"Semi-Blind" approaches to source separation: introduction to the special session

Massoud BABAIE-ZADEH¹ Christian JUTTEN²

 Sharif University of Technology, Tehran, IRAN
 Laboratory of Images and Signals (LIS), CNRS, INPG, UJF, Grenoble, FRANCE

Outline

- Introduction to Blind Source Separation
- Relevance of "Semi-Blind" approaches (SBSS)
- A few examples
 - Temporal correlation
 - Non-Stationarity
 - Geometrical methods (bounded sources)
 - Discrete-valued sources
 - Sparsity of sources
 - Bayesian methods
 - Audio-Visual source separation
- Conclusions

Blind Source Separation (BSS)

- Source signals s₁, s₂, ..., s_N
- Source vector: **s**=(s₁, s₂, ..., s_N)^T
- Observation vector: $\mathbf{x} = (x_1, x_2, ..., x_M)^T$
- Mixing system $\rightarrow \mathbf{x} = F(\mathbf{s})$

• Goal \rightarrow Finding a separating system $\mathbf{y} = \mathbf{G}(\mathbf{x})$

Blind Source Separation (cont.)

Totally Blind:

- No information about source signals
- No information about mixing system

Simply Impossible!

٤/24

Blind Source Separation (cont.) $\xrightarrow{s} F \xrightarrow{x} G \xrightarrow{y}$ $\xleftarrow{Mixing system} \xrightarrow{s} \xrightarrow{separating system}$

- prior information for the so-called "Blind" case:
 - Statistical "Independence" of sources
 - □ "Structure" of the mixing system (linear, convolutive, PNL, …)
 - No. of sources?
- If F is invertible, then identification of F leads to source separation
- Main idea: Find "G" to obtain "independent" outputs (⇒ Independent Component Analysis=ICA)

BSS in linear (instantaneous) mixtures

- Mixing system: x=As (A full rank)
- Separating system: y=Bx
- Considering signals as random variables i.e. ignoring their temporal structure (iid assumption):
- Separability Theorem [Comon 1994,Darmois 1953]: If at most 1 source is Gaussian: statistical independence of outputs ⇒ source separation (⇒ ICA: a method for BSS)
- Indeterminacies: permutation, scale
- Note: 2nd order independence (decorrelation) is not sufficient (Gaussian sources cannot be separated).

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source

BSS in linear mixtures

Separation idea:

- Output Independence:
 - Non-linear decorrelation: E{ f(y1) g(y2) }=0
 - □ HOS: eg. Cancelling 4th order cross-cumulant
 - Cancellation Outputs' Mutual Information
- Output Non-Gaussianity

Restrictions:

- Indeterminacies: scale, permutation
- Sources should be non-Gaussian (except possibly one)

Semi-Blind approaches

■ There is more a priori information (but very weak) → Exploit it! → Semi-Blind

Advantages:

- Improving the separation performance
- Providing simpler algorithms
- Situations for which a Blind solution is difficult
 - More sources than sensors
 - Separating Gaussian sources

Gaussian mixtures and 2nd order methods

- SS not possible where sources are at the same time (Cardoso, ICA2001):
 - Gaussian
 - White (first "i" in "i.i.d")
 - Stationary ("i.d." in "i.i.d")
- Any of these dropped \Rightarrow SS is possible
 - Dropping Gaussianity \Rightarrow iid non Gaussian : "Blind" (Gaussian signals - except one - cannot be separated)
 - Dropping stationarity or whiteness \Rightarrow Gaussian non iid: "Semi-Blind" (Gaussianity is not required, i.e. second-order statistics is enough, Gaussian signals can be separated)

Non-white (temporally correlated sources)

Minimize cost function (joint diagonalization):

$$C(\mathbf{B}) = \sum_{l=1}^{L} w_l \operatorname{off}(\hat{\mathbf{R}}_{\mathbf{y}}(\tau_l)) = \sum_{l=1}^{L} w_l \operatorname{off}(\mathbf{B}\hat{\mathbf{R}}_{\mathbf{x}}(\tau_l)\mathbf{B}^T)$$

where: $\hat{\mathbf{R}}_{\mathbf{x}}(\tau_l) = \hat{E}\{\mathbf{x}(t-\tau_l)\mathbf{x}(t)\}$

- off(**M**) \rightarrow a measure of diagonality of **M**, eg. • off(**M**) = $\sum_{i \neq j} m_{ij}^2$ (SOBI, TDSEP)
 - off $(\mathbf{M}) = D(\mathbf{M} | diag\mathbf{M}) = \sum_{i} \log m_{ii} \log |\det \mathbf{M}|$ (Kawamoto et. al. 1997)

Non-stationary sources

Minimize (Matsuoka et. al. 1995)

$$C(\mathbf{B}) = \sum_{l=1}^{L} w_l \operatorname{off}(\mathbf{B}\hat{\mathbf{R}}_l \mathbf{B}^T)$$

 $\hat{\mathbf{R}}_{l} = \hat{E}_{l} \{ \mathbf{x}(t) \, \mathbf{x}^{T}(t) \} \rightarrow \text{Short} - \text{time covariance matrix}$

- See also Pham, Cardoso (IEEE 2001)
- Similar criterion as for colored sources ⇒ Joint diagonalization of variance-covariance matrices

Colored or Non-stationary sources

- A few advantages:
 - Only 2nd-order statistics
 - Separating Gaussian sources
 - Fast iterative algorithms for jointly diagonalizing matrices (JADE, SOBI, TDSEP, algo. of Yeredor, Pham, etc.)
- Paper by Deville et al.

Some Semi-Blind approaches

- Geometrical approaches
 - Bounded sources (papers by Vrins and Pham, Lee et al.)
 - Discrete-valued sources
- Sparse sources (paper by Gribonval)
- Bayesian approaches (papers by Mohammad-Djafari and Bali et al.)
- Audio-Visual approaches
- Other prior: known source spectrum (paper by Igual et al.)

Geometric: Bounded Sources

- Independence $\Leftrightarrow p_{s1s2}(s_1, s_2) = p_{s1}(s_1) p_{s2}(s_2)$
- Bounded support for p_{s1} and $p_{s2} \Rightarrow$ rectangular support for p_{s1s2}
- \Rightarrow scatter plot of sources forms a rectangle

Separation"

Bounded Sources (cont.)

Bounded Sources (cont.)

- Post Non-Linear (PNL) mixtures: linear mixtures but non-linear sensors
- Geometric: Transform % again to a parallelogram, and then separate

Sparse sources

Like speech, ECG, EEG,...

- The rectangle is not well filled (requires lot of data sample).
- Source PDF's are concentrated about zero.
- Probability of having a point on the border of parallelogram is too low.

Sparse sources

Geometrical approach: Using "axes" instead of "borders"

- Possibility to separate more sources than sensors
- Identification of mixtures ≠ source separation
- Review paper, and a demo by Dr. Rémi Gribonval

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source

Discrete-Valued Sources

- (Belouchrani and Cardoso, 1994; Puntonet et. al., 1995; Taleb and Jutten, 1999; Grellier and Comon, 1998)
- Other example of sparsity. Usual in digital communications
- Possibility to separate more sources than sensors

Bayesian approaches

- Provide a general framework for modeling prior information :
 - source distribution,
 - time correlation,
 - additive noise,

• ...

- Can process more sources than sensors, and additive noise
- Review paper, by Dr. Ali Mohammad-Djafari

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source

Audio-visual source extraction

A, B, audio \Rightarrow p(spectrum/video, audio) \Rightarrow B estimated by ML A,B \Rightarrow Voice activity detector \Rightarrow cancel permut. in convol. mixt.

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source

Conclusion

Semi-Blind methods, i.e. using priors

- simpler and more efficient methods
- can process problems that Blind methods cannot (Gaussian sources, more sources than sensors)
- Disadvantage: more priors, less general
- This review is completed by
 - Bayesian Source Separation, by Dr. A. Mohammad-Djafari
 - A survey of Sparse Component analysis for BSS, by Dr. R.
 Gribonval and S. Lesage (+A Demo with music separation)
- Other papers in the special session give new examples of semi-blind approaches

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source

Thank you very much for your attention

ESANN 2006: Introduction to the special session on "Semi-Blind approaches to Source Separation"