Sharif University of Technology

Communication Circuits

Problem set 2

Due Date: sunday, 7 Aban

You may submit your solutions in class or in the box.

1. A monostatic radar detects a $10 \mathrm{~m}^{2}$ target at arange of 266.4 km . it transmits 100 kW at a frequency of 3 GHz . The antenna gain is 40 dB and recived power is 10 dBm . At what range would a stealthy target with an RCS of $-30 \mathrm{dBsm}\left(10^{-3} \mathrm{~m}^{2}\right)$ be detected?
The power intercepted by the target is proportional to incident power desity, so $P^{i}=\sigma \sigma^{i} . \sigma$ is the radar cross section(RCS).
2. A lossy line at temperatute T feeds an amplifier with noise fiqure F . if an impedance mismatch is present at input of the amplifier, find the overall noise figure of system.
3. Consider the scenario shown in fig. 1 where $\omega_{3}-\omega_{2}=$ $\omega_{2}-\omega_{1}$ and the bandpass filter provides an attenution.
a) Compue the IIP_{3} of te amplifier such that that the intermodulation product falling at ω_{1} is 20 dB below the desired signal.
b) Suppose an amplifier with a voltage gain of 10 dB and $\mathrm{IIP}_{3}=500 \mathrm{mV}$ P precedes te band-pass filter. Calculate
the IIP $_{3}$ of the overall chain.(neglect second order nonlinearities.)

Figure 1 cascade of BPF and amplifier.
4. Prove that in fig 2, the noise power delivered by R_{1} to R_{2} is equal to that delivered by if the resistor reside at the same temperature. What happens if they do not?

Figure 2 Transfer of noise from one resistor to another.
5. A $900-\mathrm{MHz}$ GSM transmitter delivers a power of 1 W to antenna. By much must the second harmonic of signal be suppressed (filtered) so that it does not desensitize a $1.8-\mathrm{GHz}$ reciever having $\mathrm{P}_{1 \mathrm{db}}=-25 \mathrm{dBm}$? Assume the reciver is 1 m away and the $1.8-\mathrm{GHz}$

signal is attenuated by 10 dB as it propagates across this distance.

