MMIC Design and Technology

Instructor Dr. Ali Medi Sharif University of Technology

Class Intro

- MMIC
 - Monolithic Microwave Integrated Circuit
- MMIC Design and Technology
- Project based class
- Hands on Collaborative Engineering

Course Objective

- Design a MMIC chipset for a microwave transceiver.
- Learn about MMIC devices, components, and their design and fabrication
- Learn MMIC CAD Techniques
- Utilize RF system design skills
- Experience Collaborative Engineering

Syllabus

Review of Field & Wave, Microwave Passive Microwave Devices Active III-V Devices Amplifier Design Oscillator Design Mixers and Non-Linear Circuits Switches, Attenuators and Phase Shifters CAD Software Layout Techniques Simulation and Verification

Grading

•	Midterm	5/2/1387	20%
•	Final	3/4/1387	30%
•	Project	15/4/1387	40%
	Home Works		5 %
	 Design Requirement Report 		5 %
	 Schematic Design Report Simulation Report Layout Review Report Post Layout Simulations 		5 %
			5 %
			5 %
			5 %
	Final Repo	rt	10 %
•	Presentation	10 %	

Text

 Microwave Solid State Circuit Design Second Edition Inder Bahl and Parkash Bharita 2003 Wiley-Intersience

Website: ee.sharif.edu/~mmic

Software

www.appwave.com

- Microwave Office by Applied Wave Research will be the primary design software used
- Microwave Office will be available on a server during second part of the course
- Agilent ADS may be available as an alternate

Helpful Prerequisite Knowledge

- Electromagnetics
- Field and Wave
- RFIC
- Familiarity with RF Systems
- Microwave Measurements
- Microwave Devices and components
- Microwave Circuits

MHIC

Letcture 1 Overview

MMIC

Product Data Sheet

2-20 GHz Wideband AGC Amplifier

TGA1342-SCC

May 28, 2004

Chip Dimensions: 3.4 x 2.0 x 0.1 mm

Key Features and Performance

- 0.5 um MESFET Technology
- 9 dB Nominal Gain
- 3.5 dB NF Typical Midband
- 17.5 dBm Nominal Pout @ P1dB
- Bias 5-8 ∨ @ 60 mA
- Dimensions 3.4 x 2.0 x 0.1 mm

Primary Applications

- Wideband Gain Block / LN Amplifier
- X-Ku Point to Point Radio
- IF & LO Buffer Applications

MMIC or MHIC

Table 1.1 Advantages and disadvantages of MMICs

MMICs	Hybrid MICs		
Cheap in large quantities; especially economical for complex circuits	Simple circuits can be cheaper; automatic assembly is possible		
Very good reproducibility	Poor reproducibility due to device placement and bond-wires		
Small and light	Compact multilayer substrates with embedded passives now available		
Reliable	Hybrids are mostly 'glued' together and so reliability suffers		
Less parasitics - more bandwidth and higher frequencies	The best transistors are always available for LNAs and PAs		
Space is at a premium; the circuit must be made as small as possible	Substrate is cheap, which allows microstrip to be used abundantly		
Very limited choice of component	A vast selection of devices and components is available		
Long turn around time (3 months)	Can be very fast (1 week), making multiple iterations possible		
Very expensive to start up	Very little capital equipment is required		

Transceiver Example

Yield

Table 1.2 Chip cost against size

Chip size (mm²)	Typical yield (%)	Working circuits per 6" wafer	Bare chip cost (\$) at \$5k per wafer
1 × 1	80	12800	0.4
2 × 2	70	2800	1.8
5 × 5	45	288	17
7 × 7	30	98	51
10 × 10	20	32	156

Engineering Development Process

MMIC Product Develpoment Process

MMIC Production Process

Production Process

TQTRx

GaAs MESFET Foundry Service

Features

- 0.6 µm Gate Length MESFET Process
- 4 Active Devices:
 - Power & Gain D-FETs
 - E-FET
 - Schottky-Barrier Diodes
- High Density Interconnects:
 - 2 Global and 1 local
 - 6 µm total thickness
- High-Q Passives
- Bulk & Thin Film Resistors
- High Value Capacitors
- Dielectric Encapsulated Metals
- Planarized Surface; simplified plastic packaging
- Substrate Vias Available
- Volume Production Process
- Validated Models and Design Support

Active devices

 See also Figure 2.27 of text.

Letcture 1 Overview

Passives

Interconnects

- Interconnects are transmission lines
- Geometry is important
- May require Electromagnetic Solution

Letcture 1 Overview

Letcture 1 Overview

Letcture 1 Overview