Sharif University of Technology

Communication Circuits

Problem set 1

Due Date: Tuesday, 25 mehr

You may submit your solutions in class or in the box.

- 1. Consider the 11g sliding-IF reciever shown in figure1: (the input RF range:[f1,f2]).
 - Determine the required LO frequency range.
 - Determine the image frequency range.
 - Is this architecture preferable to that in figure 2? Why?
 - Determine some of the mixing spurs in the architecture of figure 1.

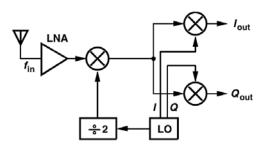


Figure 1 sliding IF reciever for 11g

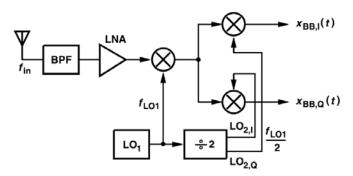


Figure 2 sliding IF hetrodyne reciever

- 2. A 1GHz reciever with 1MHz channel spacing must tolerate an alternate adjacent channel blocker 15dB higher than desired signal. Caculate the Q of second-order LC filter required to suppress this interferer by 33dB.
- 3. Downconversion to what minimum itermediate frequency avoids selfcorruption of asymetric signals.
- 4. Calculate the input-referred gain, NF, and IIP3 of the following reciever. Assume the input LNA is matched to 50Ω , while the LNA/mixer interface is 300Ω , and the mixer load is $1k\Omega$ differential. The filter input impedance is capacitive (high-Z), and VGA drives a $10k\Omega//5pF$ differential load.

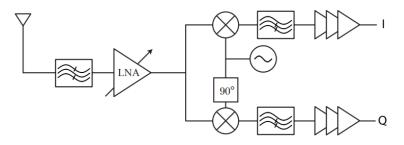


Figure 3 simple reciever

Block	Gain	NF	IIP3
RF Filter	-1dB	1dB	+100 dBm
LNA	15 dB	$1.5\mathrm{dB}$	+0dBm
mixer	$10 \mathrm{dB}$	$8 \mathrm{dB}$	+16dBm
IF filter	$-5\mathrm{dB}$	$5\mathrm{dB}$	$+100$ dBm(referred to 50Ω)
VGA	+65 dB	$15\mathrm{dB}$	$+20$ dBm(referred to 50Ω)

Figure 4 spec for each block

Voltage Gain	91.78dB
NF	$2.74 \mathrm{dB}$
IIP3	-9.71dBm

Figure 5 overall performance