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Solar Cell

Solar cell is simply a semiconductor diode that has been carefully designed to

efficiently absorb and convert light energy from the sun into electrical energy.
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Radiation Spectrum
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Light Absorption : Direct
Si— GaAs, GalnP, Cu(InGa)Se2, and CdTe,

well developed technology
absorption characteristics are a fairly good match to the solar spectrum
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Light Absorption : Indirect

phonon emission Conduction

photon phonon absorption
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Absorption Coefficient vs. Photon Energy
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Recombination

SRH recom-gen: R N "p— niz
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Derivation of Continuity Equation

Consider carrier-flux into/out-of an infinitesimal volume:
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Continuity Equation
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PN junctions (Qualitative)
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PN junctions - Assumptions

The Depletion Approximation : Obtaining closed-form solutions for the
electrostatic variables

q
Charge Distribution : V2@ = - (p —n+ Np—Ny)
e p=q(Np — Ny)

n

Note that
(1) —x, < x < x5, : p & n are negligible (* € exist).
(2)x < —xporx=x,:p=0




Built-In Potential V,;

qVpi = qPs, + 4Ps,

= (E; — Ep)p + (EF — Epy

For non-degenerately doped material:
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What shall we do for p* — n (or n™ — p) junction?!?!1?
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The Depletion Approximation

The electric field is continuous atx = 0
XpNg = xnNp

Charge neutrality condition as well!




Depletion Layer Width

—Xp <x <O
0<x<xy:

Summing, we have:




Va Applied Voltage

Now as we assumed all voltage drop is in the depletion region
(Note that VA < Vbi)

ZES(Vbi _ VA) 1
xn+xp=W=\/ ; ND+NA

XpNg = xpnNp




ohmic contact? Ap(—W,) = 0 back contact: ohmic  An(W,) = 0

dAp back-surface field (BSF),
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Generation Rate

See text for derivations!




Solar Cell Equivalent Circuit
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Solar Cell Equivalent Circuit
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Solar Cell | -V Characteristic

maximum

/- power point

-
(3]

S
(=}

[A)
=
o

Parameter

N
3]

Efficiency, nmax

Cell Current (A)
- n
(6)] o

—a
(=)

|

40 15 20 25 30 35
Bandgap (eV)

02 03 04 05
Cell Voltage (V)

Parameter n-type Si emitter p-type Si base

Thickness Wy =0.35um Wp = 300 um
Np=1x 100 ¢m—3 Npy=1x 105 em—3

Doping density
Surface recombination D,=15cm™/Vs D,=35cm %V s
3 x 10* enmv/s Spsg = 100 cm/s

Minority-carrier lifetime = lus = 350 us
Minority-carrier diffusion length ’ 12 um = 1100 um

Minority-carrier diffusivity SF.eff =




Heterojunction Solar Cell

recombination losses in emitter! - n 1

conduction band edge

p-type base

n" emitter
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Solar Cell Efficiency
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LED - Light emitting diode

LED : a p-n junction in forward biased
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LED for optical communication sources (InP , GaAs)

LED for display (GaN, InGaN, AlGalnP)




p+

Electron enerey
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At high injection carrier density in such a junction there is an active region
near the depletion layer that contains simultaneously degenerate
populations of electrons and holes.
An LED emits incoherent, non-directional, and unpolarized spontaneous
photons that are not amplified by stimulated emission.
An LED does not have a threshold current. It starts emitting light as soon as
an injection current flows across the junction.
z‘"‘\)
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Emission Energy
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increasing the direct recombination rate
and leading to higher light output,
having an emission region that is lower in
energy that the injection (cladding) regions
which allows the generated photons to
AU escape without being re-absorbed in the
injection regions,
minimizing the overflow of electrons into
the cladding regions where the injected
carriers either recombine non-radiatively or
generate light of an undesired wavelength.
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recombination coefficients and lifetimes

R.[cm™3s71]| t,[ns] 7, [ns] 7[ns]
Si 10715 10000000 100
GaAs 1010 100 100 50

R, Carrier pair injection rate [cm™3s™"]

steady-state excess-carrier concentration é6n = R, t [1/cm?]

output optical power

P = ()
= 0 hv
Very effective carrier and optical confinement can be simultaneously
accomplished with double heterostructures . A basic configuration can be
either P-p-N or P-n-N (the capital P, N represents wide-gap materials, p, n
represents narrow -gap materials). The middle layer is a narrow-gap material.

(e.9. Ga; Al As — GaAs - Ga, ,Al,As) N
I
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Recombination Rate

GaN

Jn parasitic injectio

InGaN GaN
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in junction)
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Lightly doped:
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Radiative Lifetime

o~
i
S’
—
b
—~
S’
(el
=
=
3
—
—
ol
-
[
=
Q
<
X

Semiconductor GaAs
Temperature is 300 K

Typical carrier
densities for laser
operation
- Carrier
P occupation is
Injection degenerate
_reglme fe =fh =1

10~2

10-10
1014 1015 10  10!7 108  1019cm3

N, (for holes injected into an n-type semiconductor)
n = p (for excess electron-hole pairs injected into a region)
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Direction of Emitted Light
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Luminous Efficiency
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3 Optical Processes

BEFORE

Absorption V"V V\4
@

Spontaneous
emission

Stimulated
emission




Laser

Laser: "light amplification by stimulated emission of radiation"

Spatial coherence: focused to a tight spot
narrow over long distances (collimation)

narrow spectrum (high temporal coherence) (pulses
of light—as short as a femtosecond)

Components of a typical laser:
1. Gain medium

2. Laser pumping energy

3. High reflector

4. Output coupler

5. Laser beam

Watch movie




Semiconductor lasers

1. Capable of emitting high powers (e.g. continuous wave ~ W).

2. A relatively directional output beam (compared with LEDSs)
permits high coupling efficiency (~ 50 %) into single-mode fibers.

3. A relatively narrow spectral width of the emitted light allows

operation at high bit rates (~ 10 Gb/s), as fiber dispersion
becomes less critical for such an optical source.

laser diode:
semiconductor optical amplifier (SOA) that has an optical feedback.

SOA : Forward -biased p+-n+ junction from a direct-bandgap material

The sharp refractive index difference between the crystal (~3.5) and
the surrounding air causes the cleaved surfaces to act as reflectors

37'




Laser Diodes

gain coefficient is sufficiently large :
Amplifier + optical feedback = oscillator

cleaved surface

When stimulated emission is more likely than absorption
=> net optical gain (a net increase in photon flux)
=> material can serve as a coherent optical amplifier




Population inversion by carrier injection

Electron
energy
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Light Amplification by
stimulated emission!




Population inversion
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3 Optical Processes

BEFORE

Absorption "V VV\4
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Raps & p(hv)Py (E1)[1 — Pc(E2)]

Spontaneous
emission
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Stimulated
emission

RSpOn < P-(E;)[1 — Py (E;)]
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s
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Lase Condition

Rstim & p(hv)Pc(E2)[1 — Py (E)] > Raps & p(hv) Py (E1)[1 — P (E2)]

Pc(E;)[1 — Py(E )] > Py(E))[1 — Pc(E3)]
Pc(E;) > Py(Eq)

This defines the population inversion in a semiconductor




Optical Gain

Optical
gain (broadband)

N

E, / FWHM = gain
l bandwidth

>

frequency
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LED and Laser Diode
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Light Output
Light Output

Current Wavelength




Single Frequency Laser

Single frequency lasers is desirable in the optical fiber communication
system to increase the bandwidth of an optical signal.
This is because light pulses of different frequencies travel through optical
fiber at different speeds thus causing pulse spread.
Dispersion mechanisms for a step-index fiber:
(1) intermodal dispersion
(2) waveguide dispersion
(3) material dispersion
Dispersion effects can be minimized by using long wavelength sources of
narrow spectral width (a single frequency laser) in conjunction with single
mode fibers.
Methods to achieve the single frequency lasers:
(1) Frequency Selective Feedback
External Grating, Distributed-Feedback (DFB), Distributed Bragg
Reflector (DBR)
(2) Coupled Cavity
Cleaved Coupled Cavity (C3) laser




