Session 2: Solid State Physics

Crystal

Outline

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

- Introduction
 - Course information
 - Technology
 - State of matter
 - Micro/macro -oscopic aspects of matter
- Orystal
 - Bravis lattice
 - Primitive unit cell, unit vectors, Wigner-Seitz unit cell
 - Basis, Crystal
 - Example: Graphene
- Cubic Lattices
 - SC, BCC, FCC, Zinc Blende
- Other
- Symmetry
- Miller Indices

Introduction – Text Books

Streetman, Solid State Electronic Devices Pierret, Semiconductor Device Fundamentals

Yang, Microelectronic Devices Muller, Device Electronics for Integrated Circuits

Course homepage: <u>http://ee.sharif.edu/~sarvari/Teaching.html</u> *Refresh the page!*

Grading (tentative): 2-MidTerms (40%) + HW & Quizzes (20%) + Final (40%)

?, ?

http://cw.sharif.edu/

Abbreviated Periodic Table

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

Flements		M	1001	IV	V	
Si, Ge, C	á.	Be	5	6 C	7 N	\$ 0
Binary:	12	Mg	13 Al	14 Si	15 F	16 S
 III-V: GaAs , Inp II-VI: ZnSe (zinc selenide) , CdTe (cadmium telluride) IV-IV: SiC IV-VI: PbS (lead sulphide) 	30	22m	31. Ga	32 Ge	33 A.s	34. So
	48	¢1	49 1u	50 S1	51 Sb	52 T&
Alloys: ternary: Al. Ga. As Hg. Cd Te	30	Ħg	S1 T1	52 Pb	83 Bi	84 Po
Quaternary: \ln_{1-x-y} Ga _x Al _y As , \ln_{1-x} Ga _x As _{1-y} P _y						

Not all combinations possible:

lattice mismatch, room temp. instability, etc. are concerns

? Why Solid State?

1. Solid: density ~ 10²² /cm³

1. a: Crystal: long range order (lattice + basis) {Ex: Epitaxial silicon and diamond}

1. b: Polycrystal: short range order (μ m ~ 10 μ m) {Ex: Most metals (Al, Cu) Ploy-Si}

1. c: Amorphous: no order {Example: Glasses like SiO2}

2. Liquids: no order, takes the shape of the container, weak bounds; density $\sim 10^{19}$ /cm³

3. Gases: no order, no bounds between molecules

4. Liquid crystals: atoms mobile, type of long range order Applications: LCDs

5. Plasma: Ionized gas/liquid {Ex: Sun, Aurora, Lightning, (RIE, Sputtering, PECVD)}

Polycrystallimc

7

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

Isn't it for physics / Chemistry / Material Science Department?

- 1. Solid: density ~ 10^{22} /cm³
- a: Crystal: long range order (lattice + basis){Example: Epitaxial silicon and diamond}
- b: Polycrystalline: short range order (μ m~10 μ m) {Example: Most metals (Al, Cu) Ploy-Si}
- c: Amorphous: no order

Resistivity

Ohm's law

$$R = \frac{V}{I} \rightarrow \rho = R \frac{A}{L}$$
 resistivity

Resistivity is characteristic of the material

Art of VLSI design is:

to put together materials with different resistivity's next to each other to perform a certain task.

$$\begin{array}{cccc} & \text{AI} \text{, } \text{Cu} & \longleftarrow & \text{SiO}_2 & \text{bpp}\\ & \rho_{Al} \approx 10^{-6} \left[\Omega cm\right] & \rho_{SiO_2} \approx 10^{16} \left[\Omega cm\right] & \text{ppp}\\ \end{array}$$

9

Semiconductors

In semiconductors: conductivity is controllable

In conductors: carriers are "electrons" In semiconductors: carriers are "electrons" + "holes"

Solids tend to form ordered crystals

Rock Salt

Rock Candy

Mineralogists have been familiar with crystal structures since 18th century. 1912: Diffraction of x-rays by a periodic array. Today : Condensed matter physics long way to go

Properties (mechanical, electrical, optical and thermal properties all affected) of solids depends on their structure

Crystal Lattice

1. Introduction2. Crystal3. Cubic Lattices4. Other5. Miller Indices

Image of graphene in a transmission electron microscope.

Ideal Crystal: Infinite repetition of identical structural units in space.

Bravais lattice: is the set of points defined by $\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2}$ as n_i is integer. Shortest possible $\vec{a_1}$ gives us primitive vectors.

The volume cell enclosed by the primitive vectors is called the primitive unit cell.

Crystal structure = Lattice + Basis

Unit cells / Wigner-Seitz cell for a rectangular 2-D lattice

1-D Lattices

Introduction
 Crystal
 Cubic Lattices
 Other
 Miller Indices

Ideal Crystal: Infinite repetition of identical structural units in space.

basis

The basis consists of the simplest arrangement of atoms which is repeated at every point in the lattice to build up the crystal structure

Crystal structure = Lattice + Basis

Crystal structure = Lattice + Basis

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

Ideal Crystal: Infinite repetition of identical structural units in space.

Crystal structure = Lattice + Basis

1. Introduction2. Crystal3. Cubic Lattices4. Other5. Miller Indices

Example: Graphene

Honeycomb structure

Example: Graphene

Honeycomb structure

basis

	The 7 lattice systems		The 14 Brave	ais Lattices	
Bravais Lattices in 3D	Triclinic (parallelepiped)	$\alpha, \beta, \gamma \neq 90^{\circ}$			
There are 14 Bravais lattices in 3D	monoclinic (right prism with parallelogram base; here seen from above)	Simple $\alpha \neq 90^{\circ}$ $\beta, \gamma = 90^{\circ}$ γ γ γ	Centered $\alpha \neq 90^{\circ}$ $\beta, \gamma = 90^{\circ}$		
	orthorhombic (cuboid)	Simple $a \neq b \neq c$ $a \neq b \neq c$	base-centered $a \neq b \neq c$	body-centered $a \neq b \neq c$ $a \neq b \neq c$ c b	face-centered $a \neq b \neq c$ c b
	tetragonal (square cuboid)	a≠c a≠c	a # c		
	Rhombohedral (trigonal trapezohedron)	$a=\beta=\gamma \neq 90^{\circ}$		-	
	hexagonal (centered regular hexagon)				
	Cubic (isometric; cube)	Simple	body-centered	face-centered	

Cubic Lattices

Diamond Lattice

Zinc Blende Structure

Simple cubic (SC)

Example: alpha polonium Coordination Number (# of nearest nbs.) = # of atoms/cell = Packing fraction = 1. Introduction2. Crystal3. Cubic Lattices4. Other5. Miller Indices

Body-centered cubic (BCC)

Coordination Number (# of nearest nbs.) = # of atoms/cell = Packing fraction =

Coordination Number (# of nearest nbs.) = # of atoms/cell = Packing fraction =

Diamond Lattice

Example: Silicon, Germanium, Carbon

Coordination Number (# of nearest nbs.) = # of atoms/cell = Packing fraction =

Diamond Lattice

Example: Silicon, Germanium, Carbon

Coordination Number (# of nearest nbs.) = # of atoms/cell = Packing fraction =

cell volume: $(0.543 \text{ nm})^3 = 1.6 \times 10^{-22} \text{ cm}^3$ Density of silicon atoms = (8 atoms) / (cell volume) = 5 x 10^{22} atoms/cm³
 1. Introduction

 2. Crystal

 3. Cubic Lattices

 4. Other

 5. Miller Indices

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

III-V semiconductors, important for optoelectronics.

GaAs, InP, InGaAs, InGaAsP,.....

For GaAs: Each Ga surrounded By 4 As, Each As Surrounded by 4 Ga

	1. Introduction	
•	2. Crystal	
vmmetrv	3. Cubic Lattices	
,	4. Other	
	5. Miller Indices	

Many physical properties depends on the symmetry

n- fold rotational symmetry

 $C_n: 2\pi/n$ rotation (n = 1, 2, 3, 4, 6)

Inversion center symmetry

 $I: r \mapsto -r$ no center symmetry \rightarrow piezoelectricity

plane of symmetry (reflection)

 σ

rotation – inversion symmetry

 $S_n: C_n + \sigma$

Symmetry

1. Introduction	
2. Crystal	
3. Cubic Lattices	
4. Other	
5. Miller Indices	

$I: r \mapsto -r$

 σ

M. C. Escher

 1. Introduction

 2. Crystal

 3. Cubic Lattices

 4. Other

 5. Miller Indices

Non-Bravais Lattices

 1. Introduction

 2. Crystal

 3. Cubic Lattices

 4. Other

 5. Miller Indices

SCIENCE VOL 315 23 FEBRUARY 2007 Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture

Peter]. $\mbox{Lu}^{\mbox{\scriptsize 1}\star}$ and Paul]. Steinhardt^2

http://www.npr.org/templates/story/story.php?storyId=7544360 http://wwwphy.princeton.edu/~steinh/islamictilings.html

1. Introdu	iction
2. Crystal	
Willer Indices 3. Cubic L	attices
4. Other	
5. Miller	ndices

A method to label distinct planes and direction within a crystal structure. steps:

1. Note where the plane to be indexed intercepts the axes (chosen along unit cell directions). Record result as whole numbers of unit cells in the x, y, and z directions, e.g., 2, 1, 3.

2. Take the reciprocals of these numbers, e.g., 1/2, 1, 1/3

3. Convert to whole numbers with lowest possible values by multiplying by an appropriate integer, e.g., x6 gives 3, 6, 2.

4. Enclose number in parentheses to indicate it is a crystal plane categorization, e.g., (3,6,2)

Miller Indices	1. Introduction 2. Crystal 3. Cubic Lattices 4. Other	
	5. Miller Indices	

Planes parallel to a unit cell coordinate axis are viewed as intercepting the axis at infinity, so have an associated Miller index in that direction of zero, e.g., (100) plane. Planes intersecting along the negative axis use a bar over the index rather than a negative sign, e.g., $\overline{1}$ rather than -1, e.g., $(1\overline{11})$. Groups of equivalent planes,((100), (010), (001), ($\overline{100}$), ($\overline{010}$), and ($\overline{001}$)all equivalent because rotation about the 3 fold axes on the cube diagonals maps the various faces into one another, making the planes equivalent) are notated in curly brackets, i.e., {100} for the above set of equivalent planes.

Miller Indices	1. Introduction 2. Crystal 3. Cubic Lattices	
	4. Other 5. Miller Indices	

Similar procedure can be used to define Miller indices for directions.

1. Set up a vector of arbitrary length in the direction of interest (must be a crystal direction, i.e., connecting two crystal points)

2. Decompose the vector into its basis vector components in the a, b, and c directions

3. Convert the resulting numbers to the lowest possible set of integers by multiplying by an appropriate number

Directions are notated using square brackets, e.g., $[1\overline{1}1]$

For cubic crystals, directions perpendicular to particular crystal planes can be indexed using the same index as the plane. Sets of equivalent directions are specified by triangular brackets, e.g., $\langle 100 \rangle$

 $[h,k,l] \perp (h,k,l)$

Convention	Interpretation
(hkl)	Crystal plane
{hkl}	Equivalent planes
[hkl]	Crystal direction
(hkl)	Equivalent directions

Crystallographic Planes

