"Underdetermined Sparse Component Analysis (SCA)"

Massoud BABAIE-ZADEH

Outline

- Introduction to Blind Source Separation
- Geometrical Interpretation
- Sparse Component Analysis (SCA), underdetermined case
- Identifying mixing matrix
- Source restoration
- Finding sparse solutions of an Underdetermined System of Linear Equations (USLE):
- Minimum LO norm
- Method of Frames
- Matching Pursuit
- Minimum L1 norm or Basis Pursuit (\rightarrow Linear Programming)
- Iterative Detection-Estimation (IDE) - our method
- Simulation results
- Conclusions and Perspectives

Blind Source Separation (BSS)

- Source signals $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{M}}$
- Source vector: $\mathbf{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{M}}\right)^{\top}$
- Observation vector: $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)^{\top}$
- Mixing system $\rightarrow \mathrm{x}=\mathrm{As}$

- Goal \rightarrow Finding a separating matrix $\mathbf{y}=\mathbf{B x}$

Blind Source Separation (cont.)

- Assumption:
- $\mathrm{N}=\mathrm{M}$ (\#sensors = \#sources), or $\mathrm{N}>=\mathrm{M}$ (\#sensors >= \#sources)
- A is full-rank (invertible)
- prior information: Statistical "Independence" of sources
- Main idea: Find "B" to obtain "independent" outputs (\Rightarrow Independent Component Analysis=ICA)

Blind Source Separation (cont.)

- Separability Theorem [Comon 1994,Darmois 1953]: If at most 1 source is Gaussian: statistical independence of outputs \Rightarrow source separation (\Rightarrow ICA: a method for BSS)
- Indeterminacies: permutation, scale

$$
\begin{aligned}
& \mathbf{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathrm{M}}\right], \mathbf{x}=\mathbf{A s} \Rightarrow \\
& \mathbf{x}=s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\ldots+s_{\mathrm{M}} \mathbf{a}_{\mathrm{M}}
\end{aligned}
$$

Geometrical Interpretation

$$
\mathbf{x}=\mathbf{A s} \quad \mathbf{A}=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]
$$

Statistical Independence of s1 and s2 \Rightarrow rectangular scatter plot of ($s 1, \mathrm{~s} 2$)

Sparse Sources

Note: The sources may be not sparse in time, but sparse in another domain (frequency, time-frequency, time-scale)

2 sources, 2 sensors:

Sparse sources (cont.)

- 3 sparse sources, 2 sensors

Sparsity \Rightarrow Source Separation, with more sensors than sources?

Estimating the mixing matrix

$$
\begin{aligned}
& \qquad \mathbf{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \boldsymbol{a}_{3}\right] \Rightarrow \\
& \mathbf{x}=s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+s_{3} \boldsymbol{a}_{3} \\
& \Rightarrow \text { Mixing matrix is easily } \\
& \text { identified for sparse } \\
& \text { sources } \\
& \quad \begin{array}{l}
\text { Scale \& Permutation } \\
\text { indeterminacy } \\
\left\|\mathbf{a}_{i}\right\|=1
\end{array}
\end{aligned}
$$

Restoration of the sources

- How to find the sources, after having found the mixing matrix (A)?

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { or }\left\{\begin{array}{l}
a_{11} s_{1}+a_{12} s_{2}+a_{13} s_{3}=x_{1} \\
a_{21} s_{1}+a_{22} s_{2}+a_{23} s_{3}=x_{2}
\end{array}\right.
$$

2 equations, 3 unknowns \Rightarrow infinitely many solutions!

Underdertermined SCA, underdetermined system of equations

Identification vs Separation

- Case \#Sources <= \#Sensors: (determined or overdtermined)

$$
\text { Identifying } \mathrm{A} \Rightarrow \text { source Separation }
$$

- Underdetermined case: \#Sources > \#Sensors

Two different problems:

- Identifying the mixing matrix (relatively easy)
- Restoring the sources (difficult)

Is it possible?

- A is known, at eash instant $\left(n_{0}\right)$, we should solve un underdetermined linear system of equations:

$$
\mathbf{A} \mathbf{s}\left(n_{0}\right)=\mathbf{x}\left(n_{0}\right) \quad \text { or } \quad\left\{\begin{array}{l}
a_{11} s_{1}\left(n_{0}\right)+a_{12} s_{2}\left(n_{0}\right)+a_{13} s_{3}\left(n_{0}\right)=x_{1}\left(n_{0}\right) \\
a_{21} s_{1}\left(n_{0}\right)+a_{22} s_{2}\left(n_{0}\right)+a_{23} s_{3}\left(n_{0}\right)=x_{2}\left(n_{0}\right)
\end{array}\right.
$$

- Infinite number of solutions $\mathbf{s}\left(n_{0}\right) \rightarrow$ Is it possible to recover the sources?

'Sparse' solution

- $\mathrm{s}_{\mathrm{i}}(n)$ sparse in time \Rightarrow The vector $\mathbf{s}\left(\mathrm{n}_{0}\right)$ is most likely a 'sparse vector'
- A.s $\left(\mathrm{n}_{0}\right)=\mathbf{x}\left(\mathrm{n}_{0}\right)$ has infinitely many solutions, but not all of them are sparse!
- Idea: For restoring the sources, take the sparsest solution (most likely solution)

Example (2 equations, 4 unknowns)

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & -1 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

- Some of solutions:

$$
\left[\begin{array}{c}
0 \\
0 \\
1.5 \\
2.5
\end{array}\right],\left[\begin{array}{c}
5 \\
1 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-0.75 \\
0.75
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
0 \\
-3 \\
1
\end{array}\right]
$$

The idea of solving underdetermined SCA

$$
\mathbf{A} \mathbf{s}(n)=\mathbf{x}(n), \mathrm{n}=0,1, \ldots, \mathrm{~T}
$$

- Step 1 (identification): Estimate A (relatively easy)
- Step 2 (source restoration): At each instant n_{0}, find the sparsest solution of

$$
\mathbf{A} \mathbf{s}\left(n_{0}\right)=\mathbf{x}\left(n_{0}\right), n_{0}=0, \ldots, \mathbf{T}
$$

Main question: HOW to find the sparsest solution of an Underdetermined System of Linear Equations (USLE)?

Another application of USLE: Atomic decomposition over an overcompelete dictionary

- Decomposing a signal x, as a linear combination of a set of fixed signals (atoms)

$$
\begin{aligned}
\text { Time }\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
\\
x(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} \quad & =\alpha_{1} \quad \underline{\varphi}_{1} \quad+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

- Terminology:
- Atoms: $\varphi_{i}, i=1, \ldots, M$
- Dictionary: $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{M}\right\}$

Atomic decomposition (cont.)

$$
\begin{aligned}
\text { Time }\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
\\
x(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} & =\alpha_{1} \quad \underline{\varphi}_{1}+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

- $\mathbf{M}=\mathbf{N} \rightarrow$ Complete dictionary \rightarrow Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

Dirac Dictionary:
$\underline{\varphi}_{k}(n)= \begin{cases}1 & n=k \\ 0 & n \neq k\end{cases}$

Atomic decomposition (cont.)

$$
\begin{aligned}
\text { Time }\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
x(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} \quad & =\alpha_{1} \quad \underline{\varphi}_{1}+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

- $\mathbf{M}=\mathbf{N} \rightarrow$ Complete dictionary \rightarrow Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

Fourier Dictionary:

$$
\underline{\varphi}_{k}=\left(1, e^{\frac{2 k \pi}{N}}, e^{\frac{2 k \pi}{N} 2}, \ldots, e^{\frac{2 k \pi}{N}(N-1)}\right)^{T}
$$

Atomic decomposition (cont.)

$$
\mathbf{x}=\alpha_{1} \underline{\varphi}_{1}+\cdots+\alpha_{m} \underline{\varphi}_{m}
$$

- Matrix Form:

$$
\mathbf{x}=\left[\underline{\varphi}_{1}, \ldots, \underline{\varphi}_{m}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right]=\boldsymbol{\Phi} \boldsymbol{\alpha}
$$

- If just a few number of coefficient are non-zero \Rightarrow The underlying structure is very well revealed
- Example.
- signal has just a few non-zero samples in time \rightarrow its decomposition over the Dirac dictionary reveals it
- Signals composed of a few pure frequencies \rightarrow its decomposition over the Fourier dictionary reveals it
- How about a signals which is the sum of a pure frequency and a dirac?

Atomic decomposition (cont.)

$$
\mathbf{x}=\alpha_{1} \underline{\varphi}_{1}+\cdots+\alpha_{m} \underline{\varphi}_{m}=\left[\underline{\varphi}_{1}, \ldots, \underline{\varphi}_{m}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right]=\boldsymbol{\Phi} \boldsymbol{\alpha}
$$

- Solution: consider a larger dictionary, containing both Dirac and Fourier atoms
- $\mathbf{M} \mathbf{> N} \rightarrow$ Overcomplete dictionary.
- Problem: Non-uniqueness of $\alpha(\rightarrow$ USLE)
- However: we are looking for sparse solution

Sparse solution of USLE

Underdetermined SCA

Atomic Decomposition on over-complete dictionaries

Findind sparsest solution of USLE

Uniqueness of sparse solution

- $\mathbf{x}=\mathrm{As}, \mathrm{n}$ equations, m unknowns, $\mathrm{m}>\mathrm{n}$
- Question: Is the sparse solution unique?
- Theorem (Donoho 2004): if there is a solution \mathbf{s} with less than $\mathrm{n} / 2$ non-zero components, then it is unique with probability 1 (that is, for almost all A's).

How to find the sparsest solution

- A.s $=\mathbf{x}, \mathrm{n}$ equations, m unknowns, $m>n$
- Goal: Finding the sparsest solution
- Note: at least m-n sources are zero.
- Direct method:
- Set m-n (arbitrary) sources equal to zero
- Solve the remaining system of n equations and n unknowns
- Do above for all possible choices, and take sparsest answer.
- Another name: Minimum Lo norm method
- L^{0} norm of $s=$ number of non-zero components $=\Sigma\left|s_{i}\right|^{0}$

Example

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & -1 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

$$
\binom{4}{2}=6 \text { different answers to be tested }
$$

- $s 1=s 2=0 \Rightarrow s=(0,0,1.5,2.5)^{\top} \Rightarrow L^{0}=2$
- $s 1=s 3=0 \Rightarrow s=(0,2,0,0)^{\top} \Rightarrow L^{0}=1$
- $s 1=s 4=0 \Rightarrow s=(0,2,0,0)^{\top} \Rightarrow L^{0}=1$
- $s 2=s 3=0 \Rightarrow s=(2,0,0,2)^{\top} \Rightarrow L^{0}=2$
- $s 2=s 4=0 \Rightarrow s=(10,0,-6,0)^{\top} \Rightarrow L^{0}=2$
- $s 3=s 4=0 \Rightarrow s=(0,2,0,0)^{\top} \Rightarrow L^{0}=2$
- $\quad \Rightarrow$ Minimum L^{0} norm solution $\rightarrow \mathbf{s}=(0,2,0,0)^{\top}$

Drawbacks of minimal norm L^{0}

$$
\left(P_{0}\right) \text { Minimize }\|\mathbf{s}\|_{0}=\sum_{i}\left|s_{i}\right|^{0} \quad \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Highly (unacceptably) sensitive to noise
- Need for a combinatorial search:
$\binom{m}{n}$ diffetent cases should be tested separately
- Example. $\mathrm{m}=50, \mathrm{n}=30$,
$\binom{50}{30} \approx 5 \times 10^{13}$ cases should be tested.
On our computer: Time for solving a 30 by 30 system of equation $=2 \times 10^{-4}$
Total time $\approx\left(5 \times 10^{13}\right)\left(2 \times 10^{-4}\right) \approx 300$ years! \rightarrow Non-tractable

A few faster methods

- Method of Frames (MoF) [Daubechies, 1989]
- Matching Pursuit [Mallat \& Zhang, 1993]
- Basis Pursuit (minimal L1 norm \rightarrow Linear Programming) [Chen, Donoho, Saunders, 1995]
- Our method (IDE)

Method of Frames (Daubechies, 1989)

- Take the minimum norm 2 (energy) solution:

$$
\left(P_{2}\right) \text { Minimize }\|\boldsymbol{s}\|_{2}=\sum_{i}\left|s_{i}\right|^{2} \quad \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Solution: pseudo inverse:

$$
\hat{\mathbf{s}}_{\text {MOF }}=\mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1} \mathbf{x}
$$

- Different view points resulting in the same answer:
- Linear LS inverse

$$
\hat{\mathbf{s}}=\mathbf{B x}, \quad \mathbf{B A} \stackrel{L S}{\approx} \mathbf{I}
$$

- Linear MMSE Estimator
- MAP estimator under a Gaussian prior $\quad \mathbf{s} \sim N\left(0, \sigma_{s}^{2} \mathbf{I}\right)$

Drawback of MoF

- It is a 'linear' method: $\mathbf{s = B x}$
$\Rightarrow \mathrm{s}$ will be an n -dim subspace of m -dim space
- Example:

3 sources, 2 sensors:

- \Rightarrow Never can produce original sources

Matching Pursuit (MP) [Mallat \& Zhang, 1993]

Properties of MP

- Advantage:
- Very Fast
- Drawback
- A very ‘greedy' algorithm
\rightarrow Error in a stage, can never be corrected \rightarrow

Not necessarily a sparse solution

Minimum L ${ }^{1}$ norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

- Minimum norm L1 solution:

$$
\left(P_{1}\right) \text { Minimize }\|\mathbf{s}\|_{1}=\sum_{i}\left|s_{i}\right| \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- MAP estimator under a Laplacian prior
- Recent theoretical support (Donoho, 2004):

For 'most' 'large' underdetermined systems of linear equations, the minimal L^{1} norm solution is also the sparsest solution

Minimal L ${ }^{1}$ norm (cont.)

$$
\left(P_{1}\right) \text { Minimize }\|\mathbf{s}\|_{1}=\sum_{i}\left|s_{i}\right| \text { s.t. } \mathbf{x}=\mathbf{A} \mathbf{s}
$$

- Minimal L ${ }^{1}$ norm solution may be found by Linear Programming (LP)
- Fast algorithms for LP:
- Simplex
- Interior Point method

Minimal L^{1} norm (cont.)

- Advantages:
- Very good practical results
- Theoretical support
- Drawback:
- Tractable, but still very time-consuming

Iterative Detection-Estmation (IDE)- Our method

- Main Idea:
- Step 1 (Detection): Detect which sources are 'active', and which are 'non-active'
- Step 2 (Estimation): Knowing active sources, estimate their values
- Problem: Detection the activity status of a source, requires the values of all other sources!
- Our proposition: Iterative Detection-Estimation

IDE (cont.)

- Detection Step (resulted from binary hypothesis testing, with a Mixture of Gaussian source model):

$$
\begin{aligned}
& g_{i}(\mathbf{x}, \hat{\mathbf{s}})=\left|\mathbf{a}_{i}^{T}\left(\mathbf{x}-\sum_{j \neq i}^{m} \hat{s}_{j} \mathbf{a}_{j}\right)\right|>\varepsilon \\
& \operatorname{or} \mathbf{g}(\mathbf{x}, \hat{\mathbf{s}})=\left|\mathbf{A}^{T}(\mathbf{x}-\mathbf{A} \hat{\mathbf{s}})+\hat{\mathbf{s}}\right|
\end{aligned}
$$

- Estimation Step:

$$
\begin{array}{ll}
\text { (IDE-s) } & \text { minimize } \sum_{i \in I_{\text {inactive }}} s_{i}^{2} \text { s.t. } \mathbf{x}=\mathbf{A s} \\
(\text { IDE-x }) & \text { Let } \mathbf{s}_{\text {inactive }}=\mathbf{0}, \text { and minimize }\left\|\mathbf{x}-\mathbf{A}_{a c t} \mathbf{s}_{\text {act }}\right\|_{2}
\end{array}
$$

IDE (cont.)

$$
m=1024, n=0.4 m=409
$$

IDE (Simulation Results)

- $m=1024, n=0.4 m=409$

algorithm	total CPU time	MSE	SNR (dB)
IDP-s (6 itrs.)	$1.88 e 00$	$1.39 e-5$	30.28
IDP-x (6 itrs.)	$1.12 e-1$	$1.95 e-5$	28.80
LP (interior-pt)	$1.23 e+2$	$3.51 e-5$	26.25
LP (Simplex)	$5.45 e+3$	$3.51 e-5$	26.25
MP (10 itrs.)	$1.54 e-1$	$9.77 e-3$	1.80
MP (100 itrs.)	$1.58 e 00$	$1.26 e-3$	10.70
MP (1000 itrs.)	$8.71 e 00$	$1.54 e-3$	9.82
MOF	$1.38 e-1$	$8.59 e-3$	2.36

- IDE-x is about two order of magnitudes faster than LP method.

IDE (Simulation Results)

$\mathrm{m}=100, \mathrm{n}=0.6 \mathrm{~m}$, Averaged SNRs (on 1000 simulations)

Speed/Complexity comparision

Conclusion and Perspectives

- Two problems of Underdetermined SCA:
- Identifying mixing matrix
- Restoring sources
- Two applications of finding sparse solution of USLE's:
- Source restoration in underdetermined SCA
- Atomic Decomposition on over-complete dictionaries
- 5 methods:
- Minimum L0 norm (\rightarrow Combinatorial search)
- Method of Frames
- Minimum L1 norm or Basis Pursuit (\rightarrow Linear Programming)
- Matching Pursuit
- Iterative Detection-Estimation (IDE)
- Perspectives:
- Better activity detection (removing thresholds?)
- Applications in other domains

Thank you very much for your attention

