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Outline
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1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Motivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Current Flow Through Semiconductors 

3

I

V

Depends on chemical composition, 
crystal structure, temperature, doping, etc. 

Carrier 
Density

velocity

I G V

q n Av

= ×
= × × ×

Transport with scattering, non-equilibrium Statisti cal Mechanics 
⇒ Encapsulated into drift-diffusion equation with 

recombination-generation (Ch. 5 & 6)

Quantum Mechanics + Equilibrium Statistical Mechani cs 
⇒ Encapsulated into concepts of effective masses 

and occupation factors  (Ch. 1-4)
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Non-equilibrium Systems
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vs.

Chapter 6 Chapter 5

I

V

How does the system
go BACK to 
equilibrium?
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Indirect vs. Direct Bandgap

5

The top & bottom of bands do not align at
same wavevector k for indirect bandgap material
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Direct Band-to-band Recombination
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Photon

GaAs, InP, InSb (3D)

Lasers, LEDs, etc.

In real space … In energy space …

Photon
Direct transistion –
direct gap material

e and h must 
have same wavelength 

1 in 1,000,000 encounters



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Direct Excitonic Recombination
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Photon 
(wavelength reduced from bulk)

CNT, InP, ID-systems

Transistors, Lasers, Solar cells, etc.

In energy space …

In real space …

Mostly in 1D systems
Requires strong 
coulomb interactions
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Indirect Recombination (Trap-assisted)
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Phonon

Ge, Si, ….

Transistors, Solar cells, etc.

Trap needs to 
be mid-gap to 
be effective.  
Cu or Au in Si

States close to 
Ec or Ev do not 
help efficiently.

Cu in Si is extremely efficient in providing recombination
Cu in Si was avoided completely for many years
Intel introduced Cu for interconnects – special 
precautions so Cu does not enter the Si. 
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Indirect Recombination (Trap-assisted)

9

Phonon

Ge, Si, ….

Transistors, Solar cells, etc.

Trap needs to 
be mid-gap to 
be effective.  
Cu or Au in Si

States close to 
Ec or Ev do not 
help efficiently.

Cu in Si is extremely efficient in providing recombination
Cu in Si was avoided completely for many years
Intel introduced Cu for interconnects – special 
precautions so Cu does not enter the Si. 

Recombination rate is in general slower 
than direct via photon.

Why?

1 electron and one hole need to localize 
AND find a trap. … less likely event.
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Impact Ionization – A Generation Mechanism

10

Si, Ge, InP

Lasers, Transistors, etc.

4

3

1

2

Inverse of the Auger 
recombination

Requires very 
high electric 
field
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Auger Recombination

11

Phonon (heat)

InP, GaAs, …

Lasers, etc.

12

3

1 2

4

3

4

Requires very 
high electron 
density
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Photon Energy and Wavevector
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2

1 21  in eV 

π=
photonE. / 4

2 2

5 10  m

π π
µ−<< =

×a

photon

photonk

E

=

=

+

+ℏ ℏ ℏV

V phot

photon

n C

C

o

k k

E E

k

E

Photon has large energy for excitation through bandgap,
but its wavevector is negligible compared to size of BZ

2π
a

2

 in m

π
λ µ

=photonk
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Phonon Energy and Wavevector

13

2 2

phon
phon

sou
o

n
n

d on

k
E/

= =
ℏ

π π
λ υ

=

=

+

+ℏ ℏ ℏV

V phon

phonon

n C

C

o

k k

E E

k

E

4

2 2

5 10  m

π π
µ−≈ =

×a

Phonon has large wavevector comparable to BZ,
but negligible energy compared to bandgap

vsound ~ 103 m/s << vlight=c ~ 106m/s 

λsound >> λlight
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Localized Traps and Wavevector

14

4

2 2

5 10trap ~k
a m

π π
µ−≈

×

Trap provides the wavevector
necessary for indirect transition

a
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Outline
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1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146
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Equilibrium, Steady state, Transient

16

Device

Steady state

Transient

Equilibrium

time

(n
,p

)

time

(n
,p

)Environment
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Detailed Balance: Simple Explanation

17

Equilibrium is a very active place 

In a typical semiconductor device there are 1e17 to 1e20 electrons in the 
conduction band.  All electrons carry charge and are occupying their 
respective DOS. 

Fermi-Dirac distribution demands exploration of allowed states

In equilibrium each process is balanced by its counter process 
=> Detailed Balance
=> Externally it looks as if nothing is happening.

This is different from steady state!!!
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Detailed Balance: Simple Explanation

18

Mexico

China

India

USA

3 3

2
2

4
4

The rates of exchange of people (particles) 
between every pair of countries (energy levels) is 
balanced. Hence the name “Detailed Balance”.

Detailed balance is the property of equilibrium

The population of each of the countries (energy 
levels) remains constant under detailed balance.

The concept of detailed balance is powerful, 
because it can be used for many things (e.g. 
reduce the number of unknown rate constants by 
half, and derive particle distributions like Fermi-
Dirac, Bose-Einstein distributions, etc.)

•9 in &  9 out 
•All numbers are people/unit time.

Equilibrium is a very active place 

Fermi-Dirac distribution demands 
exploration of allowed states
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Steady-state Response

19

Mexico

China

India

USA

4 6

3
2

4
5

Disturbing the detailed balance requires 
non-equilibrium conditions (needs energy). 
Unidirectional forces (red lines) can create such 
Non-equilibrium conditions.   

The rates of exchange of people (particles) 
between every pair of countries (energy 
levels) is NOT balanced, but the sum of all arrival 
and departures to all countries is zero. 

The flux at steady state is balanced overall, but 
the flux is NOT the same as in detailed balance
(e.g. 12 in and 12 out in SS vs. 9 in and 9 out for 
Detailed Balance, for example).

The population of a country (energy level) remains 
constant with time after steady state is reached. 

One can use the requirement that net flux at steady 
state be zero  to calculate steady state population 
of a country (Eq. 5.21)

12 in and 12 out from USA 

1

1
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Detailed Balance, Transient, Steady-state
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Mexico

China

India

USA

3 3

2
2

4
4

9 in 9 out 
Population conserved

Equilibrium =
Detailed balance

Mexico

China

India

USA

3 5

3

4
5

1

1

2

Forced unidirectional connections
(red lines) disturbs equilibrium 
(e.g. 10 in/12 out at time t1
local populations not conserved, 
but global population is ….

Transient populations

Mexico

China

India

USA

4 6

3
2

4
5

1

1

12 in 12 out 
Population stabilized

Steady State  
But NOT Equilibrium
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Outline
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1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Motivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146
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Indirect Recombination (Trap-assisted)

22

Phonon

Ge, Si, ….

Transistors, Solar cells, etc.
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Physical view of Carrier Capture/Recombination
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(2) After electron capture(3) After hole capture

TT TN pn= +

(1) Before a capture

electron-
filled
traps

empty
traps

total
traps

electron
hole

Crystal / atoms
with vibrations 

Traps have destroyed
one electron-hole pair

No change in nT and pT
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Carrier Capture Coefficients

24

21 3

2 2
*

thm kTυ =

υtht

σ υ≡ − ≡ n tT n hnc cnp

υ σ×× × = − ×  × 

T nthAdn
n

dt A t

t p

710th

cm

s
υ ≈

Tp RelAreaVolumedn
n

dt TotalArea t

× = − ×  × 

×
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Capture Cross-section

25

2
0n rσ π=

e1

e2

e3

h1

h1

16 -22 10 cm−×

156 10−×185 10−×

147 10−×

Zn capture model …

Cascade model for capture
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Conclusions

26

1) There are wide variety of generation-recombination 

events that allow restoration of equilibrium once the 

stimulus is removed.

2) Direct recombination is photon-assisted, indirect 

recombination phonon assisted. 

3) Concepts of equilibrium, steady state, and transient 

dynamics should be clearly understood.
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Outline
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1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion

Ref. ADF, Chapter 5, pp. 141-154
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Sub-processes of SRH Recombination 

28

(1)

(3)

(2)

(4)

(1)+(3):  one electron reduced from Conduction-band & 
one-hole reduced from valence-band

(2)+(4):  one hole created in valence band and 
one electron created in conduction band
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SRH Recombination 

29

Physical picture

(1)

(3)

(2)

(4)

(1)+(3):  one electron reduced from C-band & 
one-hole reduced from valence-band

Equivalent picture

(1)

(3)

(2)

(4)

(2)+(4):  one hole created in valence band & 
one electron created in conduction band
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Changes in electron and hole Densities

30

1 2,

n

t

∂ =
∂

− n Tc n p ( )1n T ce n f+ −

p Tc p n− υ+ p Te p f
3 4,

p

t

∂ =
∂

(1) (2)

(3) (4)
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Detailed Balance in Equilibrium
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1 2,

n

t

∂ =
∂ 0 0− n Tc n p 0+ Tne n

(1) (2)

(3) (4)

0 0 00 = − +T n Tnn p e nc

0 0
1

0

= ≡T

T
n nn

n p
n

n
ce c

( )0 0 0 10 = − −T Tn n p n nc

p Tc p n−
p Te p+

3 4,

p

t

∂ =
∂

0 0 00 p T T pc p n p e= − +
0 0

1
0

p T
p p

T

c p n
e c p

p
≡ =

( )0 0 0 10 = − −T Tp p n p pc

( )1 1cf− ≈ Assume 
non-degenerate
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Expressions for (n1) and (p1)

32

0
1

0 0= T

T

n p

n
n

(1) (2)

(3) (4)

0
1

0 0= T

T

p n

p
p

0 0 0 0

0 0
1 1 = ×T T

T T

n p n
n

p

n p
p 2

0 0= = in p n
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Expressions for (n1) and (p1)

33
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Trap is like a donor!

( )00
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1
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f
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+
− 00
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1

1 x
f

g e p
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Dynamics of Trap Population 

34

Tn

t

∂ =
∂ 3 4,

p

t

∂+
∂

(1)

(3)

(2)

(4)

n Tc n p= n Te n− p Tc p n− p Te p+

1 2,

n

t

∂−
∂

( )1n T Tc np n n= − ( )1p T Tc p n p p− −
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Steady-state Trap Population 

35

0Tn

t

∂ =
∂ ( )1n T Tc np n n= − ( )1p T Tc p n p p− −

( ) ( ) ( )1
1

1 1

n T p T
T n T T

n p

c N n c N p
n c np n n

c n n c p p

+
= = −

+ + +

(1)

(3)

(2)

(4)
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Net Rate of Recombination-Generation 
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( ) ( )

2

1 1

1 1
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(3)
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(4)
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R c p n p p
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τ n τ p
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Outline
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1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion
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Case 1: Low-level Injection in p-type 
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( ) ( )
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n n p pτ τ
−=

+ + +

( )
( ) ( )

2
0 0

0 1 0 1τ τ
+ +

=
+ ∆+ +

∆ ∆
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p
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n n

0 ∆+n n

0 ∆+p n

Lots of holes, few electrons => independent of holes
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Case 2: High-level Injection 
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2

τ τ τ τ
∆ ∆

∆
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+ +n p n p
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n

0 ∆+n n

0 ∆+p n

e.g. organic solar cells

Lots of holes, lots of electrons => dependent on both relaxations
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High/Low Level Injection … 
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0 0n p n∆ ≫ ≫( )high

n p

low
p

n
R

n
R

τ τ

τ

∆=
+

∆= 0 0p n n∆≫ ≫

which one is larger and why? 
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Case 3: Generation in Depletion Region 

( ) ( )
2

1 1

i

p n

np n
R

n n p pτ τ
−=

+ + +

( ) ( )
2

1 1

i

p n

n

n pτ τ
−=
+

1 1n n p p≪ ≪

Depletion region – in PN diode:  n=p=0

NEGATIVE Recombination =>  Generation

n=p=0    << ni =>   generation to create n,p
Equilibrium restoration!
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Outline
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1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion
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Band-to-band Recombination
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( )( ) 2
0 0 0∆ = + + −∆ ×  ∆≈iR B n p n Bppn n

( )2 2
i iR B np n Bn= − ≈ −

( )2
iR B np n= −

( )0 0n n p p∆ = ∆≪ ≪

0n, p ∼

Direct generation in depletion region

Direct recombination at low-level injection

B is a material property
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Auger Recombination
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2
2

1τ
τ

≈ =∆ =∆
p A auger

auger p A

R c N
c N

n
n

( ) ( )2 2

29 6

2 2

10  cm /sec−

= + −−n p i

n

i

p

R c c np n p

c ,c ~

n p n n

( ) ( )0 0 An n p p N∆ = ∆ =≪ ≪

Auger recombination at low-level injection

2 electron & 1 hole
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Effective Carrier Lifetime
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SRH direct AugerR R R R= + +

Light

( ) ( )0 τ
−

∆ = ∆ = eff

t

n t n t e
∆n 1 1 1

SRH direct Auger

n
τ τ τ
 

= ∆ + +  
 

( )2
n T D n,auger Dn c N BN c N= ∆ + +

( ) 12τ
−

= + +eff n T D n,auger Dc N BN c N
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Effective Carrier Lifetime with all Processes
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ND

( ) 12τ
−

= + +eff n T D n,auger Dc N BN c N

2τ −≈eff n,auger Dc N

Elec. Dev. Lett., 12(8), 1991.
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Conclusion
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SRH is an important recombination mechanism in 
important semiconductors like Si and Ge. 

SRH formula is complicated, therefore 
simplification for special cases are often desired. 

Direct band-to-band and Auger recombination can 
also be described with simple phenomenological 
formula.

These expressions for recombination events have 
been widely validated by measurements. 


