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What Should We Say About the Kurtosis?
A. Mansour,Member, IEEE,and C. Jutten,Member, IEEE

Abstract—In this work, we point out some important properties
of the normalized fourth-order cumulant (i.e., the kurtosis). In ad-
dition, we emphasize the relation between the signal distribution
and the sign of the kurtosis. One should mention that in many
situations, authors claim that the sign of the kurtosis depends on
the nature of the signal (i.e., over- or sub-Gaussian). For unimodal
probability density function, that claim is true and is clearly
proved in the letter. But for more complex distributions, it has
been shown that the kurtosis sign may change with parameters
and does not depend only on the asymptotic behavior of the
distributions.

Finally, these results give theoretical explanation to techniques,
like nonpermanent adaptation, used in nonstationary situations.

Index Terms—Blind identification, blind separation, high order
statistics, kurtosis, over- and sub-Gaussian, probability density
function.

I. INTRODUCTION

I N VARIOUS works [1]–[6] concerning the problem of
blind separation of sources, authors propose algorithms

whose efficacy demands conditions on the source kurtosis, and
sometimes that all the sources have the same sign of kurtosis.
In fact, this assumption seems very strong and in this work we
studied the relationship between the signal distribution and the
sign of its kurtosis.

II. DEFINITION AND PROPERTIES

Definition 1: Let us denote the probability density
function (pdf) of a random process and the average.
By definition [7], [8] the kurtosis is as in (1), shown at
the bottom of the next page. Clearly, the kurtosis sign
is equal to the fourth-order cumulant sign. Some properties
can be easily derived.

1) , so is invariant by
any linear transformation .

2) Let , where is even and
is odd. It is easy to prove that only depends on

and that can be considered as a pdf.

Therefore, in the following, the study may be restricted to a
zero-mean process whose the pdf is even and has
a variance .

It is well known that the kurtosis of a Gaussian distri-
bution is equal to zero. Intuitively, the sign of the kurtosis
seems related to the comparison between and Gaussian
distribution, by considering the asymptotic properties of the
distributions and the following definition:
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Definition 2: A pdf is said over-Gaussian (respectively
sub-Gaussian) [9]–[11], if

(respectively,
), where is the normalized Gaussian pdf. In many

examples, it seems that is positive1 for over-Gaussian
signals and negative for sub-Gaussian signals.

III. T HEORETICAL RESULTS

Let us consider an (even) pdf and a zero-mean nor-
malized Gaussian pdf .

Theorem 1: If have only two solutions, then

is over-Gaussian

is sub-Gaussian.

A demonstration is given in the Appendix. This theorem shows
that the intuitive claim, given in the previous section, is true
under the specific condition of Theorem 1.

When has more than two solutions, then there
is no longer simple rule to predict . More precisely, over-
Gaussian as well as sub-Gaussian pdf’s can lead to positive
as well as negative sign of kurtosis. As an example, let us
consider the following over-Gaussian pdf:

(2)

It is easy to compute the kurtosis of (2):

Clearly, is not always negative, but may change accord-
ing to the values of the parametersand : if

and if .
Finally, we may consider that artificial signals (for instance

telecommunication signals) are bounded, and consequently
their pdf are sub-Gaussian. It is often claimed that the kurtosis
of such signals is negative. The following example shows that
this claim is wrong. Let us consider the distribution of Fig. 1.
It is easy to evaluate the kurtosis of this signal:

(3)

with the normalization condition .
For scale reasons, we do not draw directly but

. Thus, if

1When the signal has a positive kurtosis sign, it is said that it is a positive
kurtotic signal.
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Fig. 1. Example ofx-limited pdf.

Fig. 2. Representation ofK?(p(x)) according to parametersc and�, with
a = 0:9, b = 1:1, and d = 9.

, , otherwise, if ,
. Now, we remark that the sign of the kurtosis

may be easily controlled with adequate values of the pdf
parameters (see Fig. 2).

IV. CONCLUSION

In this letter, we point out some relations between pdf
and kurtosis sign. First, we show that the kurtosis sign is
not modified by any scale or translation factors, and it only
depends on the even part of the pdf.

Usually, one associates the kurtosis sign of a distribution
to its over-Gaussian or sub-Gaussian nature. Here, we

prove that this claim is only relevant for unimodal pdf .
Generally, even for bounded pdf, we show by a few exam-
ples that the kurtosis sign can change according to the pdf
parameters.

From a practical point of view, kurtosis sign of non sta-
tionary signals, which must be estimated on short moving
windows, can change. A previous experimental study proves
that the kurtosis sign of speech signal can be affected by the
silent period [12]. Additionally, this work gives a theoretical
explanation to the necessity and the efficacy of intermit-
tent adaptation which is used for separation of nonstationary
sources [13].

APPENDIX

PROOF OF THEOREM 1

Let us consider that for , the equation
only has one solution . It is known that the fourth-order
cumulant of a Gaussian distribution is zero. As a consequence,
we can write: . In
addition, we just may study the sign of .

Using (1) and the unit variance signal, one can prove that

(4)

Let us consider that the pdf is an over-Gaussian signal
( , when ). Then, the sign of
remains constant on each interval , and [ ]. Using
the second mean value theorem,can be rewritten as

(5)

where . Using the fact that and
are both pdf, we can deduce that

. Taking into
account that is over-Gaussian, we deduce

(6)

Using (5) and (6), we remark that

(7)

Finally, if is an over-Gaussian pdf (with the assumption
of a unique solution to the equation for ,
then its kurtosis is positive. Using the same reasoning and
under the same condition, we can claim that a sub-Gaussian
pdf has a negative kurtosis.
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