"Underdetermined Sparse Component Analysis (SCA)"

**Massoud BABAIE-ZADEH** 

# Outline

- Introduction to Blind Source Separation
- Geometrical Interpretation
- Sparse Component Analysis (SCA), underdetermined case
  - Identifying mixing matrix
  - Source restoration
- Finding sparse solutions of an Underdetermined System of Linear Equations (USLE):
  - Minimum L0 norm
  - Method of Frames
  - Matching Pursuit
  - □ Minimum L1 norm or Basis Pursuit ( $\rightarrow$ Linear Programming)
  - □ Iterative Detection-Estimation (IDE) our method
- Simulation results
- Conclusions and Perspectives

## Blind Source Separation (BSS)

- Source signals s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>M</sub>
- Source vector:  $\mathbf{s} = (s_1, s_2, \dots, s_M)^T$
- Observation vector:  $\mathbf{x} = (x_1, x_2, ..., x_N)^T$
- Mixing system  $\rightarrow x = As$



Goal → Finding a separating matrix y = Bx

Blind Source Separation (cont.)



- Assumption:
  - □ N=M (#sensors = #sources), or N >=M (#sensors >= #sources)
  - □ A is full-rank (invertible)
- prior information: Statistical "Independence" of sources
- Main idea: Find "B" to obtain "independent" outputs (⇒ Independent Component Analysis=ICA)



- Separability Theorem [Comon 1994,Darmois 1953]: If at most 1 source is Gaussian: statistical independence of outputs ⇒ source separation (⇒ ICA: a method for BSS)
- Indeterminacies: permutation, scale

$$\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_M], \mathbf{x} = \mathbf{A}\mathbf{s} \implies$$
$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_M \mathbf{a}_M$$

#### Geometrical Interpretation



Statistical Independence of s1 and s2  $\Rightarrow$  rectangular scatter plot of (s1,s2)



Sparse sources (cont.)

#### 3 sparse sources, 2 sensors

Sparsity  $\Rightarrow$  Source Separation, with more sensors than sources?



## Estimating the mixing matrix

$$\mathbf{A} = [\mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3] \Rightarrow$$

 $\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + s_3 \mathbf{a}_3$ 

- ⇒ Mixing matrix is easily identified for sparse sources
- Scale & Permutation indeterminacy
- ||**a**<sub>i</sub>||=1



## Restoration of the sources

How to find the sources, after having found the mixing matrix (A)?

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad or \quad \begin{cases} a_{11}s_1 + a_{12}s_2 + a_{13}s_3 = x_1 \\ a_{21}s_1 + a_{22}s_2 + a_{23}s_3 = x_2 \end{cases}$$

2 equations, 3 unknowns  $\Rightarrow$  infinitely many solutions!

Underdertermined SCA, underdetermined system of equations

Identification vs Separation

- Case #Sources <= #Sensors: (determined or overdtermined)</li>
   Identifying A ⇒ source Separation
- Underdetermined case: #Sources > #Sensors
   Two different problems:
  - Identifying the mixing matrix (relatively easy)
  - Restoring the sources (difficult)

# Is it possible?

A is known, at eash instant (n<sub>0</sub>), we should solve un underdetermined linear system of equations:

$$\mathbf{A}\,\mathbf{s}(n_0) = \mathbf{x}(n_0) \quad or \quad \begin{cases} a_{11}s_1(n_0) + a_{12}s_2(n_0) + a_{13}s_3(n_0) = x_1(n_0) \\ a_{21}s_1(n_0) + a_{22}s_2(n_0) + a_{23}s_3(n_0) = x_2(n_0) \end{cases}$$

■ Infinite number of solutions  $\mathbf{s}(n_0) \rightarrow \mathbf{ls}$  it possible to recover the sources?

'Sparse' solution

- s<sub>i</sub>(n) sparse in time ⇒ The vector s(n<sub>0</sub>) is most likely a 'sparse vector'
- A.s(n<sub>0</sub>) = x(n<sub>0</sub>) has infinitely many solutions, but not all of them are sparse!
- Idea: For restoring the sources, take the sparsest solution (most likely solution)

Example (2 equations, 4 unknowns)

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

Some of solutions:



The idea of solving underdetermined SCA

**A** 
$$s(n) = x(n)$$
, n=0,1,...,T

- Step 1 (identification): Estimate A (relatively easy)
- Step 2 (source restoration): At each instant n<sub>0</sub>, find the sparsest solution of

**A s**(
$$n_0$$
) = **x**( $n_0$ ),  $n_0$ =0,...,**T**

Main question: HOW to find the sparsest solution of an Underdetermined System of Linear Equations (USLE)? Another application of USLE: Atomic decomposition over an overcompelete dictionary

 Decomposing a signal x, as a linear combination of a set of fixed signals (atoms)

Time 
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$
$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \dots + \alpha_M \quad \underline{\varphi}_M$$

- Terminology:
  - Atoms: *g*<sub>i</sub> , i=1,...,M
  - Dictionary:  $\{ \underline{\varphi}_1, \underline{\varphi}_2, ..., \underline{\varphi}_M \}$

Atomic decomposition (cont.) Time  $\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$ 

$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \cdots + \alpha_M \quad \underline{\varphi}_M$$

- M=N → Complete dictionary → Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary



$$\underline{\varphi}_k(n) = \begin{cases} 1 & n = k \\ 0 & n \neq k \end{cases}$$



Atomic decomposition (cont.)  $\operatorname{Time} \begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix} \\
\mathbf{x} = \alpha_1 \quad \varphi_1 \quad + \dots + \alpha_M \quad \varphi_M$ 

- M=N → Complete dictionary → Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

Fourier Dictionary:  

$$\underline{\varphi}_{k} = \left(1, \ e^{\frac{2k\pi}{N}}, \ e^{\frac{2k\pi}{N}^{2}}, \dots, \ e^{\frac{2k\pi}{N}(N-1)}\right)^{T}$$

#### Atomic decomposition (cont.)

$$\mathbf{x} = \boldsymbol{\alpha}_{1} \, \underline{\boldsymbol{\varphi}}_{1} + \dots + \boldsymbol{\alpha}_{m} \, \underline{\boldsymbol{\varphi}}_{m}$$
$$\mathbf{x} = \left[ \underline{\boldsymbol{\varphi}}_{1}, \dots, \underline{\boldsymbol{\varphi}}_{m} \right] \begin{bmatrix} \boldsymbol{\alpha}_{1} \\ \vdots \\ \boldsymbol{\alpha}_{m} \end{bmatrix} = \boldsymbol{\Phi} \, \boldsymbol{\alpha}$$

- If just a few number of coefficient are non-zero ⇒ The underlying structure is very well revealed
- Example.

Matrix Form:

- □ signal has just a few non-zero samples in time → its decomposition over the Dirac dictionary reveals it
- □ Signals composed of a few pure frequencies  $\rightarrow$  its decomposition over the Fourier dictionary reveals it
- How about a signals which is the sum of a pure frequency and a dirac?

#### Atomic decomposition (cont.)

$$\mathbf{x} = \alpha_1 \,\underline{\varphi}_1 + \dots + \alpha_m \,\underline{\varphi}_m = \begin{bmatrix} \underline{\varphi}_1, \dots, \underline{\varphi}_m \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix} = \mathbf{\Phi} \,\mathbf{\alpha}$$

- Solution: consider a larger dictionary, containing both Dirac and Fourier atoms
- M>N → Overcomplete dictionary.
- Problem: Non-uniqueness of  $\alpha (\rightarrow USLE)$
- However: we are looking for sparse solution

Sparse solution of USLE



Uniqueness of sparse solution

- **x=As**, n equations, m unknowns, m>n
- Question: Is the sparse solution unique?
- Theorem (Donoho 2004): if there is a solution s with less than n/2 non-zero components, then it is unique with probability 1 (that is, for almost all A's).

## How to find the sparsest solution

- **A.s** = **x**, n equations, m unknowns, m>n
- Goal: Finding the sparsest solution
- Note: at least m-n sources are zero.

#### Direct method:

- □ Set m-n (arbitrary) sources equal to zero
- Solve the remaining system of n equations and n unknowns
- Do above for all possible choices, and take sparsest answer.
- Another name: Minimum L<sup>0</sup> norm method
  - □ L<sup>0</sup> norm of s = number of non-zero components =  $\Sigma |s_i|^0$

## Example

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6 \text{ different answers to be tested}$$

- s1=s2=0  $\Rightarrow$  s=(0, 0, 1.5, 2.5)<sup>T</sup>  $\Rightarrow$  L<sup>0</sup>=2
- $s1=s3=0 \implies s=(0, 2, 0, 0)^T \implies L^0=1$
- s1=s4=0  $\Rightarrow$  s=(0, 2, 0, 0)<sup>T</sup>  $\Rightarrow$  L<sup>0</sup>=1
- s2=s3=0  $\Rightarrow$  s=(2, 0, 0, 2)<sup>T</sup>  $\Rightarrow$  L<sup>0</sup>=2
- s2=s4=0  $\Rightarrow$  s=(10, 0, -6, 0)<sup>T</sup>  $\Rightarrow$  L<sup>0</sup>=2
- s3=s4=0  $\Rightarrow$  s=(0, 2, 0, 0)<sup>T</sup>  $\Rightarrow$  L<sup>0</sup>=2
- $\Rightarrow$  Minimum L<sup>0</sup> norm solution  $\rightarrow s=(0, 2, 0, 0)^T$

Drawbacks of minimal norm L<sup>0</sup>

(P<sub>0</sub>) Minimize 
$$\|\mathbf{s}\|_0 = \sum_i |s_i|^0$$
 s.t.  $\mathbf{x} = \mathbf{As}$ 

- Highly (unacceptably) sensitive to noise
- Need for a combinatorial search:

 $\binom{m}{n}$  different cases should be tested separately

Example. m=50, n=30,

 $\binom{50}{30} \approx 5 \times 10^{13}$  cases should be tested.

On our computer: Time for solving a 30 by 30 system of equation=2x10<sup>-4</sup>

Total time  $\approx (5x10^{13})(2x10^{-4}) \approx 300$  years!  $\rightarrow$  Non-tractable

A few faster methods

Method of Frames (MoF) [Daubechies, 1989]

Matching Pursuit [Mallat & Zhang, 1993]

 Basis Pursuit (minimal L1 norm → Linear Programming) [Chen, Donoho, Saunders, 1995]

Our method (IDE)

### Method of Frames (Daubechies, 1989)

Take the minimum norm 2 (energy) solution:

(P<sub>2</sub>) Minimize 
$$\|\mathbf{s}\|_2 = \sum_i |s_i|^2$$
 s.t.  $\mathbf{x} = \mathbf{As}$ 

$$\hat{\mathbf{S}}_{MoF} = \mathbf{A}^T \left( \mathbf{A} \mathbf{A}^T \right)^{-1} \mathbf{X}$$

- Different view points resulting in the same answer:
  - $\Box \quad \text{Linear LS inverse} \qquad \hat{\mathbf{s}} = \mathbf{B}\mathbf{x}, \quad \mathbf{B}\mathbf{A} \approx \mathbf{I}$
  - Linear MMSE Estimator
  - □ MAP estimator under a Gaussian prior  $\mathbf{s} \sim N(0, \sigma_s^2 \mathbf{I})$

## Drawback of MoF

It is a 'linear' method: s=Bx

⇒ s will be an n-dim subspace of m-dim space

- Example: 3 sources, 2 sensors:
- Never can produce original sources



## Matching Pursuit (MP) [Mallat & Zhang, 1993]



Properties of MP

Advantage:

Very Fast

Drawback

A very 'greedy' algorithm

 → Error in a stage, can
 never be corrected →
 Not necessarily a sparse
 solution



Minimum L<sup>1</sup> norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

(P<sub>1</sub>) Minimize 
$$\|\mathbf{s}\|_1 = \sum_i |s_i|$$
 s.t.  $\mathbf{x} = \mathbf{As}$ 

- MAP estimator under a Laplacian prior
- Recent theoretical support (Donoho, 2004):
   For 'most' 'large' underdetermined systems of linear equations, the minimal L<sup>1</sup> norm solution is also the sparsest solution

Minimal  $L^1$  norm (cont.)

(P<sub>1</sub>) Minimize 
$$\|\mathbf{s}\|_1 = \sum_i |s_i|$$
 s.t.  $\mathbf{x} = \mathbf{As}$ 

- Minimal L<sup>1</sup> norm solution may be found by Linear Programming (LP)
- Fast algorithms for LP:
  - □ Simplex
  - Interior Point method

## Minimal $L^1$ norm (cont.)

Advantages:

Very good practical results

Theoretical support

Drawback:

□ Tractable, but still very time-consuming

#### Iterative Detection-Estmation (IDE)- Our method

- Main Idea:
  - Step 1 (Detection): Detect which sources are 'active', and which are 'non-active'
  - Step 2 (Estimation): Knowing active sources, estimate their values
- Problem: Detection the activity status of a source, requires the values of all other sources!
- Our proposition: Iterative Detection-Estimation

 $\longrightarrow$  Activity Detection  $\rightarrow$  Value Estimation -

# IDE (cont.)

Detection Step (resulted from binary hypothesis testing, with a Mixture of Gaussian source model):

$$g_{i}(\mathbf{x}, \hat{\mathbf{s}}) = \left| \mathbf{a}_{i}^{T} \left( \mathbf{x} - \sum_{j \neq i}^{m} \hat{s}_{j} \mathbf{a}_{j} \right) \right| > \varepsilon$$
  
or  $\mathbf{g}(\mathbf{x}, \hat{\mathbf{s}}) = \left| \mathbf{A}^{T} \left( \mathbf{x} - \mathbf{A} \hat{\mathbf{s}} \right) + \hat{\mathbf{s}} \right|$ 

Estimation Step:

(IDE-s) minimize 
$$\sum_{i \in I_{inactive}} s_i^2$$
 s.t.  $\mathbf{x} = \mathbf{As}$   
(IDE-x) Let  $\mathbf{s}_{inactive} = \mathbf{0}$ , and minimize  $\|\mathbf{x} - \mathbf{A}_{act}\mathbf{s}_{act}\|_2$ 



۳٦/39

IDE (Simulation Results)

#### m=1024, n=0.4m=409

| algorithm        | total CPU time | MSE         | SNR (dB) |
|------------------|----------------|-------------|----------|
| IDP-s (6 itrs.)  | 1.88  e  00    | 1.39  e - 5 | 30.28    |
| IDP-x (6 itrs.)  | 1.12  e - 1    | 1.95e-5     | 28.80    |
| LP (interior-pt) | 1.23  e + 2    | 3.51  e  -5 | 26.25    |
| LP (Simplex)     | $5.45e{+}3$    | 3.51  e  -5 | 26.25    |
| MP (10 itrs.)    | 1.54  e  -1    | 9.77  e - 3 | 1.80     |
| MP (100 itrs.)   | 1.58e00        | 1.26  e - 3 | 10.70    |
| MP (1000 itrs.)  | 8.71e00        | 1.54  e  -3 | 9.82     |
| MOF              | 1.38  e  -1    | 8.59  e - 3 | 2.36     |

IDE-x is about two order of magnitudes faster than LP method.

IDE (Simulation Results)

m=100, n=0.6m, Averaged SNRs (on 1000 simulations)



#### Speed/Complexity comparision



# Conclusion and Perspectives

- Two problems of Underdetermined SCA:
  - Identifying mixing matrix
  - Restoring sources
- Two applications of finding sparse solution of USLE's:
  - Source restoration in underdetermined SCA
  - Atomic Decomposition on over-complete dictionaries
- 5 methods:
  - Minimum L0 norm ( $\rightarrow$ Combinatorial search)
  - Method of Frames
  - □ Minimum L1 norm or Basis Pursuit (→Linear Programming)
  - Matching Pursuit
  - Iterative Detection-Estimation (IDE)
- Perspectives:
  - Better activity detection (removing thresholds?)
  - Applications in other domains

#### Thank you very much for your attention