"Smoothed L0 (SL0):
A fast and accurate algorithm for finding the sparse solution of an underdetermined system of linear equations"

Massoud BABAIE-ZADEH

October 2010

Outline

- Part I: Problem statement
- Part II: Applications
- Signal Decomposition with overcomplete dictionaries
- Blind Source Separation (BSS) and Sparse Component Analysis (SCA)
- Compressed Sensing (CS)
- Real-field coding
- Part III: Some ideas to find the sparsest solution
- Direct method (minimum LO norm method) \rightarrow Computationally intractable
- Matching Pursuit idea
- Minimum L1 norm idea
- Part IV: Smoothed L0 (SL0) idea

Part I

Problem Statement
 and
 Uniqueness

Problem statement

Underdetermined System of Linear equations (USLE):

Example (2 equations, 4 unknowns)

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & -1 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

- Some of solutions:

$$
\left[\begin{array}{c}
0 \\
0 \\
1.5 \\
2.5
\end{array}\right],\left[\begin{array}{c}
5 \\
1 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
\downarrow \\
\hline-0.75 \\
0.75
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
0 \\
-3 \\
1
\end{array}\right]
$$

Issues

- Applications?

■ Uniqueness? \rightarrow Yes! \Rightarrow Useful

- How to find the sparsest solution?
- Stability (sensitivity to noise)

Uniqueness of the sparse solution

- $\mathbf{x}=\mathbf{A s}, \mathrm{n}$ equations, m unknowns, $m>n$
- Theorem (Gorodnitsky \& Rao 1997, Donoho 2004, Gribonval\&Nielson2003, Donoho\&Elad2003): if there is a solution \mathbf{s} with less than or equal $n / 2$ nonzero components, then it is unique under some mild conditions.
- Sparsity Revolution!

Part II

Examples
 of applications of
 Sparse solutions of USLE's

Application 1:

Signal decomposition using overcomplete dictionaries

Signal Decomposition

- Decomposition of a signal $x(t)$ as a linear combination of a set of known signals:

$$
x(t)=\alpha_{1} \varphi_{1}(t)+\cdots+\alpha_{m} \varphi_{m}(t)
$$

- Examples:
- Fourier Transform ($\varphi_{i} \rightarrow$ complex sinusoids)
- Wavelet Transform
- DCT
- ...

Signal Decomposition

- Decomposition of a signal $x(t)$ as a linear combination of a set of known signals:

$$
x(t)=\alpha_{1} \varphi_{1}(t)+\cdots+\alpha_{M} \varphi_{M}(t)
$$

- Terminology:
- Atomic Decomposition (=Signal Decomposition)
- Atoms $\rightarrow \varphi_{i}$
- Dictionary \rightarrow Set of all atoms: $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$

Discrete Case

$$
x(t)=\alpha_{1} \varphi_{1}(t)+\cdots+\alpha_{M} \varphi_{M}(t), \quad t=1, \ldots, N
$$

$$
\begin{aligned}
\operatorname{Time}\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
x(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} & =\alpha_{1} \quad \underline{\varphi}_{1}+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

Matrix form

$$
\begin{aligned}
\text { Time }\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
x(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} \quad & =\alpha_{1} \quad \underline{\varphi}_{1} \quad+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

$$
\mathbf{x}=\left[\begin{array}{lll}
\varphi_{1} & \cdots & \varphi_{M}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{M}
\end{array}\right] \rightarrow \underbrace{\boldsymbol{\Phi} \boldsymbol{\alpha}=\mathbf{x}}_{N \times M}
$$

Complete decomposition: $\mathrm{M}=\mathrm{N}$

Time $\left[\begin{array}{c}x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N)\end{array}\right]$	$=\alpha_{1}\left[\begin{array}{c}\varphi_{1}(1) \\ \varphi_{1}(2) \\ \varphi_{1}(3) \\ \vdots \\ \varphi_{1}(N)\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}\varphi_{M}(1) \\ \varphi_{M}(2) \\ \varphi_{M}(3) \\ \vdots \\ \varphi_{M}(N)\end{array}\right]$
\mathbf{x}	$=\alpha_{1} \underline{\varphi_{1}}+\cdots+\alpha_{M} \underline{\varphi}_{M}$

- $\mathbf{M}=\mathbf{N} \rightarrow$ Complete dictionary \rightarrow Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

$$
\begin{aligned}
& \text { Dirac Dictionary: } \\
& \underline{\varphi}_{k}(n)= \begin{cases}1 & n=k \\
0 & n \neq k\end{cases} \\
& \Rightarrow \alpha_{k}=x(k)
\end{aligned}
$$

Complete decomposition: $\mathrm{M}=\mathrm{N}$

$\operatorname{Time}\left[\begin{array}{c}x(1) \\ \\ \downarrow(2) \\ x(3) \\ \vdots \\ x(N)\end{array}\right]$	$=\alpha_{1}\left[\begin{array}{c}\varphi_{1}(1) \\ \varphi_{1}(2) \\ \varphi_{1}(3) \\ \vdots \\ \varphi_{1}(N)\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}\varphi_{M}(1) \\ \varphi_{M}(2) \\ \varphi_{M}(3) \\ \vdots \\ \varphi_{M}(N)\end{array}\right]$
\mathbf{x}	$=\alpha_{1} \underline{\varphi_{1}}+\cdots+\alpha_{M} \underline{\varphi_{M}}$

- $\mathbf{M}=\mathbf{N} \rightarrow$ Complete dictionary \rightarrow Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

$$
\underline{\varphi}_{k}=\left(1, e^{\frac{2 k \pi}{N}}, e^{\frac{2 k \pi}{N} 2}, \ldots, e^{\frac{2 k \pi}{N}(N-1)}\right)^{T}
$$

Over-complete decomposition: $\mathrm{M}>\mathrm{N}$

$$
\begin{aligned}
\text { Time }\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
\downarrow(N)
\end{array}\right] & =\alpha_{1}\left[\begin{array}{c}
\varphi_{1}(1) \\
\varphi_{1}(2) \\
\varphi_{1}(3) \\
\vdots \\
\varphi_{1}(N)
\end{array}\right]+\cdots+\alpha_{M}\left[\begin{array}{c}
\varphi_{M}(1) \\
\varphi_{M}(2) \\
\varphi_{M}(3) \\
\vdots \\
\varphi_{M}(N)
\end{array}\right] \\
\mathbf{x} \quad & =\alpha_{1} \quad \underline{\varphi}_{1} \quad+\cdots+\alpha_{M} \underline{\varphi}_{M}
\end{aligned}
$$

- M > N
- Over-complete dictionary
- Under-determined linear system: $\Phi \boldsymbol{\alpha}=\mathbf{x}$
- Non-unique α

Overcomplete Sparse Decomposition:
 Motivation

Example:

$$
\mathbf{x}=\alpha_{1} \underline{\varphi}_{1}+\cdots+\alpha_{m} \underline{\varphi}_{m}=\left[\underline{\varphi}_{1}, \ldots, \underline{\varphi}_{m}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right]=\boldsymbol{\Phi} \boldsymbol{\alpha}
$$

- A sinusoidal signal, $\sin \left(\omega_{0} \mathrm{t}\right), \quad \rightarrow$ Fourier Dictionary
- A signal with just one non-zero value, $\delta\left(t-t_{0}\right), \rightarrow$ Dirac Dictionary
- How about the signal: $\sin \left(\omega_{0} t\right)+\delta\left(t-t_{0}\right)$?
- A larger dictionary, containing both Dirac and Fourier atoms?
\rightarrow Non-unique α (:
- Sparse solution of $\Phi \alpha=\mathbf{x}$

Overcomplete Sparse Decomposition

$$
\begin{gathered}
\boldsymbol{\Phi} \boldsymbol{\alpha}=\mathbf{x} \\
\alpha_{1} \varphi_{1}+\cdots+\alpha_{M} \varphi_{M}=\mathbf{x}
\end{gathered}
$$

Application 2:
Blind Source Separation (BSS) and Sparse Component Analysis (SCA)

Blind Source Separation (BSS)

- Source signals $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{M}}$
- Source vector: $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{M}\right)^{\top}$
- Observation vector: $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)^{\top}$
- Mixing system $\rightarrow \mathbf{x}=\mathbf{A s}$

- Goal \rightarrow Finding a separating system $\mathbf{y}=G(\mathbf{x})$

Sparse Sources

Note: The sources may be not sparse in time, but sparse in another domain (frequency, time-frequency, time-scale)

2 sources, 2 sensors:

Sparse sources (cont.)

- 3 sparse sources, 2 sensors

Sparsity \Rightarrow Source Separation, with more sensors than sources?

Estimating the mixing matrix

$\mathbf{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right] \Rightarrow$

$$
\mathbf{x}=s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+s_{3} \mathbf{a}_{3}
$$

\Rightarrow Mixing matrix is easily identified for sparse sources

- Scale \& Permutation indeterminacy
- $\quad\left\|a_{i}\right\|=1$

Restoration of the sources

- A known, how to find the sources?

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { or }\left\{\begin{array}{l}
a_{11} s_{1}+a_{12} s_{2}+a_{13} s_{3}=x_{1} \\
a_{21} s_{1}+a_{22} s_{2}+a_{23} s_{3}=x_{2}
\end{array}\right.
$$

Underdertermined SCA

Application 3:

Compressed Sensing

Traditional Sampling vs. Compressed Sensing

- Traditional Signal Acquisition:

- Compressed Sensing (CS)

CS: Sample \rightarrow Measurement

Sample

Measurement

CS: A (smaller) set of random measurements

- $1^{\text {st }}$ measurement $\rightarrow{ }_{\mid}^{--\quad x_{1}^{\prime}}=\varphi_{11} \mathrm{~s}_{1}+\varphi_{12} \mathrm{~s}_{2}+\ldots+\varphi_{1 n} \mathrm{~s}_{\mathrm{m}}$
- $2^{\text {nd }}$ measurement $\rightarrow x_{2}=\varphi_{21} s_{1}+\varphi_{22} s_{2}+\ldots+\varphi_{2 n} s_{m}$
- $n^{\text {th }}$ measurement $\rightarrow \begin{aligned} & x_{n!}=\varphi_{n 1} s_{1}+\varphi_{n 2} s_{2}+\ldots+\varphi_{n m} s_{m} \\ & n \\ & n\end{aligned}$

CS: A (smaller) set of random measurements

CS: A (smaller) set of random measurements

$$
\underset{\substack{\text { ? } \\ \mathbf{s}}}{ }=\mathbf{x}
$$

- $\Psi_{m \times m} \rightarrow$ sparsifying transform:

$$
\mathbf{s}=\Psi \theta
$$

where θ is sparse

($\Phi \Psi$) $\theta=\mathbf{x}$
(USLE with sparsity)

Application 4:

Error Correcting Codes (Real-field coding)

Coding Terminology

- $\mathbf{u}=\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}\right) \rightarrow$ the message to be sent (k symbols)
- $\mathbf{G} \rightarrow$ Code Generator matrix ($\mathrm{n} \times \mathrm{k}, \mathrm{n}>\mathrm{k}$)
- $\mathbf{v}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \rightarrow$ Codeword:

$$
\begin{gathered}
\mathbf{v}=\mathbf{G . u} \\
\text { (adding n-k "parity" symbols) }
\end{gathered}
$$

- $\mathbf{H} \rightarrow$ Parity check matrix ((n-k) $\times n$): HG=0
- v is a codeword if and only if: H.v=0

Error Correction

- v sent, $\quad r=v+e$ received
(e is the error \rightarrow assumed sparse)
- Syndrome of $\mathbf{r} \rightarrow \quad \mathbf{s}=$ H. \mathbf{r}

$$
\Rightarrow \mathbf{s}=\mathbf{H} .(\mathbf{v}+\mathbf{e})=\mathbf{H . e}
$$

Error Correction

The receiver:

- Receives $\mathbf{r}=\mathbf{v}+\mathbf{e}$
- Computes s=H.r
- Finds sparse solution of USLE H.e=s
$a \Rightarrow$ Error Correction

Sparsity of e?

- Galois fields (binary) codes \Leftrightarrow small probability of error
- Real-field codes \Leftrightarrow Impulsive noise, Laplace noise

Summary of Part II

> Atomic Decomposition
> on over-complete dictionaries

Part III

HOW

to find the
Sparsest Solution?

How to find the sparsest solution

- A.s = x, n equations, m unknowns, $m>n$
- Goal: Finding the sparsest solution
- Note: at least m-n unknown are zero.
- Direct method:
- Set m-n (arbitrary) unknowns equal to zero
- Solve the remaining system of n equations and n unknowns
- Do above for all possible choices, and take the sparsest answer.
- Another name: Minimum Lo norm method
- L^{0} norm of $s=$ number of non-zero components $=\Sigma\left|s_{i}\right|^{0}$

Example

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & -1 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

$\binom{4}{2}=6$ different answers to be tested

- s1=s2=0 $\Rightarrow \mathbf{s}=(0,0,1.5,2.5)^{\top} \Rightarrow L^{0}=2$
- $s 1=s 3=0 \Rightarrow s=(0,2,0,0)^{\top} \Rightarrow L^{0}=1$
- s1=s4=0 $\Rightarrow \mathbf{s}=(0,2,0,0)^{\top} \quad \Rightarrow L^{0}=1$
- $s 2=s 3=0 \Rightarrow \mathbf{s}=(2,0,0,2)^{\top} \Rightarrow L^{0}=2$
- s2=s4=0 $\Rightarrow \mathbf{s}=(10,0,-6,0)^{\top} \Rightarrow L^{0}=2$
- s3=s4=0 $\Rightarrow \mathbf{s}=(0,2,0,0)^{\top} \quad \Rightarrow L^{0}=2$
- $\quad \Rightarrow$ Minimum L^{0} norm solution $\rightarrow \mathbf{s}=(0,2,0,0)^{\top}$

Drawbacks of minimal norm L^{0}

$$
\left(P_{0}\right) \text { Minimize }\|\mathbf{s}\|_{0}=\sum_{i}\left|s_{i}\right|^{0} \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Highly (unacceptably) sensitive to noise
- Need for a combinatorial search:

$$
\binom{m}{n} \text { diffetent cases should be tested separately }
$$

- Example. $m=50, n=30$, $\binom{50}{30} \approx 5 \times 10^{13}$ cases should be tested.
On our computer: Time for solving a 30 by 30 system of equation $=2 \times 10^{-4}$ Total time $\approx\left(5 \times 10^{13}\right)\left(2 \times 10^{-4}\right) \approx 300$ years! \rightarrow Non-tractable

Some ideas for solving the problem

- Method of Frames (MoF) [Daubechies, 1989]
- Matching Pursuit [Mallat \& Zhang, 1993]
- Basis Pursuit (minimal L1 norm \rightarrow Linear Programming) [Chen, Donoho, Saunders, 1995]
- SLO

Idea 1 (obsolete):
 Pseudo-inverse

[Daubechies, 1989]

Method of Frames (Daubechies, 1989)

- Use pseudo-inverse:

$$
\hat{\mathbf{s}}_{\text {MOF }}=\mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1} \mathbf{x}
$$

- It is equivalent to minimizing the L2 (energy) solution:

$$
\left(P_{2}\right) \text { Minimize }\|\mathbf{s}\|_{2}=\sum_{i}\left|s_{i}\right|^{2} \quad \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Different view points resulting in the same answer:
- Linear LS inverse

$$
\hat{\mathbf{s}}=\mathbf{B x}, \quad \mathbf{B A} \stackrel{L S}{\approx} \underset{\mathbf{I}}{ }
$$

- Linear MMSE Estimator
- MAP estimator under a Gaussian prior $\mathbf{s} \sim N\left(0, \sigma_{s}^{2} \mathbf{I}\right)$

Drawback of MoF

- It is a 'linear' method: $\mathbf{s}=\mathbf{B x}$
$\Rightarrow s$ will be an n-dim subspace of m-dim space
- Example: 3 sources, 2 sensors:
- \Rightarrow Never can produce original sources

Idea 2:

Matching Pursuit
[Mallat \& Zhang, 1993]

Matching Pursuit (MP) [Mallat \& Zhang, 1993]

Properties of MP

- Advantage:
- Very Fast
- Drawback
- A very ‘greedy’ algorithm \rightarrow Error in a stage, can never be corrected \rightarrow
 Not necessarily a sparse solution

Variants

- OMP: Orthogonal MP [Tropp\&Gilbert, IEeE Tr. On IT, 2007]
- StOMP: Stagewise MP [Donoho et. al., TechReport, 2006]
- CoSaMP: Compressive Sampling Matching

Pursuit [Needell\&Tropp, Appl. Comp. Harmonic Anal., 2008]

Idea 3:

Minimizing L1 norm
[Chen, Donoho, Saunders, 1995]

Minimum L ${ }^{1}$ norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

- Minimum norm L1 solution:

$$
\left(P_{1}\right) \text { Minimize }\|\mathbf{s}\|_{1}=\sum_{i}\left|s_{i}\right| \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- MAP estimator under a Laplacian prior

Minimal L ${ }^{1}$ norm (cont.)

$$
\left(P_{1}\right) \text { Minimize }\|\mathbf{s}\|_{1}=\sum_{i}\left|s_{i}\right| \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Minimal L^{1} norm solution may be found by Linear Programming (LP)
- Fast algorithms for LP:
- Simplex
- Interior Point method
- A theoretical guarantee for finding the sparse solution, under some limiting conditions

Theoretical Support for BP: Mutual Coherence

- Mutual Coherence [Gribonval\&Nielsen2003, Donoho\&Elad2003]: of the matrix \mathbf{A} is the maximum correlation between its columns

$$
M=\max _{i \neq j}\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle=\max _{i \neq j} \mathbf{a}_{i}^{T} \mathbf{a}_{j}
$$

- For an $\mathbf{A}(\mathrm{n} \times \mathrm{m})$ with normalized columns:

$$
M \geq \frac{1}{\sqrt{n}}
$$

Theoretical Support for BP: Theorem

- Theorem [Gribonval\&Nielsen2003, Donoho\&Elad2003]: If the USLE As=x has a sparse solution \mathbf{s} such that

$$
\|\mathbf{s}\|_{0}<\frac{1+M^{-1}}{2}
$$

then it is guaranteed that BP finds this solution.

- Loosely speaking: BP is guaranteed to work were there is a "very very" sparse solution.

Example

- m=1000 unknowns, $n=500$ equations
- Uniqueness: a sparse solution with at most $\|s\|_{0} \leq \mathrm{n} / 2=250$ is the unique sparsest solution.
- BP: $M^{-1}<\operatorname{sqrt}(500)=22.36 \Rightarrow\left(1+\mathrm{M}^{-1}\right) / 2<11.68$
- So:
- If there is a sparse solution with 250 out of 1000 non-zero entries, it is the unique sparse solution.
- If there is a sparse solution with 11 out of 1000 non-zero entries, it is guaranteed that it can be found by BP.

Summary of minimal L^{1} norm method

- Advantages:
- Good practical results
- Existence of a theoretical support
- Drawbacks:
- Theoretical support is limited to very sparse solutions
- Tractable, but still very time-consuming

Part IV

Smoothed L0 (SL0)
 Approach

References

- Developed mainly in 2006 by:
- Hossein Mohimani,
- Massoud Babaie-Zadeh,
- Christian Jutten
- Papers on SLO:
- Conference ICA2007 (London).
- Journal: IEEE Transactions on Signal Processing, January 2009 (>50 citations till now).
- Complex-valued version: ICASSP2008.
- Convergence analysis: arXiv (co-authored with I.Gorodnitsky).
- Extentions
- Robust-SL0 [Eftekhari et.al., ICASSP 2009]
- Two-dimensional signals [Ghaffari et. al., ICASSP2009],[Eftekhari et. al., Signal Processing, accepted]

Smoothed L0 Norm: The main idea

$$
\left(P_{0}\right) \text { Minimize }\|\mathbf{s}\|_{0}=\sum_{i}\left|s_{i}\right|^{0} \quad \text { s.t. } \mathbf{x}=\mathbf{A s}
$$

- Note: Problems of the L0 norm:
- Computational load (combinatorial search)
- Sensitivity to noise
- Both due to discontinuity of the LO norm
- Main Idea: Use a smoothed LO norm (continuous)

Smoothed L0 (SL0): Smoothing function

$$
f_{\sigma}(s) \triangleq \exp \left(-s^{2} / 2 \sigma^{2}\right),
$$

$$
\Rightarrow \quad \lim _{\sigma \rightarrow 0} f_{\sigma}(s)= \begin{cases}1 & \text {;if } s=0 \\ 0 & \text {;if } s \neq 0\end{cases}
$$

SL0: Finding the sparse solution

- Goal: For a small σ Maximize $F_{\sigma}(\mathrm{s})$ s.t. As=x
- Problem: Small $\sigma \rightarrow$ lots of local maxima
- Idea: Use Graduated Non-Convexity (GNC)

Graduated Non-Convexity (GNC)

- Global minimization of a non-convex $f(\cdot)$

GNC: Example

The function to be minimized (many local minima)

Sequence of functions converging to the original function:

GNC: Example (cont.)

GNC: Example (cont.)

GNC: Example (cont.)

GNC: Example (cont.)

GNC

- Global minimization of a non-convex $f(\cdot)$
- Use a sequence of functions $f_{\sigma}(\cdot), \sigma=\xrightarrow[\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots,]{\text { decreasing }}$, converging to $f(\cdot)$:

$$
\lim _{\sigma \rightarrow 0} f_{\sigma}(\cdot)=f(\cdot)
$$

- For each σ, minimize $f_{\sigma}(\cdot)$, by starting the search from the minimizer for the previous σ

SL0:

- Goal: For a small σ Maximize $F_{\sigma}(\mathrm{s})$ s.t. As=x
- Use the GNC idea:
- Start with large σ, and decrease it gradually.
- For each σ, maximize $F_{\sigma}(s)$ by starting the search from the maximizer of the previous $F_{\sigma}(s)$ (which had a larger σ).
- Starting point? (corresponding to $\sigma \rightarrow \infty$)?

Initialization

- Theorem: For very large σ :

Maximize $F_{\sigma}(\mathrm{s})$ s.t. $\mathbf{A s}=\mathbf{x}$ has no local maxima, and its unique solution is the minimum L2 norm solution of As=x (given by pseudo-inverse)

- \Rightarrow starting point of SLO: min L2 norm solution

Constraints?

- Goal: For a small σ Maximize $F_{\sigma}(\mathrm{s})$ s.t. $\quad \mathrm{As}=\mathbf{x}$
- Use a Gradient-Projection approach.
- Each iteration:
\square Gradient: $\mathbf{s} \leftarrow \mathbf{s}+\mu_{\sigma} \nabla F_{\sigma}(\mathbf{s})$
- Projection onto $\{\mathbf{s} \mid \mathbf{A s}=\mathbf{x}\}$
- Decreasing step-size: $\mu_{\sigma}=\mu_{0} \sigma^{2}$

Final Algorithm

- Initialization: Set $\hat{\mathbf{s}}_{0}=\mathbf{A}^{\dagger} \mathbf{x}$. Choose a suitable decreasing sequence for $\sigma:\left[\sigma_{1} \ldots \sigma_{J}\right]$.
- For $j=1, \ldots, J$:

1) Let $\sigma=\sigma_{i}$.
2) Maximize $F_{\sigma}(\mathbf{s})$ subject to $\mathbf{A s}=\mathbf{x}$, using L iterations of steepest ascent:

- Initialization: $\mathbf{s}=\hat{\mathbf{s}}_{j-1}$.
- For $\ell=1,2, \ldots, L$
a) Let $\mathbf{s} \leftarrow \mathbf{s}+\left(\mu \sigma^{2}\right) \nabla F_{\sigma}(\mathbf{s})$.
b) Project \mathbf{s} back onto the feasible set $\{\mathbf{s} \mid \mathbf{A s}=\mathbf{x}\}$:

$$
\mathrm{s} \leftarrow \mathrm{~s}-\mathbf{A}^{\dagger}(\mathbf{A s}-\mathbf{x})
$$

3) Set $\hat{\mathbf{s}}_{j}=\mathbf{s}$.

- Final answer is $\hat{\mathbf{s}}=\hat{\mathbf{s}}_{J}$.

Simulation result

- $m=1000$
- $\mathrm{n}=400$
- About 100 non-zero entries in s

Experimental Result (cont.)

TABLE I

Progress of SL0 For a problem with $m=1000, n=400$ AND

$$
k=100(p=0.1)
$$

itr. \#	σ	MSE	SNR (dB)
1	1	$4.84 e-2$	2.82
2	0.5	$2.02 e-2$	5.19
3	0.2	$4.96 e-3$	11.59
4	0.1	$2.30 e-3$	16.44
5	0.05	$5.83 e-4$	20.69
6	0.02	$1.17 e-4$	28.62
7	0.01	$5.53 e-5$	30.85
algorithm	total time	MSE	SNR (dB)
SL0	0.227 seconds	$5.53 e-5$	30.85
LP	30.1 seconds	$2.31 e-4$	25.65

Experimental Result (cont.)

$\sigma=0.5$

$\sigma=0.2$

Comparisons

- SLO versus LO:
- No need for combinatorial search (Fast)
- Not sensitive to noise (Accurate)
- SL0 versus L1:
- © Highly faster
- © Better accuracy
- © Non-convex (need for gradual decreasing σ)

Conclusions

- L0 intractable and sensitive to noise? Use its smoothed version!
- \Rightarrow A highly faster algorithm compared to L1 minimization approach.
- Try it yourself!
http://ee.sharif.edu/~SLzero or google "SL0 algorithm".

Conclusions (cont.)

- We have used it in many applications, including:
- Two dimensional compressive classifiers (ICIP2009)
- Two dimensional random projections (to appear in Signal Processing)
- Image inpainting (MLSP2009)
- Image denoising (MLSP2009)
- Image compression (ICA2009)
- Dictionary learning (ICASSP2009)
- ...
- Not yet enough fast to solve $n=8000, m=200000$

Thank you very much for your attention

