Session 10: Solid State Physics MOSFET

	1. I	
	2.	
Outline	3.	
	4.	
	5.	

• J

Drift current flowing between 2 doped regions ("source" & "drain") is modulated by varying the voltage on the "gate" electrode.

MOSFET

Intel's 32nm CMOSFETs

Desired characteristics:

- High ON current
- Low OFF current

- For current to flow, $V_{GS} > V_T$
- Enhancement mode: $V_{T} > 0$
- Depletion mode: V_T < 0 Transistor is ON when V_G=0V

- For current to flow, $V_{GS} < V_T$
- Enhancement mode: $V_{T} < 0$
- Depletion mode: V_T > 0 Transistor is ON when V_G=0V

CMOS Devices and Circuits

• When $V_{\rm G} = V_{\rm DD}$, the NMOSFET is on and the PMOSFET is off.

When $V_{\rm G}$ = 0, the PMOSFET is on and the NMOSFET is off.

	1. I	
	2.	
"Pull-Down" and "Pull-Up" Devices	3.	
	4.	
	5.	

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to VDD.
 - An NMOSFET functions as a *pull-down device* when it is turned on (gate voltage = V_{DD})
 - A PMOSFET functions as a *pull-up device* when it is turned on (gate voltage = *GND*)

The potential barrier to electron flow from the source into the channel region is lowered by applying $V_{GS} > V_T$

 $V_{DS_{sat}} = V_{GS} - V_T$

 $V_{GS} > V_T \rightarrow$ Inversion-layer "channel" is formed

Electrons flow from the source to the drain by drift, when V_{DS} >0. (I_{DS} > 0)

The channel potential $(V_c(y))$ varies from V_s at the source end to V_D at the drain end.

MOSFET I-V Curve	1. 2. 3. 4. 5.	
$Q_{depl}(y)$ $V_T(y) = V_{FB} + V_C(y) + 2\varphi_F + \frac{1}{C_{ox}} \sqrt{2qN_A\epsilon_{ox}(V_{CB} + 2\varphi_F)}$	V_c	$y)$ $V_{c}(0) = V_{s}$

$$Q_{inv} = -C_{Ox}(V_G - V_T(y))$$
$$Q_{inv} = -C_{Ox}\left(V_G - V_{FB} - V_C(y) - 2\varphi_F - \frac{Q_{depl}(y)}{C_{Ox}}\right)$$

$$V_{c}(y)$$

$$\begin{cases} V_{c}(0) = V_{S} \\ V_{c}(L) = V_{D} \end{cases}$$

Depletion Region Approximation:

but $Q_{depl}(y) \approx Q_{depl}(0)$ $Q_{inv}(y)$ $Q_{depl}(y)\approx \sqrt{2qN_A\epsilon_{Ox}(V_{SB}+2\varphi_F)}$

$$Q_{inv} = -C_{Ox} \left(V_G - \frac{V_{FB} - V_S - 2\varphi_F - \frac{Q_{depl}(0)}{C_{Ox}}}{V_T(0)} + V_S - V_C(x) \right)$$

 $Q_{inv}(y) = -C_{Ox}(V_G - V_T(0) + V_S - V_C(y))$

MOSFET I-V Curve	1. I 2. 3. 4. 5.	
$Q_{inv}(y) = -C_{Ox}(V_G - V_T(0) + V_S - V_C(y))$ Simply call $V_T(0)$ as $V_T Q_{inv}(y) = -C_{Ox}(V_G - V_T + V_S - V_C(y))$		$V_c(y)$ $\int V_c(0) = V_s$
$dV_{c}(y) = I_{DS} \cdot dR = I_{DS} \frac{dy}{\sigma W t_{inv}} = \frac{I_{DS} dy}{(q\mu_{eff} n)W t_{inv}} = \frac{I_{DS} dy}{(qnt_{inv})\mu_{eff}}$	$\overline{f^W}$	$\int V_c(L) = V_D$
$\int_{-Q_{inv}(y)}^{L} I_{DS} dy = \int_{-\mu_{eff}}^{V_D} WQ_{inv}(y) dV_c \qquad \qquad$	[/cm ²]	
${}^{0} V_{S} V_{S} = \mu_{eff} W \int_{V_{S}}^{V_{D}} [C_{Ox}(V_{G} - V_{T} + V_{S} - V_{C}(y))] dV_{C}$		W
$I_{DS} = \frac{W}{L} \ \mu_{eff} C_{Ox} (V_{GS} - V_T - \frac{1}{2} V_{DS}) V_{DS}$		
$\left. \frac{\partial I_{DS}}{\partial V_{DS}} \right _{V_{DS_{sat}}} = 0$		dy

	1. I	
	2.	
MOSEET I-V Curve	3.	
	4.	
	5.	

Linear

$$I_{DS} = \begin{cases} \frac{W}{L} \ \mu_{eff} C_{Ox} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS} \\ \frac{W}{2L} \ \mu_{eff} C_{Ox} \left(V_{GS} - V_T \right)^2 \end{cases}$$

$$V_{DS} < V_{DS_{sat}}$$
$$V_{DS} < V_{DS_{sat}} = V_{GS} - V_T$$

	1. I	
	2.	
Field-Effect Mobility, Upper	3.	
лана состана сладу ген	4.	
	5.	

MOSFET Saturation Region of Operation

1. I 2.

3.

4.

5.

As $V_{\rm D}$ is increased above $V_{\rm G}$ - $V_{\rm T}$, the length ΔL of the "pinch-off" region increases. The voltage applied across the inversion layer is always $V_{\rm Dsat} = V_{\rm GS} - V_{\rm T}$, and so the current saturates.

If ΔL is significant compared to L, then I_{DS} will increase slightly with increasing $V_{DS} > V_{Dsat}$, due to "channel-length modulation"

"Square Law Theory"?	1. I 2. 3. 4. 5.	
$I_{DS} = \begin{cases} \frac{W}{L} \ \mu_{eff} C_{Ox} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS} \\ \frac{W}{2L} \ \mu_{eff} C_{Ox} \left(V_{GS} - V_T \right)^2 \end{cases}$	$V_{DS} < V_{DS_{sat}}$ Linear $V_{DS} < V_{DS_{sat}} = V_{GS} - V_T$ Satura	ation
Depletion Region Approximation: $Q_{inv}(y)$ but $Q_{depl}(y) \approx Q_{depl}(0)$ $Q_{depl}(y) \approx \sqrt{2qN_A\epsilon_{Ox}(V_{SB} + 2\varphi_F)}$	$S \bullet V_c = V_G - V_T$ $n + Q_{depl}(y)$	n+
$V_{T}(y) = V_{FB} + V_{C}(y) + 2\varphi_{F} + \frac{1}{C_{ox}} \sqrt{\frac{2qN_{A}\epsilon_{G}}{2qN_{A}\epsilon_{G}}}$ $Q_{inv}(y) = -C_{Ox}(V_{G} - V_{T}(0) + V_{S} - V_{C}(y))$	$\frac{p}{O_{X}(V_{CB} + 2\varphi_{F})}$	
$\begin{aligned} Q_{depl}(y) &> Q_{depl}(0) \\ V_T(y) &> V_T(0) \end{aligned} \qquad Q'_{inv}(y) < Q_{inv}(y) \end{aligned}$	$_{\nu}(y) \qquad I'_{DS} < I_{DS}$	

Modified (Bulk-Charge) I-V M	odel	2. IIIIII 3. IIIIII 4. IIIII 5. IIIIII
Linear / Saturation	Linear $V_{DS} < V_G - I_{DS} = \frac{W}{L} \mu_{eff} C_{Ox} (V_{GS})$	$-V_T - V_T - \frac{1}{2}V_{DS} V_{DS}$
	Linear $V_{DS} < \frac{1}{m}(V)$ $I_{DS} = \frac{W}{L} \mu_{eff} C_{Ox} (V_{GS})$	$(G_G - V_T)$ $- V_T - \frac{m}{2} V_{DS} V_{DS}$
V_{DS} $-\frac{V_G - V_T}{m} (V_G - V_T)$	Saturation $V_{DS} > T$ $I_{DS} = \frac{W}{2L} \mu_{eff} C_{OX} ($	$\frac{V_G - V_T}{(V_{GS} - V_T)^2}$
Bulk charge factor	Saturation $V_{DS} > \frac{1}{m} (V_{DS})$	$V_G - V_T$)
$m = 1 + \frac{C_{dep}}{C_{Ox}} = 1 + \frac{3t_{Ox}}{W_T}$	$I_{DS} = \frac{W}{2mL} \ \mu_{eff} C_0$	$V_x (V_{GS} - V_T)^2$

Typically 1.1 < m < 1.4

19

1. I

	1. I	
	2.	
The Body Effect	3.	
····• = ••·· J =···•••	4.	
	5.	

Note that V_{T} is a function of V_{SB} :

$$V_T = V_{FB} + 2\varphi_F + \frac{1}{C_{Ox}}\sqrt{2qN_A\epsilon_{Ox}(V_{SB} + 2\varphi_F)}$$
$$V_T = V_{T0} + \frac{1}{C_{Ox}}\sqrt{2qN_A\epsilon_{Ox}}\left(\sqrt{(V_{SB} + 2\varphi_F)} - \sqrt{2\varphi_F}\right)$$
$$= V_{T0} + \gamma\left(\sqrt{(V_{SB} + 2\varphi_F)} - \sqrt{2\varphi_F}\right)$$

where γ is the *body effect parameter*

$$\gamma = \frac{1}{C_{Ox}} \sqrt{2qN_A\epsilon_{Ox}}$$

When the source-body pn junction is reverse-biased, $|V_T|$ is increased. Usually, we want to minimize g so that I_{Dsat} will be the same for all transistors in a circuit.

The Body Effect 2. 3. 4. 5. 5.	
1.1	

	Α	В	F
	0	0	1
	0	1	1
(*)	1	0	1
	1	1	0

$$V_{DD}$$

$$V_{(1)} = V_{DD}$$

 $V_{T_a} > V_{T_b}$

$$I_{D_{sat}} \propto \frac{1}{L - \Delta L} = \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right)$$

$$\Delta L \propto V_{DS} - V_{DSsat}$$

$$I_{DS} = \frac{W}{2mL} \ \mu_{eff} C_{Ox} (V_{GS} - V_T)^2 \left(1 + \lambda \left(V_{DS} - V_{DS_{sat}} \right) \right)$$

	1. I
	2.
MOSFET: Small Signal Model	3.
	4.
	5.

cut-off frequency:

$$f_{max} \nearrow \longrightarrow \frac{g_m}{2\pi C_{Ox}} \propto \frac{1}{L} \searrow$$

	1. I	
	2.	
P-Channel MOSEEI	3.	
	4.	
	5.	

- The PMOSFET turns on when $V_{GS} < V_T$
 - Holes flow from SOURCE to DRAIN

 \Rightarrow DRAIN is biased at a *lower* potential than the SOURCE

• *V*_{DS} < 0

• *I*_{DS} < 0

- |*I*_{DS}| increases with
 - $|V_{\rm GS} V_{\rm T}|$
 - $|V_{DS}|$ (linear region)
- In a CMOS technology, the PMOS & NMOS threshold voltages are usually symmetric about 0, *i.e.* V_{Tp} = -V_{Tn}

	1. I	
	2.	
PMOSFEI I-V	3.	
	4.	
	5.	

$$I_{DS} = I_{D_{sat}} = -\frac{W}{2mL} \ \mu_{eff} C_{Ox} (V_{GS} - V_T)^2$$

	1. I	
MOSFET Scaling	2.	
	3.	
	4.	
	5.	
	4. 5.	

MOSFETs have been steadily miniaturized over time 1970s: ~ 10 mm Today: ~30 nm

Reasons:

Improved circuit operating speed Increased device density --> lower cost per function

As MOSFET lateral dimensions (*e.g.* channel length *L*) are reduced:

I_{Dsat} increases → decreased effective "R"
•gate and junction areas decrease → decreased load "C"
→ faster charging/discharging (*i.e.* t_d is decreased)

	1. I	
	2.	
Velocity Saturation	3.	
	4.	
	5.	
	4. 5.	

Velocity saturation limits *I*_{Dsat} in sub-micron MOSFETS

Simple model:

$$v_{sat} = \begin{cases} 8 \times 10^6 \ cm/s \ \text{for } e^- \text{in Si} \\ 6 \times 10^6 \ cm/s \ \text{for } h^+ \text{in Si} \end{cases}$$

If
$$\mathcal{E} < \mathcal{E}_{sat}$$
: $\mu \mapsto \frac{\mu}{1 + \frac{\mathcal{E}}{\mathcal{E}_{sat}}}$

	1. I	
MOSFET I-V with Velocity Saturation	2.	
	3.	
	4.	
	5.	

In linear region:

$$\mu \mapsto \frac{\mu}{1 + \frac{\mathcal{E}}{\mathcal{E}_{sat}}} \qquad I_D = \frac{W}{L} \frac{\mu_{eff} \mathcal{C}_{Ox}}{1 + \frac{V_{DS}}{L\mathcal{E}_{sat}}} (V_{GS} - V_T - \frac{m}{2}V_{DS}) V_{DS} = \frac{I_{D_{LongChannel}}}{1 + \frac{V_{DS}}{L\mathcal{E}_{sat}}}$$

$$MOSFET \text{ is Long channel if } L\mathcal{E}_{sat} \gg V_{GS} - V_T$$

$$\frac{1}{V_{D_{sat}}} = \frac{m}{V_{GS} - V_T} + \frac{1}{L\mathcal{E}_{sat}}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{4}{L} \frac{1}{L\mathcal{E}_{sat}}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{4}{L} \frac{1}{L\mathcal{E}_{sat}}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1.8 V, t_{Ox}}{1 + \frac{3}{L\mathcal{E}_{sat}}} \qquad I_D = \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{Long Channel}$$

$$\frac{V_{GS}}{V_T} = \frac{1}{L} \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac{1}{L\mathcal{E}_{sat}} \qquad I_D = \frac{1}{L} \frac$$

	1. I	
	2.	
In with Velocity Saturation	3.	
Usat Usat Usat	4.	
	5.	

In saturation region:

$$V_{DS} \mapsto V_{GS} - V_T \qquad I_{D_{sat}} = \frac{W}{2mL} \frac{\mu_{eff} C_{OX}}{1 + \frac{V_{GS} - V_T}{L\mathcal{E}_{sat}}} (V_{GS} - V_T)^2 = \frac{I_{Dsat_{LongChannel}}}{1 + \frac{V_{GS} - V_T}{L\mathcal{E}_{sat}}}$$

Very short channel length: $L\mathcal{E}_{sat} \ll V_{GS} - V_T$

$$I_{D_{sat}} = \frac{W}{2m} \mu_{eff} \mathcal{E}_{sat} C_{Ox} (V_{GS} - V_T) = \frac{W}{m} v_{sat} C_{Ox} (V_{GS} - V_T)$$

- $I_{D_{sat}}$ is proportional to $V_{GS} V_T$ rather than $(V_{GS} V_T)^2$
- $I_{D_{sat}}$ is not dependent on L

To improve modern MOSFETs: $I_{ON} \nearrow$

 $C_{Ox} \nearrow$ high-k dielectric

$$v_{sat}$$
 > strained Si

Short-channel NMOSFET:

- I_{Dsat} is proportional to V_{GS} - V_{Tn} rather than $(V_{\text{GS}}$ - $V_{\text{Tn}})^2$
- V_{Dsat} is lower than for long-channel MOSFET
- Channel-length modulation is apparent

	1. I	
	2.	
Velocity Overshoot	3.	
	4.	
	5.	

When L is comparable to or less than the mean free path, some of the electrons travel through the channel without experiencing a single scattering event

 \rightarrow projectile-like motion ("ballistic transport")

This effect is undesirable (i.e. we want to minimize it!) because circuit designers would like VT to be invariant with transistor dimensions and bias condition

	1. I	
Qualitative Explanation of SCE	2.	
	3.	
	4.	
	5.	

Before an inversion layer forms beneath the gate, the surface of the Si underneath the gate must be depleted (to a depth W_T)

The source & drain pn junctions assist in depleting the Si underneath the gate. Portions of the depletion charge in the channel region are balanced by charge in S/D regions, rather than by charge on the gate. Less gate charge is required to invert the semiconductor surface (i.e. $|V_T|$ decreases)

along with horizontal dimensions!

MOSFET Scaling:	1. I 2.	
Constant-Field Approach	3. 4. 5.	

MOSFET dimensions and the operating voltage (V_{DD}) each are scaled by the same factor k > 1, so that the electric field remains unchanged.

Scaled device

Constant-Field Scaling Benefits

1. I

2.

3. 4.

5.

	Parameter	Multiplication factor (k>1)
Scaling	Device dimensions (t_{Ox}, L, W, r_j)	1/k
assumptions	Doping concentration (N_A, N_D)	k
	Voltage (V)	1/k
Derived	Electric field (\mathcal{E})	1
scaling behavior of	Carrier velocity (v)	1
device	Depletion-layer width (W_D)	1/k
parameters	Capacitance ($C = \epsilon A/t$)	1/k
	Inversion charge density (Q_{inv})	1
	Current drift (I)	1/k
	Channel resistance (R _{ch})	1
Derived	Circuit delay time ($\tau \sim CV/I$)	1/k
scaling	Power diss. per circuit ($P \sim VI$)	$1/k^{2}$
circuit	Power-delay product per circuit ($P au$)	$1/k^{3}$
parameters	Circuit density ($\propto 1/A$)	<i>k</i> ²
	Power density (P/A)	1

	1. I	
	2.	
Failure of Constant-Field Scaling	3.	
	4.	
	5.	

Since V_T cannot be scaled down aggressively, the operating voltage (V_{DD}) has not been scaled down in proportion to the MOSFET channel length:

Feature Size (μm)	Power-Supply Voltage (V)	Gate Oxide Thickness (Å)	Oxide Field (<i>MV/cm</i>)
2	5	350	104
1.2	5	250	2.0
0.8	5	180	2.8
0.5	3.3	120	2.8
0.35	3.3	100	3.3
0.25	2.5	70	3.6

MOSFET Scaling: Generalized Approach

1. I

2.

3.

4.

5.

	Parameter	Multiplica (k>	tion factor >1)	Electric field	
Scaling assumptions	Device dimensions (t_{Ox}, L, W, r_j)	1,	′k	intensity increases by a factor $\alpha > 1$ N_{body} must	
	Doping concentration (N_A, N_D)	α	k		
	Voltage (V)	α,	/k		
Derived scaling behavior of device parameters	Electric field (\mathcal{E})	C	Y		
	Depletion-layer width (W_D)	1,	′k		
	Capacitance ($C = \epsilon A/t$)	1,	′k	be scaled up	
	Inversion charge density (Q_{inv})	α		suppress	
		Long ch.	Vel Sat.	short-	
	Carrier velocity (v)	α	1	channel effects	
	Current drift (I)	α^2/k	α/k		
Derived scaling behavior of circuit parameters	Circuit delay time ($\tau \sim CV/I$)	$1/\alpha k$	1/k		
	Power diss. per circuit ($P \sim VI$)	α^3/k^2	α^2/k^2		
	Power-delay product per circuit ($P au$)	α^2/k^3			
	Circuit density ($\propto 1/A$)	k	2		
	Power density (P/A)	α^3	α^2	47	

As the source and drain get closer, they become electrostatically coupled, so that the drain bias can affect the potential barrier to carrier diffusion at the source junction

 \rightarrow V_T decreases (*i.e.* OFF state leakage current increases)

	1. I	
	2.	
Punchthrough	3.	
	4.	
	5.	

A large drain bias can cause the drain-junction depletion region to merge with the source-junction depletion region, forming a sub-surface path for current conduction.

 $\rightarrow I_{\text{Dsat}}$ increases rapidly with V_{DS}

This can be mitigated by doping the semiconductor more heavily in the subsurface region, i.e. using a "retrograde" doping profile.

	1. I	
	2.	
Source and Drain (S/D) Structure	3.	
	4.	
	5.	

To minimize the short channel effect and DIBL, we want shallow (small r_j) S/D regions – but the parasitic resistance of these regions increases when r_j is reduced.

 $R_{source}, R_{drain} \propto \rho/Wr_j$

where ρ = resistivity of the S/D regions

Shallow S/D "extensions" may be used to effectively reduce r_j with a relatively small increase in parasitic resistance

$\ensuremath{\mathcal{E}}\xspace$ - Field Distribution Along the Channel

1. I 2.

3.

4.

5.

The lateral electric field peaks at the drain end of the channel. \mathcal{E}_{peak} can be as high as 10⁶ V/cm $4 ext{ 10}^2$ High E-field causes problems: Damage to oxide interface & bulk (trapped oxide charge $\rightarrow V_{\tau}$ shift) substrate current due to impact ionization: fisid stang chana impaci $\mathbb{F}_{\mathbb{Z}}$ ່າດາງໄຂລງໂດດ (\bigcirc) Voz >> V Baro Gate n' drain Ш[°] QA 1.2STUDCE Electron lla© ⇒iD) CUMENT Channel residen y filmi petype supsimie

Lightly Doped Drain (LDD) Structure

Lower pn junction doping results in lower peak E-field

- ✓ "Hot-carrier" effects are reduced
- Parasitic resistance is increased

 \rightarrow *I*_{Dsat} is reduced by ~15% in a 0.1 mm MOSFET.

 V_{Dsat} is increased to $V_{\text{Dsat0}} + I_{\text{Dsat}} (R_{\text{S}} + R_{\text{D}})$

Summary: **MOSFET OFF State vs. ON State**

2. 3.

4.

5.

OFF state ($V_{GS} < V_T$):

- I_{DS} is limited by the rate at which carriers diffuse across the source ٠ pn junction
- Minimum subthreshold swing S, and DIBL are issues ٠

ON state ($V_{GS} > V_T$):

- I_{DS} is limited by the rate at which carriers drift across the channel
- Punchthrough is of concern at high drain bias ٠
 - I_{DSat} increases rapidly with V_{DS}
- Parasitic resistances reduce drive current ۲
 - source resistance R_S reduces effective V_{GS}
 - source & drain resistances $R_S \& R_D$ reduce effective V_{DS} •