Session 7: Solid State Devices

Resonant Tunneling and Devices

Outline

- A
 - B
 - C
 - D
 - E
- F
 - G
- H
- •
- J

Outline

Ref: Brennan and BrownSze and Ng,

Resonant Tunneling

heavily doped (non-degenerate) Ef>EC

Resonant Tunneling

$$E_G(Al_xGa_{1-x}As) = 1.24(GaAs) + 1.247x$$

$$\Delta E_c = \Delta E_G$$

Qualitative!

Like Fabry-Perot resonator

Resonant enhancement of the transmissivity can occur only if the electron waves remain coherent.

- resonant tunneling (coherent)
- II. sequential tunneling (incoherent)

$$\frac{1}{\tau} \sim 6 \times 10^{12} s^{-1}$$
polar optical
phonon scattering

RTD: Digital Applications

Multiple-valued logic gates → more efficient → less complex interconnect requirements

- → lower power consumption
- → high-speed operation

RTD

1. l
2.
3.
4.

Series RTD

Resonant Tunneling Transistor

1. I	
2.	
3.	
4.	
_	

FIGURE 6.6.1 Resonant tunneling transistor with a double-barrier structure in the base region of the device. The region between the emitter and the quantum well is p-type with a bandgap larger than that of the well.