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Part I

Problem Statement
and 

Uniqueness
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Problem statement

?
Underdetermined System of Linear equations (USLE):

A s = x
n  m

1 n  1

n equations
m unknowns
m>n

m  1 n  1

= Infinitely many solutions!
What is the sparsest solution?

=

4/77



Example (2 equations, 4 unknowns)
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Sparsest
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Issues

 Applications?

 Uniqueness?  Yes!  Useful

 How to find the sparsest solution?

 Stability (sensitivity to noise)
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Uniqueness of the sparse solution

 x=As n equations m unknowns m>n x As,  n equations, m unknowns, m>n

Theorem (G d it k & R 1997 D h 2004 Theorem (Gorodnitsky & Rao 1997, Donoho 2004, 

Gribonval&Nielson2003, Donoho&Elad2003): if there is a 
solution s with less than or equal n/2 non-solution s with less than or equal n/2 non-
zero components, then it is unique under 
some mild conditionssome mild conditions.

Sparsity Revolution!
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Part II

Examples
of applications of 

Sparse solutions of USLE’s
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Application 1:

Signal decomposition 
using overcomplete 
dictionaries
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Signal Decomposition

 Decomposition of a signal x(t) as a linearDecomposition of a signal x(t) as a linear 
combination of a set of known signals:

)()()( )()()( 11 tttx mm  

 Examples: 
 Fourier Transform (i  complex sinusoids)

W l t T f Wavelet Transform
 DCT
 …
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Signal Decomposition

 Decomposition of a signal x(t) as a linearDecomposition of a signal x(t) as a linear 
combination of a set of known signals:

)()()( )()()( 11 tttx MM   

 Terminology:
 Atomic Decomposition (=Signal Decomposition)

At Atoms  i

 Dictionary  Set of all atoms: {1, 2, …}
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Discrete Case

Nttttx MM ,...,1,)()()( 11   
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Matrix form
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Complete decomposition: M=N
(1) (1)(1)      1

1

1 1

(1) (1)(1)
(2) (2)Time (2)
(3) (3)(3)

M

M

M M

x
x
x

 
 

  

    
    
    
       
    



1( ) ( )( ) MN Nx N  
   

         
         

  x

 



 M=N  Complete dictionary  Unique set of 
coefficients

 Examples: Dirac dictionary, Fourier Dictionary

1 1 M M    x

 Examples: Dirac dictionary, Fourier Dictionary

1 n k

Dirac Dictionary:
1

( )
0k

n k
n

n k



  

)(kxk 
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Complete decomposition: M=N
(1) (1)(1)      1

1

1 1

(1) (1)(1)
(2) (2)Time (2)
(3) (3)(3)

M

M

M M

x
x
x

 
 

  

    
    
    
       
    



1( ) ( )( ) MN Nx N  
   

         
         

  x

 



 M=N  Complete dictionary  Unique set of 
coefficients

 Examples: Dirac dictionary, Fourier Dictionary

1 1 M M    x

 Examples: Dirac dictionary, Fourier Dictionary

T

Fourier Dictionary:
2 2 22 ( 1)

1, , , ,
Tk k k N

N N N
k e e e
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Over-complete decomposition: M>N

1

1

(1) (1)(1)
(2) (2)Time (2)

M

M

x
x

 
 
    
    
     1

1 1

1

(3) (3)(3)

( ) ( )( )

M

M M

M

x

N Nx N

  

 

    
       
         
         



 

1

1 1

( ) ( )( ) M

M M

N Nx N  
   

     
  x 

 M > N
 Over-complete dictionaryp y
 Under-determined linear system: =x
 Non-unique 
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Overcomplete Sparse Decomposition: 
M i iMotivation

1
     

 
         x Φα 1 1 1,...,m m m

m

     


        
  

x Φα 

Example:
 A sinusoidal signal, sin(0t),     Fourier Dictionary
 A signal with just one non-zero value, (t-t0),  Dirac 

Dictionary
H b t th i l i ( t) (t t ) ? How about the signal: sin(0t)+(t-t0) ?

 A larger dictionary, containing both Dirac and Fourier atoms?  
 Non-unique  

 Sparse solution of =x
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Overcomplete Sparse Decomposition

xαΦ 

  x MM  11

=
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Application 2:

Blind Source Separation 
(BSS) and Sparse 
Component Analysis 
(SCA)
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Blind Source Separation (BSS)

 Source signals s1, s2, …, sMSource signals s1, s2, …, sM

 Source vector: s=(s1, s2, …, sM)T

 Observation vector: x=(x1, x2, …, xN)T( 1, 2, , N)
 Mixing system  x = As

A G 
s x y

Mixing matrix Separating system

 Goal  Finding a separating system y = G(x)

Mixing matrix Separating system
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Sparse Sources
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Sparse sources (cont.)

 3 sparse sources, 2 sensors3 sparse sources, 2 sensors

2

3

0

1

2

Sparsity  Source Separation

-2

-1

0Sparsity  Source Separation,
with more sensors than 
sources?

-3 -2 -1 0 1 2 3
-3
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Estimating the mixing matrix

3

A = [a1, a2, a3] 
1

2

2
a3

x = s1 a1 + s2 a2 + s3 a3

 Mixing matrix is easily 
0

1

a1

a2

identified for sparse 
sources

 Scale & Permutation 
indeterminacy

-2

-1

indeterminacy
 ||ai||=1

-3 -2 -1 0 1 2 3
-3
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Restoration of the sources

 A known, how to find the sources?A known, how to find the sources?

s 1
11 12 13 11 1 12 2 13 3 11

2
21 22 23 21 1 22 2 23 3 22

s
a a a a s a s a s xx

s or
a a a a s a s a s xx

s

 
                    3s      

Underdertermined SCA
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Application 3:

Compressed Sensing
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Traditional Sampling vs. Compressed Sensing

 Traditional Signal Acquisition:

Sampling Compression

N C d C d
Analog

Non-Compressed
Digital

Compressed
Digital

 Compressed Sensing (CS)
Compressed

Compressed

Compressed
Sensing
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CS:    Sample → Measurement

+
w1

w2
w3

t t

n n
Sample Measurement
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CS: A (smaller) set of random measurements

s
s3 sm

ts

s2

s1

 1st measurement  →   x1 = φ11 s1 + φ12 s2 +…+ φ1n sm

2nd t 2nd measurement →   x2 = φ21 s1 + φ22 s2 +…+ φ2n sm

:
nth meas rement φ s + φ s + + φ s nth measurement  →   xn = φn1 s1 + φn2 s2 +…+ φnm sm

n < m  USLE
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CS: A (smaller) set of random measurements

s
s3 sm

ts

s2

s1

s = xs  x
Measurement Measurement

tmatrix vector

?
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CS: A (smaller) set of random measurements

s = x
?

  → sparsifying transform: mm → sparsifying transform:

s =  ,    
where  is sparse


( ) =x

(USLE with sparsity)
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Application 4:

Error Correcting Codes

(Real-field coding)
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Coding Terminology

 u=(u u ) → the message to be sent (k symbols) u=(u1,…, uk) → the message to be sent (k symbols)

 G → Code Generator matrix (nk,  n>k)

 v =(v1,…, vn) → Codeword:   
v=G.u

(adding  n-k “parity” symbols)

 H → Parity check matrix ( (n-k)n ):
HG=0

 v is a codeword if and only if: H.v=0y
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Error Correction
Error‐prone
channel

v r = v + e

 v sent, r = v + e received
( i th d )(e is the error → assumed sparse)

 Syndrome of r →    s = H.ry
 s = H.(v+e) = H.e

H e = sH.e = s
(n-k)n n-kn

→ USLE
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Error Correction

The receiver:The receiver:

 Receives  r = v+e

 Computes   s = H.r

 Finds sparse solution of USLE  H.e=s

  Error Correction  Error Correction
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Sparsity of e?
Error‐prone
channel

v r = v + e

H.e = s
(n-k)n n-kn

 Galois fields (binary) codes   small probability of error

 Real-field codes  Impulsive noise, Laplace noise
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Summary of Part II

Atomic Decomposition
on over-complete dictionaries

Underdetermined SCA
Compressed sensing

Real field 
codes

Pattern recognition
and classification

Finding sparsest solution of
an USLE

and classification 
(OCR)

C
Image Denoising

.

.

Image Compression
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Part III

HOW
to find the

Sparsest Solution?
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How to find the sparsest solution

 A.s = x, n equations, m unknowns, m>nq
 Goal: Finding the sparsest solution
 Note: at least m-n unknown are zero.

 Direct method:
 Set m-n (arbitrary) unknowns equal to zero( y) q
 Solve the remaining system of n equations and n unknowns
 Do above for all possible choices, and take the sparsest answer.

 Another name: Minimum L0 norm method
 L0 norm of s = number of non-zero components = |si|0

38/77



Example
1

2

3

1 2 1 1 4
1 1 2 2 2

s
s
s

 
               3

4

1 1 2 2 2

different answers to be tested
4

6

s
s
    
 

 
 

  

 s1=s2=0    s=(0, 0, 1.5, 2.5)T  L0=2

2 
 

 s1=s3=0    s=(0, 2, 0, 0)T          L0=1
 s1=s4=0    s=(0, 2, 0, 0)T  L0=1
 s2=s3=0    s=(2, 0, 0, 2)T  L0=2s s3 0  s ( , 0, 0, ) 
 s2=s4=0    s=(10, 0, -6, 0)T  L0=2
 s3=s4=0    s=(0, 2, 0, 0)T  L0=2

 Minimum L0 norm solution  s=(0 2 0 0)T
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Drawbacks of minimal norm L0

0
0 0

( ) Minimize s.t.i
i

P s s x As

 Highly (unacceptably) sensitive to noise
 Need for a combinatorial search:

diffetent cases should be tested separately
m
n

 
 
 

 Example. m=50, n=30,

1350
5 10 cases should be tested

 
   5 10 cases should be tested.

30
  

 
On our computer: Time for solving a 30 by 30 system of equation=2x10-4

T t l ti (5 1013)(2 10 4) 300 ! N t t bl
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Total time  (5x1013)(2x10-4)  300 years!  Non-tractable



Some ideas for solving the problem

 Method of Frames (MoF) [Daubechies 1989] Method of Frames (MoF) [Daubechies, 1989]

Matching Pursuit Matching Pursuit [Mallat & Zhang, 1993]

 Basis Pursuit (minimal L1 norm  Linear 
Programming) [Chen, Donoho, Saunders, 1995]

 SL0
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Idea 1 (obsolete):
Pseudo-inverse
[Daubechies, 1989]
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Method of Frames (Daubechies, 1989)

 Use pseudo-inverse:
  1

ˆ T T
M F


s A AA x

 It is equivalent to minimizing the L2 (energy) solution:
2

2 2
( ) Minimize s.t.iP s s x As

 MoFs A AA x

 Different view points resulting in the same answer:

2 2
( ) i

i


p g

 Linear LS inverse ˆ ,
LS

 s Bx BA I

 Linear MMSE Estimator

 MAP estimator under a Gaussian prior  2~ 0N s I
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 MAP estimator under a Gaussian prior  0, sN s I



Drawback of MoF

 It is a ‘linear’ method: s=Bx
 s will be an n-dim subspace of m-dim space

 Example: Example: 
3 sources, 2 sensors:

  Never can produce 
original sources
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Idea 2:
Matching Pursuitg
[Mallat & Zhang, 1993]
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Matching Pursuit (MP) [Mallat & Zhang, 1993]
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Properties of MP

 Advantage:Advantage:
 Very Fast x

a1

 Drawback
 A very ‘greedy’ algorithm 

E i t

a2

 Error in a stage, can 
never be corrected 
Not necessarily a sparse 

l tisolution
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Variants

 OMP: Orthogonal MP [Tropp&Gilbert IEEE Tr On IT 2007] OMP: Orthogonal MP [Tropp&Gilbert, IEEE Tr. On IT, 2007]

StOMP: Stagewise MP [D h t l T hR t StOMP: Stagewise MP [Donoho et. al., TechReport, 
2006]

 CoSaMP: Compressive Sampling Matching 
Pursuit [Needell&Tropp Appl Comp Harmonic Anal 2008]Pursuit [Needell&Tropp, Appl. Comp. Harmonic Anal., 2008]

 …
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Idea 3:
Minimizing L1 normg
[Chen, Donoho, Saunders, 1995]
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Minimum L1 norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

 Minimum norm L1 solution:Minimum norm L1 solution:

1 1
( ) Minimize s.t.i

i
P s s x As

 MAP estimator under a Laplacian priorp p
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Minimal L1 norm (cont.)

1 1
( ) Minimize s.t.i

i
P s s x As

 Minimal L1 norm solution may be found by 
Linear Programming (LP)

i

 Fast algorithms for LP:
 Simplex
 Interior Point method

 A theoretical guarantee for finding the sparse 
l ti d li iti diti
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Theoretical Support for BP: Mutual Coherence

 Mutual Coherence [Gribonval&Nielsen2003, 
Donoho&Elad2003]: of the matrix A is the maximum 
correlation between its columns

j
T
ijijiji

M aaaa


 max,max

 For an A (n  m) with normalized columns:
1
n

M 1
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Theoretical Support for BP: Theorem

 Theorem [Gribonval&Nielsen2003, Donoho&Elad2003]: 
If th USLE A h l ti h th tIf the USLE As=x has a sparse solution s such that

2
1 1

0




Ms

then it is guaranteed that BP finds this solution.
20

 Loosely speaking: BP is guaranteed to work 
were there is a “very very” sparse solutionwere there is a very very  sparse solution.
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Example

 m=1000 unknowns, n=500 equations

 Uniqueness: a sparse solution with at most ||s||0≤n/2=250 is the 
unique sparsest solution.

1 1 BP: M-1 < sqrt(500)=22.36  (1+M-1)/2<11.68

 So: So:

 If there is a sparse solution with 250 out of 1000 non-zero entries, 
it i th i l tiit is the unique sparse solution.

 If there is a sparse solution with 11  out of 1000 non-zero entries, 
it is guaranteed that it can be found by BP.
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Summary of minimal L1 norm method

 Advantages: Advantages:
 Good practical results
 Existence of a theoretical support Existence of a theoretical support

 Drawbacks: Drawbacks:
 Theoretical support is limited to very sparse 

solutions
 Tractable, but still very time-consuming
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Part IV

Smoothed L0 (SL0)
ApproachApproach
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Smoothed L0 Norm: The main idea
0

0 0
( ) Minimize s.t.i

i

P s s x As

 Note: Problems of the L0 norm:
 Computational load (combinatorial search)p ( )
 Sensitivity to noise

 Both due to discontinuity of the L0 norm

 Main Idea: Use a smoothed L0 norm 
(continuous)
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Smoothed L0 (SL0): Smoothing function

59/77



SL0: Finding the sparse solution

 Goal: For a small Goal:  For a small 
Maximize F(s)   s.t.   As=x

 Problem: Small   lots of local maxima

 Idea: Use Graduated Non-Convexity (GNC)
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Graduated Non-Convexity (GNC)

 Global minimization of a non-convex f () Global minimization of a non convex f ( )
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GNC: Example

The function to be minimizedThe function to be minimized
(many local minima)

S f f i i h i i l f iSequence of functions converging to the original function:
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GNC: Example (cont.)
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GNC: Example (cont.)
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GNC: Example (cont.)
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GNC: Example (cont.)
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GNC

 Global minimization of a non-convex f () Global minimization of a non convex f ( )

decreasing

 Use a sequence of functions f(), =1,2,3,…, 
converging to f ():

decreasing

g g f ( )
)()(lim

0



ff

 For each , minimize f(), by starting the search
from the minimizer for the previous 
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SL0:

 Goal: For a small Goal:  For a small 
Maximize F(s)   s.t.   As=x

 Use the GNC idea: 
 Start with large , and decrease it gradually. Start with large , and decrease it gradually.
 For each , maximize F(s) by starting the search

from the maximizer of the previous F(s) (which 
h d l )had a larger ).

 Starting point? (corresponding to )?
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 Starting point? (corresponding to )?



Initialization

 Theorem: For very large : Theorem: For very large :
Maximize F(s)   s.t.   As=x

has no local maxima and its unique solution ishas no local maxima, and its unique solution is 
the minimum L2 norm solution of As=x (given 
by pseudo-inverse)by pseudo-inverse)

 t ti i t f SL0 i L2 l ti  starting point of SL0: min L2 norm solution
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Constraints?

 Goal:  For a small 
Maximize F(s)   s.t.   As=x

 Use a Gradient-Projection approach.

 Each iteration:
 Gradient:   s  s + F(s)
 Projection onto {s|As=x}j { | }

 Decreasing step-size:  = 0 2 Decreasing step size:   0 
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Final Algorithm
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Simulation result

A s = x
n  m

1 n  1

n equations
m unknowns
m>n

m  1 n  1

 m = 1000
 n = 400
 About 100 non-zero entries in s
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Experimental Result (cont.)
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Experimental Result (cont.)

Original:

=1

0=0.5

=0.2
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Comparisons

 SL0 versus L0: SL0 versus L0:
 No need for combinatorial search (Fast)
 Not sensitive to noise (Accurate) Not sensitive to noise (Accurate)

 SL0 versus L1: SL0 versus L1:
  Highly faster
  Better accuracy  Better accuracy
  Non-convex (need for gradual decreasing )
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Conclusions

 L0 intractable and sensitive to noise? Use its smoothed 
version!

  A highly faster algorithm compared to L1 minimization 
approach.

 Try it yourself! 
http://ee.sharif.edu/~SLzero or google “SL0 algorithm”.p g g g
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Conclusions (cont.)

 We have used it in many applications, including:y pp , g
 Two dimensional compressive classifiers (ICIP2009) 
 Two dimensional random projections (to appear in Signal 

Processing)Processing)
 Image inpainting (MLSP2009)
 Image denoising (MLSP2009)

I i (ICA2009) Image compression (ICA2009)
 Dictionary learning (ICASSP2009)
 …

 Not yet enough fast to solve n=8000, m=200000
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Th k h f iThank you very much for your attention
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