## Sharif University of Technology

## **Communication Circuits**

## Problem set 2

Due Date: sunday, 7 Aban

You may submit your solutions in class or in the box.

 A monostatic radar detects a 10 m<sup>2</sup> target at arange of 266.4 km. it transmits 100kW at a frequency of 3 GHz. The antenna gain is 40 dB and recived power is -10dBm. At what range would a stealthy target with an RCS of -30dBsm(10<sup>-3</sup> m<sup>2</sup>) be detected?

The power intercepted by the target is proportional to incident power desity, so  $P^i = \sigma S^i \cdot \sigma$  is the radar cross section(RCS).

- 2. A lossy line at temperatute T feeds an amplifier with noise fiqure F. if an impedance mismatch is present at input of the amplifier, find the overall noise figure of system.
- 3. Consider the scenario shown in fig.1 where  $\omega_3 \omega_2 = \omega_2 \omega_1$  and the bandpass filter provides an attenution.
- a) Compue the IIP<sub>3</sub> of te amplifier such that the intermodulation product falling at  $\omega_1$  is 20dB below the desired signal.
- b)Suppose an amplifier with a voltage gain of 10dB and IIP<sub>3</sub>=500mV<sub>P</sub> precedes te band-pass filter. Calculate

the IIP<sub>3</sub> of the overall chain.(neglect second order nonlinearities.)



Figure 1 cascade of BPF and amplifier.

4. Prove that in fig 2, the noise power delivered by R<sub>1</sub> to R<sub>2</sub> is equal to that delivered by if the resistor reside at the same temperature. What happens if they do not?



Figure 2 Transfer of noise from one resistor to another.

5. A 900-MHz GSM transmitter delivers a power of 1 W to antenna. By much must the second harmonic of signal be suppressed (filtered) so that it does not desensitize a 1.8-GHz reciever having P<sub>1db</sub>=-25dBm? Assume the reciver is 1m away and the 1.8-GHz signal is attenuated by 10dB as it propagates across this distance.