"Semi-Blind" approaches to source separation: introduction to the special session

Massoud BABAIE-ZADEH ${ }^{1}$
 Christian JUTTEN ${ }^{2}$

1- Sharif University of Technology, Tehran, IRAN
2- Laboratory of Images and Signals (LIS), CNRS, INPG, UJF, Grenoble, FRANCE

Outline

- Introduction to Blind Source Separation
- Relevance of "Semi-Blind" approaches (SBSS)
- A few examples
- Temporal correlation
- Non-Stationarity
- Geometrical methods (bounded sources)
- Discrete-valued sources
- Sparsity of sources
- Bayesian methods
- Audio-Visual source separation
- Conclusions

Blind Source Separation (BSS)

- Source signals $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{N}}$
- Source vector: $\mathbf{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{N}}\right)^{\top}$
- Observation vector: $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{M}}\right)^{\top}$
- Mixing system $\rightarrow \mathbf{x}=F(\mathbf{s})$

- Goal \rightarrow Finding a separating system $\mathbf{y}=\mathrm{G}(\mathbf{x})$

Blind Source Separation (cont.)

- Totally Blind:
- No information about source signals
- No information about mixing system
- Simply Impossible!

Blind Source Separation (cont.)

- prior information for the so-called "Blind" case:
- Statistical "Independence" of sources
- "Structure" of the mixing system (linear, convolutive, PNL, ...)
- No. of sources?
- If F is invertible, then identification of F leads to source separation
- Main idea: Find "G" to obtain "independent" outputs $(\Rightarrow$ Independent Component Analysis=ICA)

BSS in linear (instantaneous) mixtures

- Mixing system: $x=A s$ (A full rank)
- Separating system: $\mathbf{y = B x}$

Considering signals as random variables i.e. ignoring their temporal structure (iid assumption):

- Separability Theorem [Comon 1994,Darmois 1953]: If at most 1 source is Gaussian: statistical independence of outputs \Rightarrow source separation (\Rightarrow ICA: a method for BSS)
- Indeterminacies: permutation, scale
- Note: 2nd order independence (decorrelation) is not sufficient (Gaussian sources cannot be separated).

BSS in linear mixtures

Separation idea:

- Output Independence:
- Non-linear decorrelation: $\mathrm{E}\{\mathrm{f}(\mathrm{y} 1) \mathrm{g}(\mathrm{y} 2)\}=0$
- HOS: eg. Cancelling $4^{\text {th }}$ order cross-cumulant
- Cancellation Outputs' Mutual Information
- Output Non-Gaussianity

Restrictions:

- Indeterminacies: scale, permutation
- Sources should be non-Gaussian (except possibly one)

Semi-Blind approaches

- There is more a priori information (but very weak) \rightarrow Exploit it! \rightarrow Semi-Blind
- Advantages:
- Improving the separation performance
- Providing simpler algorithms
- Situations for which a Blind solution is difficult
- More sources than sensors
- Separating Gaussian sources

Gaussian mixtures and $2^{\text {nd }}$ order methods

- SS not possible where sources are at the same time (Cardoso, ICA2001):
- Gaussian
- White (first "i" in "i.i.d")
- Stationary ("i.d." in "i.i.d")
- Any of these dropped \Rightarrow SS is possible
- Dropping Gaussianity \Rightarrow iid non Gaussian : "Blind" (Gaussian signals - except one - cannot be separated)
- Dropping stationarity or whiteness \Rightarrow Gaussian non iid: "Semi-Blind" (Gaussianity is not required, i.e. second-order statistics is enough, Gaussian signals can be separated)

Non-white (temporally correlated sources)

- Minimize cost function (joint diagonalization):

$$
\begin{aligned}
& C(\mathbf{B})=\sum_{l=1}^{L} w_{l} \operatorname{off}\left(\hat{\mathbf{R}}_{\mathbf{y}}\left(\tau_{l}\right)\right)=\sum_{l=1}^{L} w_{l} \operatorname{off}\left(\mathbf{B} \hat{\mathbf{R}}_{\mathbf{x}}\left(\tau_{l}\right) \mathbf{B}^{T}\right) \\
& \text { where }: \hat{\mathbf{R}}_{\mathbf{x}}\left(\tau_{l}\right)=\hat{E}\left\{\mathbf{x}\left(t-\tau_{l}\right) \mathbf{x}(t)\right\}
\end{aligned}
$$

- off $(\mathbf{M}) \rightarrow$ a measure of diagonality of \mathbf{M}, eg.
- off $(\mathbf{M})=\sum_{i \neq j} m_{i j}^{2} \quad$ (SOBI, TDSEP)
- $\underset{\text { (Kawamoto et. al. 1997) }}{\operatorname{off}(\mathbf{M})=D(\mathbf{M} \mid \operatorname{diag} \mathbf{M})}=\sum_{i} \log m_{i i}-\log |\operatorname{det} \mathbf{M}|$

Non-stationary sources

- Minimize (Matsuoka et. al. 1995)

$$
\begin{gathered}
C(\mathbf{B})=\sum_{l=1}^{L} w_{l} \operatorname{off}\left(\mathbf{B} \hat{\mathbf{R}}_{l} \mathbf{B}^{T}\right) \\
\hat{\mathbf{R}}_{l}=\hat{E}_{l}\left\{\mathbf{x}(t) \mathbf{x}^{T}(t)\right\} \rightarrow \text { Short }- \text { time covariance matrix }
\end{gathered}
$$

- See also Pham, Cardoso (IEEE 2001)
- Similar criterion as for colored sources \Rightarrow Joint diagonalization of variance-covariance matrices

Colored or Non-stationary sources

- A few advantages:
- Only $2^{\text {nd }}$-order statistics
- Separating Gaussian sources
- Fast iterative algorithms for jointly diagonalizing matrices (JADE, SOBI, TDSEP, algo. of Yeredor, Pham, etc.)
- Paper by Deville et al.

Some Semi-Blind approaches

- Geometrical approaches
- Bounded sources (papers by Vrins and Pham, Lee et al.)
- Discrete-valued sources
- Sparse sources (paper by Gribonval)
- Bayesian approaches (papers by Mohammad-Djafari and Bali et al.)
- Audio-Visual approaches
- Other prior: known source spectrum (paper by Igual et al.)

Geometric: Bounded Sources

- Independence $\Leftrightarrow p_{s 1 s 2}\left(s_{1}, s_{2}\right)=p_{s 1}\left(s_{1}\right) p_{s 2}\left(s_{2}\right)$
- Bounded support for $p_{s 1}$ and $p_{s 2} \Rightarrow$ rectangular support for $p_{\text {s1s2 }}$
- \Rightarrow scatter plot of sources forms a rectangle

Bounded Sources (cont.)

- $\mathrm{x}=$ As transforms this rectangle to a parallelogram
- Mixing matrix assumed:

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]
$$

- Slopes of borders \rightarrow 1/a and $b \rightarrow$ mixing matrix

Bounded Sources (cont.)

- Post Non-Linear (PNL) mixtures: linear mixtures but non-linear sensors
- Geometric: Transform again to a parallelogram, and then separate

Sparse sources

Like speech, ECG, EEG,...

- The rectangle is not well filled (requires lot of data sample).
- Source PDF's are concentrated about zero.
- Probability of having a point on the border of parallelogram is too low.

Sparse sources

- Geometrical approach: Using "axes" instead of "borders"

Sparse Sources

- Possibility to separate more sources than sensors
- Identification of mixtures \neq source separation
- Review paper, and a demo by Dr. Rémi Gribonval

Discrete-Valued Sources

- (Belouchrani and Cardoso, 1994; Puntonet et. al., 1995; Taleb and Jutten, 1999; Grellier and Comon, 1998)
- Other example of sparsity. Usual in digital communications
- Possibility to separate more sources than sensors

Bayesian approaches

- Provide a general framework for modeling prior information :
- source distribution,
- time correlation,
- additive noise,
- ...
- Can process more sources than sensors, and additive noise
- Review paper, by Dr. Ali Mohammad-Djafari

Audio-visual source extraction

Extraction on the source of interest
A, B, audio $\Rightarrow \mathrm{p}$ (spectrum/video, audio) $\Rightarrow \mathrm{B}$ estimated by ML $\mathrm{A}, \mathrm{B} \Rightarrow$ Voice activity detector \Rightarrow cancel permut. in convol. mixt.

Conclusion

- Semi-Blind methods, i.e. using priors
- simpler and more efficient methods
- can process problems that Blind methods cannot (Gaussian sources, more sources than sensors)
- Disadvantage: more priors, less general
- This review is completed by
- Bayesian Source Separation, by Dr. A. Mohammad-Djafari
- A survey of Sparse Component analysis for BSS, by Dr. R. Gribonval and S. Lesage (+A Demo with music separation)
- Other papers in the special session give new examples of semi-blind approaches

Thank you very much for your attention

