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Transmission Line Msdels for Lossy Waveguide 
Interconnections in VLSI 

Abstract-At  high frequencies  the  waveguide  nature of interconm:c:- 
tions  in VLSI circuits  becomes  important.  Moreover, losses in int’rqv- 
connection are  a  major  feature,  not  a  perturbation.  Here  it  is sholvm 
that even  for  such  lossy  waveguide  structures  an  exactly equivaltrrit 
RLGC transmission  line  can  be  found.  Equations  are  given  determini ag 
these  transmission  line  parameters  in  terms of the  waveguide pro1:a- 
gation  constant  and  complex  average  power,  and  also  in  terms of i n -  
tegrals  over  the  electric  and  magnetic field varibles.  The  resulting I , ,  
C, and G parameters  differ  from  the  usual  static  values  when los!ir~s 
are  important,  and R is not  restricted  to  the usual formula  based up 11n 
a  perturbation  treatment of the  skin  effect.  Consequently, semiccrrl- 
ductor  substrates  can  be  treated. 

“Current”  and  “voltage”  are  found  to  have  an  abstract  meani 18 
in  the  equivalent  transmission  line. For a  waveguide  in  a  medium  where 
conductivity  and  permittivity  vary  with  position  (such  as  a many-lrry- 
ered  medium)  an  explicit  formula  relating  “current”  and “voltagr:!” 
to  weighted  averages of transverse  waveguide fields  is  given. A brief 
discussion of the  reformulation of Thevenin  equivalent  circuit parrxllol- 
eters  in  terms of reflection coefficients avoids  terms  such  as  “open cit- 
cuit  voltage”  that  are difficult to  interpret  for  the  equivalent  transm $ 1 -  

sion  line. 
The  framework  presented  allows  construction of equivalent  circu t s  

for lossy waveguide  interconnections,  drivers,  and  terminations  that 
provide  correct  spatial  dependence  in  the  direction of propagation alrd 
correct  power  relations  despite  the  abstract  nature of “current” ra,11111 
“voltage”  in  these  lines. 

I .  INTRODUCTION 

T HE  CRUDEST  MODEL of an interconnection line !i 
a  simple  capacitor. In this model,  line behavior is dic- 

tated by the line  capacitance and the impedances of t l  c 
driver and the  load.  However,  as frequency is  increased, 
signal propagation is  better described as  a diffusion down 
the line, and a distributed RC transmission line model .>i 

satisfactory [ 11, [2]. At still higher frequencies the lirc 
inductance becomes important, and the interconnect !$ 

modeled as an RLC line [3],  [4]. In  general,  as frequency 
is increased the equivalent circuit that models the inte:.. 
connect becomes more and more complex, and a methcld 
for finding correct transmission line parameters becomr: !I 
desirable. 

The most general picture of the interconnection line $4 
as  a  waveguide,  for  example, as a microstrip or triplade: 
line.  However, waveguide analysis is based upon detai1e:c:l 
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agate, requiring the use of several different transmission lines to descr: 3e 
a single waveguide. 

solution of Maxwell’s equations for  the electric and mag- 
netic fields. For use with device models in circuit simu- 
lators and for continuity with ordinary RC and RLC inter- 
connect models one prefers a transmission line  model, 
which always can be represented as  a cascade of T- or II- 
sections of lumped elements. 

The use of transmission lines to model waveguides has 
a long history. Among the excellent early treatments are 
those of Montgomery [SI and Collin  [6,  ch. 41. However, 
these discussions are directed toward low-loss wave- 
guides, where losses can be treated as  a perturbation. For 
modeling of interconnections losses are  important, as re- 
flected in the R of the usual RC transmission line  models. 
The importance of losses  is even greater when lines over 
semiconductor substrates (rather than insulators) are con- 
sidered.  Thus, to model interconnections at high frequen- 
cies what is needed is a prescription for finding the correct 
transmission line parameters to model a lossy waveguide. 

The most general transmission line is characterized by 
a  series impedance R + j o L  and  a shunt admittance G + 
jwC where R is  the  resistance, L the  inductance, G the 
conductance, and C the capacitance  (all per unit length), 
and w is  the frequency in radians per second. In this pa- 
per, R ,   L ,  G ,  and C are found for  a transmission line that 
models a lossy waveguide characterized by a complex 
propagation constant y and a complex average power flow 
P .  

Following the derivation of R ,   L ,  G ,  and C is a discus- 
sion of equivalent circuits for waveguide terminations and 
drivers.  This discussion is intended to show how these 
equivalent circuits could be set up to mimic the actual 
physical waveguide termination and driver. 

Appendix I of  the paper considers a lossy waveguide 
with position-dependent complex permittivity and perme- 
ability. In Appendix I, the R ,   L ,  G ,  and C parameters of 
the equivalent transmission line  are derived directly from 
Maxwell’s equations and the requirement of identical 
complex power flows in the  two  structures. Explicit for- 
mulas for R ,   L ,  G, and C in terms of integrals of the field 
variables are presented that generalize known results for 
lossless or near lossless homogeneous media. 

11. THE  ANALOGY  BETWEEN  WAVEGUIDES AND 
TRANSMISSION  LINES 

The basis for analogy between waveguides and trans- 
mission lines is that both structures propagate waves: 
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waves of electric  and magnetic field for  the  waveguide; 
waves of voltage and  current  for  the transmission line [SI, 
[6,  ch. 41. In fact, if the  direction of propagation is chosen 
as  the  z-direction,  then  the z-dependence of the waves of 
transverse  electric field in  the waveguide and the z-depen- 
dence of the  voltage in the  equivalent transmission line 
are  the  same.  Similarly,  the z-dependence of waves of 
transverse magnetic field and  the z-dependence of current 
are  the  same. Such results are well known for  lossless 
waveguides [5], [6 ,  ch. 41 and  similar results are shown 
in (A2) and (A7) of Appendix I  for  an  example of a lossy 
waveguide. 

For  simple  cases,  such  as  a  lossless coaxial line,  the 
electric field in  the waveguide can be related directly to 
the voltage and the  magnetic field to the  current by line 
integrals of the fields over  appropriate  contours.  Thus,  the 
equivalent transmission  line  can  be physically identified 
with voltages and currents  that actually exist within cer- 
tain regions of the waveguide structure. In fact, such an 
analysis leads  to  explicit  formulas  for L and C in terms of 
the dimensions and  material  parameters of the  waveguide. 
These values agree with the  static L and C for  the wave- 
guide geometry, providing a  clear  connection  to  the low- 
frequency equivalent circuit  for  the  interconnection. By a 
perturbation method, small conductor or dielectric  losses 
can be included to find R and G as well [5],  [6]. 

The connection between waveguides and transmission 
lines is not so simple in the  general  case, particularly 
where losses  are  important. The presence of a longitudi- 
nal electric field (needed because of the IR drop along the 
guide,  for  example) means that  the  transverse field com- 
ponents do not satisfy the  equations of a  static analysis 
[7].  Hence, L and C cannot be inferred from simple  line 
integrals of the  fields, and may differ from the  static val- 
ues.  The  “voltage”  and  “current” of the equivalent 
transmission line  are not related to easily identifiable re- 
gions in the  waveguide.  Rather,  the transmission line be- 
comes something of a convenient mathematical fiction that 
mimics the waveguide behavior. 

To construct the  equivalent transmission line in the 
lossy case,  the  approach based upon intuitively chosen 
contour integrals is abandoned.  Rather,  the general ap- 
proach adopted here is to assume  that  two waveguide pa- 
rameters are known for  all  frequencies of interest,  either 
from measurements or by calculation of the solution to 
Maxwell’s equations.  These  parameters  are 1) the prop- 
agation constant y 

y = c r + j p  (1) 

where Q! is the  attenuation  constant and is the phase 
constant, and 2) the complex average power traveling 
down the waveguide P. In terms of Poynting’s  vector 

P = 4 dx dy (E  x H*), 

where the  superscript “*” denotes complex conjugate 
quantities.  Propagation  occurs  in  the  z-direction, and the 

s s  (2) 

fields are expressed in complex notation.  For  example, 
for  a single traveling wave the electric field is the real part 
of 

~ ( x ,  y ,  z, t )  = ~ ( x ,  y )  e--rz+jwt. (3) 

Given (1) and (2), the corresponding transmission line 
parameters are determined by requiring: 1) the  same prop- 
agation constant,  that is 

y2 = ( R  + jwL)(G + jwC) (4) 

and 2) the  same complex average power P(z) ,  which in 
terms of voltage V(z) and current Z(z) is 

P(z) = ; V(z)  Z(z)* = 1 (z(z)(2z, = .f (V(z)12/2:. ( 5 )  

The  last two forms of P(z) in (5) assume  a single prop- 
agating wave  (no reflections) and  a single mode of prop- 
agation, allowing the use of the relation 

2, = V/Z (6) 

where 2, is the characteristic impedance. From (5),  for 
this  case of a  single propagating wave, it follows that P 
and 2 0  must have  the  same  phase,  that is 

Here the real and imaginary parts of P and 2, are intro- 
duced by 

P = Pr + jP,  (8) 

20 = 2 0 ,  + jz, (9) 

and (for lack of any established terminology) Q will be 
called the  power  quotient.  The power quotient Q can be 
defined using the power at any positioln in  the  line. Be- 
cause the real and imaginary parts of l? attenuate at the 
same rate [exp ( -2az)], the resulting Q is independent of 
position z. 

From the transmission line equations and (4) for y2, Zo 
is given by 

2; = ( R  + jwL)/(G f jwC).  (10) 

Using (4) and (10) 

Using (1 1) in (7) 

Using (4) and (10) again 

20 = Q! + j P  
G + jwC‘ 

Using (12) in (7) 
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From (12) and (14) 

GR = 
a2 - P2Q2 

1 + Q 2  
I e 7) 

W2LC = - a2Q2 - P2 
1 + Q2 

I 118) 

where the right sides of (15)-(18) are known from ihe 
waveguide y and Q, and the  left sides are  the requ red 
equivalent transmission line  parameters. Note that R ,  L ,  
G, and C are independent of position in the wavegu de, 
even when Q is defined in terms of the power at the g cn- 
eral position “z” because a ,  6, and Q are independerlt of 
position. Equations (15) and (16) are  rearrangement!; of 
(12) and (14), while (17) follows from (4) using (15) and 
(16). Equation (18) is not independent, following f k m  
multiplication of (15), (16), and  (17). 

In  general, y and Q are different for  each mode of PI clp- 
agation in the  waveguide, and are dependent upon the 
choice of an eigenvalue derived from the boundary c:on- 
ditions upon the fields. Hence,  a different set of R,  L ,  IG, 
C ,  parameters results for each mode of propagation. 

The solution of (15)-(18) determines only three of the 
four  parameters, because only three of the four  equati’lns 
are  independent. For the  usual  case of a waveguide litnat 
propagates only one mode at low frequencies,  a con.ble- 
nient condition upon the parameters for this mode is  hat 
the  quasi-static impedance be obtained as the frequewy 
is reduced. On the  other  hand,  for  a propagation mI~xle 
that cuts off as frequency is reduced,  the extra paramcder 
is arbitrary and can be chosen to simplify the equivalent 
transmission line or the equivalent circuit of any terlxd- 
nation or driver [8]. 

111. DISCUSSION 

Equations (15)-(18) show that an equivalent transn h- 
sion line can be found for any lossy waveguide. In 8x1- 
eral, this line is not unique.  However, uniqueness dl’es 
result if agreement with a  particular low-frequency eqa: iv- 
alent circuit is  required,  as in the  case of microstrip in- 
terconnections. 

Of course, (15)-(18) do not guarantee  the resulting .,R, 
L ,  G, and C will have  a  simple frequency dependence lor 
a ready interpretation in terms of an equivalent circuit. An 
alternative to using (15)-(18) to derive R ,  L,  G ,  and (:I is 
to use these equations only to check R,  L ,  G,  and C O I I I I : ~  

the equivalent circuit has been derived by a different p’rlo- 
cedure. 

Finally, let it be noted that the requirements (15)-( .;3) 
based upon a single traveling wave  are sufficient for he 
general case where reflections occur,  as is shown in k’,bp- 
pendix I. 

IV.  THE  THREE-PARAMETER  TRANSMISSION LINE 
To check whether a given equivalent circuit satisfies the 

requirements (15)-( 18) that guarantee correct power flow, 
in general it is necessary to measure or to calculate the 
power quotient (7) and then check (15)-(18). However, 
it may be useful to note that for  a three-parameter line this 
quotient takes a very simple  form. 

Using (12) for  the special cases R = 0 and L = 0 

Q = -  a 
P ’  

- P - -- , L = O .  (20) 

R = O  (19) 

a 

Also, from (14) 

a e = - -  G = O  
P ’  (2 1) 

P - c = 0. (22) a’ 
- _  

That is,  for  the  case of a  three-parameter  line,  the power 
quotient is  dictated by the propagation constant y. Con- 
versely, if the power quotient of a waveguide is well ap- 
proximated as the ratio f (a lp) or its reciprocal, then this 
waveguide is well aproximated by a  three-parameter  line. 

V.  EQUIVALENT  CIRCUITS FOR DRIVERS AND LOADS 

Equations (15)-( 18) determine R ,  L ,  G ,  and C in terms 
of the waveguide parameters a, P ,  and Q. There is no 
requirement made upon the meaning of the resulting cur- 
rent and voltage variables I and V ,  and no examination 
has been made of their relation to the fields in the corre- 
sponding waveguide. In (A25) and (A26) of Appendix I 
it is shown that the voltage and current of the equivalent 
transmission line  are related to weighted averages of the 
transverse field components of E and H across the wave- 
guide cross section. For lossless, homogeneous media 
these results reduce to those of Collin  [6,  ch. 41. Thus,  a 
simple interpretation of current and voltage is not avail- 
able except in special  cases. All that is known is that I 
and V satisfy the transmission line equations with R ,  L ,  
G,  and C as determined from (1 5)-( 18). 

The usual low-frequency equivalent circuit for  a  driver 
is either  the Thevenin voltage-source equivalent circuit, 
or  the Norton current-source equivalent circuit. How are 
these circuits to be interpreted in a waveguide context 
where the  terms  “voltage” and “current”  are difficult to 
interpret? Revised statements of Thevenin’s and Norton’s 
theorems that avoid direct use of terms like  “open circuit 
voltage” and “short circuit current” would be easier to 
use. Such restatements of these theorems can be based 
upon the reflection coefficients of the waveguide. As 
pointed out earlier [ 5 ] ,  [6,  ch. 41 for  lossless waveguides, 
and in (A2) and (A8) of Appendix I  for an example of a 
lossy waveguide,  the z-dependence of transverse electric 
field in the waveguide and the z-dependence of voltage in 



BREWS: LOSSY WAVEGUIDE INTERCONNECTIONS  IN VLSI 1359 

the equivalent transmission  line both are governed by the 
function 

V(z) = A e-?' + B e?'. (23) 

Similarly,  the z-dependence of transverse magnetic field 
and current both are governed by 

1 Z(z) = - ( A  e-?' - B e?'). (24) 

In (23) and (24), A and B are  the forward and reflected 
wave  amplitudes  that  are  determined by the  driver and the 
load. 

The reflection coefficient looking toward the load I?, is 
defined as 

20 

B rL E - 
A '  

This quantity is characteristic of the waveguide termina- 
tion. Thus, if the  equivalent  circuit  for  the waveguide ter- 
mination consists of an  impedance Z,, a requirement upon 
Z, is that it lead to the  same I?, in the transmission line  as 
exists in the waveguide. If the transmission line has length 
"Z", then (23) and (24) provide at z = Z 

Because both I', and y are fixed  by the  wave  behavior  in 
the  waveguide, (26) determines  the ratio Z,/Zo for the 
equivalent circuit corresponding to  the waveguide termi- 
nation. But Zo is determined by the conditions (15)-( 18) 
and the requirement of agreement with a low-frequency 
equivalent circuit.  Hence, 2, itself is determined by rL 
through (26). 

For  the  driver-equivalent  circuit,  suppose  a Thevenin 
voltage-equivalent circuit  is  wanted.  Then  the input volt- 
age Vin and an impedance Zin must be  chosen.  Suppose we 
require that  the  equivalent  circuit provide the correct  com- 
plex input power Pin and  the  correct reflection coefficient 
from the  driver, rD. The input power is given by 

1 
Pi, = ; I*(0)Vin 

L 

- - _  ( - )*Vi. 
2 Zi, + zi 

where the  line input impedance  is (from (23) and (24)) 

Also,  let 

1 + r D  
Zi, = z, ~ 

1 - r D  

which determines Zin when rD is  given. Then (27) be- 
comes, using (28)-(29) 

which determines 1 Vinl from the power input to the wave- 
guide and the  two reflection coefficients rD, F L .  

In (27) or (30) only I v i n ]  enters, and the phase of Vi, 
does not matter. From (29), rD and Zi,, are interchange- 
able in the  sense  that  one  determines the other.  Hence, only 
three equivalent circuit parameters matter: I Vi,( and the 
magnitude and phase of Zin. On the othler hand, we have 
proposed to use four input parameters:  the real and imag- 
inary part of rD and Pin. It would appeam that (30) cannot 
be satisfied because the phase of Pin is fixed  by rD, F L ,  
and cannot be  taken  as an independent input parameter. 
However, in general,  one does not expect to  be  able to 
specify the phase of the input power. This phase repre- 
sents the ratio of stored to dissipated power in the source 
and is determined by its load and its internal construction, 
not by external considerations.  Hence, it is inevitable that 
only the magnitude of Pin can be externally specified (or, 
perhaps, only the real part of Pin). Therefore, (30) can be 
interpreted as allowing 1 Vinl to be adjusted to fit the spec- 
ified magnitude (or real part) of Pin, while the phase (or 
imaginary part) as determined from (3011 is dictated by the 
internal structure of the  source,  as embodied in rD, and 
of the load, as given by F,. 

It remains to decide how rD, FL'are  to  be established. 
For  example,  these parameters can be found in terms of 
standing wave measurements in the waveguide,  or by cal- 
culation in some instances [5], [6],  [8],  [9]. 

VI. REMARKS 
As discussed in [5], [6, ch. 41, in order to model a 

waveguide source of excitation the physical region chosen 
to enclose  this  driver must include a long enough section 
ofwaveguide to insure  that  all  the highe.r order evanescent 
waveguide modes excited by the  driver have attenuated to 
a negligible level.  The  same is true  for the region enclos- 
ing a waveguide termination. In this wa:y the transmission 
line model need describe only the energy that propagates 
down the waveguide in  the lowest order  mode.  That is, 
because the transmission line I ,  I/ can characterize only 
one mode's E ,  H fields, we must exclude from the line 
any regions that support higher order  modes. 

The evanescent modes contained in  the terminal regions 
are  the waveguide equivalent of fringing fields in the static 
case, and give rise to reactive contributions to the equiv- 
alent circuits [8, p. 138 ff.]. Needless to say,  these eva- 
nescent modes will differ for different waveguides, lead- 
ing to a  dependence of the equivalent c:ircuits for drivers 
and terminations upon the waveguide used.  This depen- 
dence is in addition to  the  dependence via 2, already vis- 
ible in (26),  (29), and (30). 

VII. SUMMARY 
A framework has been given for developing a trans- 

mission line  to model interconnect at high frequencies 
where its waveguide nature becomes evident.  This frame- 
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work differs from the conventional analogy betvveen 
transmission lines and waveguides because it extends’ to 
cases where losses are  too  large  to  be treated as  a pe:ltur- 
bation. Formulas for  the required R, L ,  G, and C line:  pa- 
rameters are provided in (15)-(18). Equivalent form Jlas 
in  terms of the field variables E and H are given in lip- 
pendix I in (A35)-(A38). These R ,  L ,  G, and C para.clne- 
ters differ from the static values when the longitudinal :lileld 
components are  important, or when losses  are  severe 

A complication in the use of the equivalent transmis- 
sion line is that the low-frequency concepts of voltage and 
current lose  their  intuitive appeal at higher frequen :ies 
where “voltage”  and  “current”  are related in  an absi.r,act 
manner to the  transverse  electric and magnetic field:; of 
the waveguide.  The  precise relation is given in (A25) md 
(A26) of Appendix I. Consequently the Thevenin volt;..ge- 
equivalent circuit has been recast in  a  manner relating tlhis 
circuit to reflection coefficients. A brief discussion has 
been presented to show that  there  is no difficulty in SiLLCh 
a reformulation. 

For  concreteness, a detailed  example of the analogy Ire- 
tween a lossy waveguide structure in an  inhomogent:tus 
medium and its equivalent transmission line has been :l)ro- 
vided in Appendix I. Besides the results already r r m -  
tioned, this example  illustrates directly from the field so- 
lutions how the restrictions upon the allowed Zo of the 
equivalent transmission line  arise, and provides a det:lrer 
understanding of the results of the  text. 

By using the  analysis of this paper one can deternhe 
whether any proposed R, L,  G, and C line is adequatl: to 
model a given interconnection. In addition,  one car1 be 
certain that the power flow computed from an  equiva:cnt 
transmission line with RLGC parameters that satisfy (1 5) -  
(18) is meaningful despite  the  abstract  nature of ‘ ‘tmr- 
rent” and “voltage” variables in the  line at high frequen- 
cies. 

APPENDIX  I 
TRANSMISSION  LINE  PARAMETERS FROM  MAXWELL,S 

EQUATIONS 
In this appendix the relations for R ,  L ,  G, and C 6 . 1 . f  a 

transmission line equivalent to a lossy waveguide are tle- 
rived from Maxwell’s  ‘equations. For a  homogenecus, 
lossless waveguide similar results are known [5], [Q. p. 
801, [7],  [8], but for  the  inhomogeneous, lossy case: re- 
sults are not available.  To  analyze this case, the reslrlts 
of Kurokawa [ 101 are  useful. 

The material parameters  are considered to be comr!lex 
and dependent on transverse  position,  That is, choos,ilng 
the z-direction as  the  direction of propagation, the diellec- 
tric permittivity, E and magnetic permeability p are  gi’mn 

E = K ( X ,  Y)Eo + dx ,  Y)/(jw) (A I a) 
by 

CC = Pl(4 Y) + J’cL2(x, Y), (A 1 b) 
Here K is the dielectric  constant and (T is the  conductivity. 
In addition,  the imaginary part of the  dielectric constaint 
could be used to describe  dielectric  loss. 

A .  Basic Equations 

frequency w be given by 
Let the complex electric and magnetic fields at angular 

E(x, Y, Z )  = E&, Y) V(Z> + Y)  I(z) (-424 

~ ( x ,  Y ,  Z> = Hr(x, Y> I(Z) + V-’H~(X, Y> Qz). ( ~ 2 b )  
Here  the subscript “t” denotes  a  transverse vector (with 
x- and y-components) and “Z” denotes  a longitudinal 
component in  the  z-direction. 

Arbitrary constants can be placed in front of El and Hl. 
In (A2) these constants have been chosen as r]  and  (117) 
where q is the  intrinsic impedance of empty space 

r]  = (po/~O)”* 5: 376.7 Q. 
As a result of this  choice,  the dimensions of E,, El, H,, 
and Hl all  are  inverse  length. 

The equations of (A2) are not the most general form of 
a solution to Maxwell’s  equations. One expects (A2) to 
hold whenever only one  mode  propagates.  Otherwise,  the 
right sides of (A2a) and (A2b) should  be replaced by sum- 
mations over  all  the  modes, and E,, H,, I/, and I would 
require a subscripted mode index because these functions 
usually would be different for each mode. 

Assuming.only one mode propagates,  the equations de- 
termining El and H, now can be  found. Substituting (A2) 
in Maxwell’s equations and separating the longitudinal 
and transverse  components,  one finds the following equa- 
tions by separation of variables as explained in Appendix 
11 (cf. [lo] for  the  case of a single traveling wave), 

- k X H, + j w E ,  - r]-lV X Hl = 0 (A3a) Y -  
ZO 

V X H, - jwyEl = 0 (A3b) 

yZ& X E, - jw /dZ,  - yV X El 0 (A4a) 

V x E, + j ~ p r ] - ~ H l  = 0 (A4b) 

V * (€Er) - - E& * El 0 (A5) Y 
ZO 

V * (pH,)  - Y Z ~ ~ T J - ~ L  * Hl = 0. (A6) 

with L a unit vector  in  the  z-direction.  Here  (A3a), (A3b) 
stem from the V X H equations of Maxwell,  (A4a), (A4b) 
from the V X E equation, and (A5), (A6) from the V * 

D, V - B equations.  In addition to (A3)-(A6), one finds 
by the  same’ separation of variables 

which are  the transmission line  equations. As yet, Zo and 
y are undefined constants. The general solutions to (A7) 
are known to be given by 
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V(z) = A e-" + B eyz ('484 

Z(z) = - [A e-"'' - B eyz] 

as can be verified by direct  substitution.  Equation (A8) 
shows y to be the propagation constant  for  the  mode. 
Here, A and B are  the  complex  amplitudes of the forward 
and reverse  traveling waves whose values  are determined 
by the  load and driver of the  line.  Equation (A8) can sat- 
isfy the  end  conditions  on  the waveguide at  the load and 
driver only to the  extent  that  a  single  mode is reflected or 
excited.  Realistic boundary conditions at the  ends of the 
waveguide ordinarily can be satisfied only by a  superpo- 
sition of many modes,  most of which die  out rapidly with 
distance.  For  this reason the physical region containing 
the  interconnection  line must exclude at the  source  and 
termination a  length of waveguide sufficient to allow at- 
tenuation to negligible  levels of all modes other than the 
propagating mode  [5],  [6, ch. 41. 

An eigenvalue  equation  for y now can be found by 
eliminating the Z-colnponents  of the fields from (A3)- 
(A6). Multiply (A4b) by p-' and  take  the curl. Then mul- 
tiply (A5) by and  take  the  gradient.  Subtract this re- 
sult  from  the previous result to find 

1 
2 0  

(A8b) 

f X Ht - jweEt - - qV(k - El). 1 k 
(A9) 

Using (A4a) we  eliminate Hz from  (A9). By taking the 
cross product of (A4a) with f we find 

jwp(f x Hz) = -yZ& - qv(f El). (A10) 
Putting (A10) in (A9) 

pV X [! V X Et] - I. [t V - (cEt)] 

+ (y' + W'E~)  Et] = 0. (A1 1) 

A  similar relation can be found  for Ht with p and E inter- 
changed. Solutions to (A1 1) satisfying the boundary con- 
ditions can be  found  only when y' is  one of the  eigenval- 
ues of (A1 1).  These  eigenvalues may be  discrete, 
continuous or a  combination of both depending upon the 
functions E and p .  

In (A1 1) E and p are arbitrary complex functions of 
transverse  position.  In  particular,  (A1 1) applies  to  a lossy 
layered medium.  For  example,  for  the  case of infinitely 
wide layers in the  x-direction,  all  x-derivatives  vanish. 
For  a TM mode E has only y- and z-components and H 
has only an  x-component.  Then 

and (A1 1) becomes 

which implies continuity at the interfaces of a many-lay- 
ered medium with piecewise constant ci and p of €Ety and 
dEty/dy [ l l ] .  The first of these condi.tions is the usual 
requirement of continuity of normal displacement.  The 
second condition can be understood from  (A5), which be- 
comes 

That is, the continuity of dEty/dy insures continuity of 
the tangential component of electric :field El as also is 
usual. 

B. Power 
Having found the  basic equations determining the 

transverse fields, now the power at po;sition "z" will be 
found using Poynting's  vector.  The average power is 

P(z) = 4 dx dy (Eu% - E,H:) l*(z) V(z). (A14) 

For  the transmission line  to carry the same power as the 
waveguide,  we require 

s s  
P(z) = 4 Z*(z)  V(z).  (4415) 

Hence, Et must be normalized so 

s s  dx dy  (EaH; - E,Hz) = 1 .  (A161 

to make (A16) a condition upon Et alone, replace Ht using 
(A9) and (A5) 

(A 17) 
Now 

f X Ht = - tH, + JHtx (A1 8) 

where and j ^  are unit vectors in the  x- and y-directions. 
Hence, (A 16) becomes 

* 
- w z ~ E t ] ]  = 1. (A191 

If  we  now integrate by parts and  assume the fields vanish 
at the boundaries of the waveguide (or at infinity) (A19) 
becomes 
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The condition (A20) normalizes the  transverse field!, so 
that the transmission line power and the waveguide pclwer v(z) = - j o  e)* w j dy ~ ( y ,  z )  * E*(Y) ~ ( y )  
both are given by (A15). Suppose instead of elimins1:ilng 
Hf from (A16), Et is eliminated using the analog of (A . '7 ) ,  and (A26) also simplifies to become 
namely 

1 
L x E t = -  [v x (: v x Ht) - d p H t ] .  (PI:il) Z(z) = (J&)*W s dy  H(y, z )  ~8(y)  HP(y)  

JwYZo 

Then instead of (A20) one finds where again W is the waveguide width. s dx s dY  H:{J& [v x (; v x Ht) 
D. Formulas for R ,  L,   G,  and C 

Introduce R ,  L ,  G ,  and C using the definitions 

- w21.Ht]] = 1 (PI 22) G + j w C = -  
Y 

2 0  
(A271 

(A281 s dx s dy [b IV X HtI2 - w'p~H,'] =jwyZo. (A,;lJ3) From (A27) and (A28) one  obtains  the customary results 
y2 = ( R  + jwL)(G + jw C) (A29) 

In the special case of a  TM mode in a many-layered 
medium infinite in the  x-direction, (A12) holds and (A.2.O) 
becomes 2; = (R + jwL)/(G + j o  C ) .  ('430) 

or, integrating by parts again R + jwL = 72,. 

and 

(A. 24) 

where W is the width of the waveguide (that is, (A241 is 
a per unit width normalization). 

C. Interpretation of I(z) ,  V(z) 
Using the normalization condition in the form (A19 I in 

conjunction with (A2) it can be shown that V(z) is a 
weighted average of the  transverse electric field over the 
waveguide cross  section. Multiplying (A2a) by the c ~ n -  
plex factor  in (A19) and integrating one  obtains 

(A:!5) 

A similar result for Z(z) can be found using the compl181:x 
conjugate of (A22) in (A2b) 

n 

( M Q )  
Equations (A25) and (A26) show that V(z)  and Z(z) are 
weighted averages of the  transverse  electric and magnci .I ic 
fields across the cross  section of the waveguide. 

For  the special case of a  TM  mode in a many-laye vd 
medium infinite in  the  x-direction, (A25) is simplified he- 
cause the curl term vanishes in the  integrand. Thus (A:;!,5) 
becomes 

Up to this point Zo is not defined, but y2 is determined as 
an eigenvalue of (A1 1) .  

Using (A27) and the normalization condition (A19) in 
the form (A20) one finds 

G = du dy {alEtI2 - o ~ ~ ( H L ~ ~ / T ~ }  (A31) s s  
c = j d X  s dY {KEolEt I2  - clllHLI2/T2}. (A321 

Similarly, using the normalization condition (A19) in the 
form (A23) in conjunction with (A28) one finds 

R = dr dy { o T ~ ~ E L ~ ~  - wp2IHtI2} (A33) 

L = s dX & {pllHt12 - K E o T ~ ~ E L ~ ~ } .  (A34) 

s s  
In these expressions the I-components are obtained by 
substitution of (A3b) and (A4b) for  the curl quantities. 

For comparison with results for homogeneous media, it 
is convenient to replace  the transverse 'and longitudinal 
field quantities with the field components from (A2). Then 
(A3 1)-(A34) become 

n 
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- KEOIEz(X, Y ,  z>12). (A381 
Here  the subscript ‘ ‘n” refers to the component of the  full 
fields normal to  the  direction of propagation, including z- 
dependence from (A2). 

Equations (A35),  (A36), and (A38) reduce to  the re- 
sults of Collin [6,  p. 801 when E and p are position inde- 
pendent and the z-components of the fields are  small. An 
exception is (A37), which is more  general than Collin’s 
result for R, because his result assumes R can be found 
entirely by a perturbation treatment of the  skin effect in 
metallic boundaries of the  waveguide. When losses  are 
important, R,   L ,  C, and G from (A35)-(A38) differ from 
the usual static or perturbation theory values. 

From (A35) and (A36) it appears that the usually as- 
sumed static symmetry of G and C under  the  exchange of 
u and K E ,  fails when there is a z-component of H. It also 
is noteworthy that  a z-component of H reduces C, analo- 
gous to an  inductance in the  shunt  admittance, and a z- 
component of E reduces L ,  analogous to  a  series  capaci- 
tance in the  series  impedance. 

A simple  check upon (A35)-(A38) is obtained using the 
vector identity 

V * (E  X H * )  = H* * V X E - E * V X H*.  (A39) 

Using Maxwell’s relations for  a  time  dependence  exp 
( j 4  

v X H* = (-J’UKEo + U)E* 

V X E = - j w p H  

one finds 

V * (E  X H*) = -jwpl(Hl2 + jwcEoIE1* - u (El2.  

(A40) 
Now integrate (A40) over  a  volume which consists of the 
slice of transmission line between “2” and “z + 6z”. 
Using the  divergence theorem to change  the  left  side  to  a 
surface integral and ignoring the contribution at infinity 
of the infinitesimal sides of width “6z” we’ find (A40) 
becomes (using (A2)) 

= dx s dy [-jwpIH12 + jwKeo(E12 - u IE12]6z. 

(A4 1) 
Finally, using (A7),  (A16),  (A27), and (A28), (A41) pro- 
vides the following identity: 

(R + jwL)lZ(z)I2 + (G - j w C )  1V(z)I2 

= s dx J dy {jwpIHI2 -juKEolE12 + u 1 ~ 1 2 1 .  

(A421 

Using (A35)-(A38) we find that R,  L,  G!, and C do satisfy 
the requirement (A42) with 

IEI2 = lEnI2 + lEzI2; (HI2 = lHn12! + (A43) 

E. Restrictions on 2, 
Equations (A35)-(A38) determine R,   L ,  G ,  and C from 

the condition (A19) that the  power flow in the transmis- 
sion line be the  same  as that in the  waveguide.  However, 
these equations do not fully determine I?, L ,  G, and C. As 
is more apparent from the expressions (A31)-(A34), the 
( x ,  y )  field factors  are normalized by (A31)-(A34)-that 
is, these equations determine how the fileld amplitudes are 
divided between the ( x ,  y )  factors and the z factors V(z) 
and Z(z). However,  the ratios G/(w C) and R/(wL) are  in- 
dependent of the normalization of El (x, y )  and Ht (x, y ) .  
For  example 

is independent of the normalization of Ht because any 
multiplicative factor  in Ht cancels from numerator and de- 
nominator. Similarly 

n . 
_ -  (A43 
w c  - 1 dx s dy [ U K E ~ I E , ~ ~  - 4 117 x Ell2] 

wl PI 

is independent of the normalization of E t .  

The normalization independent ratios (A44) and (A45) 
express a condition on the phase of 2,. Thus Z,  cannot be 
chosen arbitrarily, unlike the case for lossless media where 
frequently 2, is set arbitrarily to  a real value such as unity. 
Rather (A44) and (A45) determine the phase of 2, through 
(A27) and (A28), which can be rewritten as 

z, = (A461 

z, = @47) 

Y 
G + jwC 

R + j o L  
Y 

Because y = a + j p  is a known eigenvalue, its value is 
fixed. Consequently,  the phase of 2, is determined by G/ 
(w C) or, equivalently, by R/(wL).  Tht: magnitude of 2, 
is arbitrary, and can be chosen to match a convenient low- 
frequency representation of the waveguide in  the  case of 
a mode that propagates at low frequencies. 

The conditions (A44) and (A45) appear much more 
complicated than (15) and (16) of the  text, where these 
ratios are expressed in terms of y and. Q. Nonetheless, 
these conditions are equivalent because they stem from 
the  same  relation, namely the power relation (A15) in 
terms of Z(z) and V(z) .  To show this equivalence directly, 
one can derive  an expression for Q in terms of the trans- 
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verse field components.  For  a single traveling wave the 
transmission line equations (A7) provide (see (A8)) 

E&, Y ,  z )  = Et@, Y W l y Z  (A 4 8) 

HAx, y ,  z )  = Ht(x, y )  - Ae -yz (A 1’9) 

where A is the  amplitude of the “voltage”  wave. Form  ing 
the power flow according to Poynting’s vector and tak  ilng 
the quotient of imaginary to real parts one finds 

1 
2 0  

Im ko j dx s dY Et x HTJ 

Q =  . (AjO) 
~e h o  s S dY Er x H T ]  

Following the steps leading to (A20), (A50) becomes 

Q =  

(A.51) 

Using (A45) for G/(w C), (A51) becomes 

ci 
a - p- 

WC 

a -  + p 
Q =  - 

G 
WC 

or, rearranging terms 

W C  a Q - P  
G Q! + P Q  
_ -  _ -  

(A, 52) 

(A. 5 3) 

which agrees with (16) of the text. Equation (15) of  .he 
text follows.in  the  same way using (A45) with the s t q x  
leading to (A23).  The remaining equations (17) and (: .$) 
follow from these two and (A29) for y2. 

F. Summary 
It has been shown that a transmission line equivalent LO 

a  lossy, inhomogeneous waveguide can be found such t 1at 
the same power is found at each position “z” in both 
structures.  Also, the propagation of Z(z) and V(z) in the 7;- 

direction of the transmission line mimics exactly the c x- 
responding z-dependence of the transverse H and E fie d s  
in the  waveguide.  However, according to (A25) and 
(A26), Z(z) and V(z) are  to  be interpreted as weigh! c:d 
averages of the  transverse magnetic and electric  fie.& 
across the  transverse dimensions of the  waveguide, zltad 
need bear no relation to the meaning of “current” atrd 
“voltage” as might be inferred from line integrals of  th1i::;e 
fields about some intuitively selected contours. 

Also, explicit expressions (A35)-(A38) for the trails- 
mission line R ,  L ,  G, and C in terms of the E and H fie’ (1s 

have been found.  Equivalently,  these quantities can be 
determined in terms of the power quotient (A50) of a  sin- 
gle traveling wave, as derived differently in the text. 

The characteristic impedance of the equivalent trans- 
mission line has a magnitude that can be chosen for con- 
venience,  but its phase is fixed  by the requirement of cor- 
rect average complex power flow. 

APPENDIX I1 
SEPARATION OF VARIABLES AND THE INTRODUCTION OF 

y AND 20 

In this appendix it is shown how (A3)-(A7) of Appen- 
dix I result from Maxwell’s equations and the assumed 
form (A2) for  the fields that is repeated here 

E(x, Y ,  2) = Y )  V Z )  + rEi(x ,  y )  I(z) (B 1 a) 

H(x, Y ,  Z )  == Ht(x, y )  4 2 )  + q-IHl(x, y )  V(Z). (Blb) 
Substituting (Bl) in the Maxwell relation 

V X E = - jupH (B2) 

one obtains 

V(z) V x Et(x ,  y )  + & x E,(x, y )  

+ Kz) YV x &(x, Y )  

= - j w [ k )  W x ,  Y )  + V z )  v-’HAx, y) l .  (€33) 
Here k is a unit vector in the z-direction. 

In (B3) V X Et is in the z-direction because Er depends 
only on ( x ,  y ) .  Hence, taking the z-components of  (B3) 
one obtains 

J‘(z)[V X Er(x, Y )  + ~ W C L V - I H L ( ~ ,  Y)I = 0. (B4) 

Assuming V(z)  is nonzero, (B4) results in (A4b) of  Ap- 
pendix I. 

From the transverse components of  (B3) one finds 

rv x Y )  + jWcLHt(x, Y )  

Because the  left  side of (B5) is independent of z ,  it follows 
from (B5) that 

1 dV(z) 
lodz- - constant = cl. 

Using (Bl) in the Maxwell relation 

V X H = jweE 037) 

and following an analogous procedure,  one finds from the 
z-components 

Z(z) [V x H,(x, y )  - j w q  Ell = 0. (B8) 

If Z(Z) is nonzero, (B8) leads to (A3b) of Appendix I. 
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From the  transverse components one finds 

x H&, Y )  - h E t ( X ,  Y )  

As with (B5),  the z-independence of the left side of (B9) 
implies 

1 dl(z) --- 
V(z) dz 

- constant = c2. 

At this point,  consider  the  two  equations (B6) and 
(BlO), which involve  the  two  separation  constants c1 and 
c2. Equations (B6) and (B10) can be cast  into  the form of 
the transmission line  equations by choosing c1 and c2 to 
satisfy 

c1 = -yzo (B11) 

c2 = - yIZ0. (BIZ) 

Equations (Bll)  and (B12) introduce  the two constants 
y and 2, in  place of the  constants of separation of vari- 
ables c1 and c2. Because c1 and c2 are arbitrary and inde- 
pendent of each  other, y and 2, are also arbitrary inde- 
pendent constants at  this  point. 

Using (Bll)  and (B12) in (B5) and  (B9), (B5) becomes 
(A4a) and (B9) becomes (A3a) of Appendix I. Finally, 
using (Bl) in the Maxwell relation 

v * [ € ( X ,  Y )  E(& Y ,  211 = 0 0313) 
leads to 

VZ) v * [ € ( X ,  Y )  E&, Y)1 + 4x7 Y)$ dl(Z) 

* E&, y )  = 0. (B 14) 

V . 2 )  v - [ € ( X ,  Y )  w ,  Y)1 - 4% Y ) d  * Y )  = 0 

Using (B10) and (B12) in (B14) 

I ZO 3 
(B 15) 

which leads to (A5) if V(z) # 0. In the  same  way, using 
(Bl) in the  Maxwell relation 

v * [ P ( X ,  Y )  H(x, Y ,  211 = 0 (B 16) 
leads to 

44 v * [P(& Y )  HkG Y)1 + P(X, Y ) d  

which in  combination with (B6) and (Bll)  leads to 

I(Z){V [P@, Y )  e(& Y)1 - YZOP(& Y h - l l  

* HI(& Y>> = 0. (B 18) 
For Z(z) # 0, (B18) leads  to (A6) of Appendix I. 

To  summarize, it has been shown that by a  judicious 
choice of the separation constants in separating the vari- 
ables, (B6) and (B10) governing the z-de,pendence of the 
fields can be made the  same  as the transmission line  equa- 
tions, with y and 2, related to the separation constants. 
When this  choice is made,  the Maxwell equations gov- 
erning the  dependence of the fields upo;n transverse co- 
ordinates are given by (A3)-(A6) of Appendix I. 
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