exists a dictionaryDDD in H consisting of the union ofL = 2j = N=2
orthonormal bases forH, such that for any pairu; v of distinct vectors
belonging toDDD: jhu; vij 2 f0; N�1=2g.

ForN = 2j , j � 0, andH = N , one can find a dictionaryDDD inH
consisting of the union ofL = N + 1 orthonormal bases forH, again
with the perfect separation property that for any pairu; v of distinct
vectors belonging toDDD: jhu; vij 2 f0;N�1=2g.

The dictionaries from Theorem 3 are calledGrassmannian dictio-
naries due to the fact that their construction is closely related to the
Grassmannian packing problem, see [6] and [7] for details.

ForN = 2j+1, Theorem 3 tells us that we can take a dictionaryDDD

consisting of the union ofN + 1 orthonormal bases inN , that is,DDD
contains the large numberN(N + 1)=2 of elements, but we still have
coherenceM(DDD) = N�1=2. We can extract from such a dictionary
many examples of unionsDDDL of L bases(2 � L � N + 1) with the
same coherence. For each example, we can apply Theorem 1 or Corol-
lary 2 to conclude that� is the unique sparsest`0 and`1 representation
of s := DDDL� as soon as

k�k0 < max
p
N=2 + 1=2;

p
N

p
2� 1 +

1

2(L� 1)
:

V. CONCLUSION

We have studied sparse representations of signals using an arbitrary
dictionaryDDD in H = N (resp.,H = N ). For any dictionaryDDD,
� 2 f0; 1g, and a given signals we prove that�, with s := DDD�, is the
unique solution to the optimization problem

minimize k�k� subject toDDD� = s (31)

provided thatk�k0 < 1

2
(1+1=M(DDD)). So this condition onk�k0 en-

sures that the more difficult̀0 minimization problem has exactly the
same unique solution� as thè 1 problem. This is of practical impor-
tance since (31) can be restated and solved as a linear programming
minimization problem, thus giving us a feasible way to actually com-
pute the minimizer.

WhenDDD is a union ofL � 2 orthonormal bases forH, we have
derived the sufficient condition

k�k0 <
p
2� 1 +

1

2(L� 1)

1

M(DDD)

for � with s := DDD�, to be the simultaneous unique minimizer in (31)
for � 2 f0; 1g. When2 � L � 6, this condition is generally less
restrictive (and the result thus covers more cases) than the estimate for
arbitrary dictionaries. ForL = 2, we simply recover the main result
from [2].

We also proved an uncertainty principle for unions ofL orthonormal
bases forH and derived a slightly less restrictive sufficient condition

k�k0 < 1

2
+

1

2(L� 1)

1

M(DDD)

to ensure that the (most difficult)`0 minimization problem admits� as
a unique solution.

The proofs of the above results are based on the techniques intro-
duced in [1] and [2] so the main contribution of the present correspon-
dence is to point out that we are not restricted to dictionaries that are
the union of two orthonormal bases. We can consider more general
dictionaries and still enjoy all the practical benefits from restating the
problem as a linear programming minimization problem and get the`0

minimizer for “free” in cases where the output from the LP algorithm
has few nonzero entries.

Finally, we should note that manynaturaland useful redundant dic-
tionaries such as the discrete Gabor dictionary, unions of bi-orthogonal
discrete wavelet dictionaries, etc.,cannotbe written as a union of two
orthonormal bases and thus were not covered by the results in [1] and
[2].
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