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Abstract—This paper describes an algorithm for generating
provably passive reduced-orderNV -port models for RLC intercon-
nect circuits. It is demonstrated that, in addition to macromodel
stability, macromodel passivity is needed to guarantee the overall
circuit stability once the active and passive driver/load models are
connected. The approach proposed here, PRIMA, is a general
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method for obtaining passive reduced-order macromodels for &

linear RLC systems. In this paper, PRIMA is demonstrated A |

in terms of a simple implementation which extends the block 11 . __ ___J
Arnoldi technique to include guaranteed passivity while providing

superior accuracy. While the same passivity extension is not pos- Fig. 1. Preprocessing of linear portion of circuit inté-port macromodels.
sible for MPVL, comparable accuracy in the frequency domain

for all examples is observed.
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I. INTRODUCTION
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S integrated circuits and systems continue to be designed ;) yN-i(s) Y@ [V
smaller and for faster operatioR|.Cinterconnect effects
have a more dominant impact on signal propagation than ix Y(s)
ever before. In addition, parasitic coupling effects and reducgg_ 2. Multiport representation of a linear circuit.
power supply voltage levels make interconnect modeling in-
creasingly important. Since these interconnect models can
contain thousands of tightly coupleR—L—C components, Via Lanczos) [5] and block Arnoldi [6] are multi-input multi-
reduced-order macromodels are imperative [1]-[4]. Ideally,®tput (MIMO) versions of PVL and Arnoldi, respectively.
simulator would isolate the large linear portions of the circuithe projection perspective to the block Lanczos process has
from the nonlinear elements (e.g., transistor models) aAkpo been developed [7]. In the block techniques, the system
preprocess them into reduced order multiport macromod@p®dified nodal analysis (MNA) matrices are directly reduced
(Fig. 1). by matrix transformations. Refer to [8] for a recent summary
It is well known that anN port can be fully represented©f useful order reduction methods.
by its admittance parameters in the Laplace domain (Fig. 2);In general, the reduced-order model of RhC circuit can
however, the objective is to apply model order reductiopgve unstable poles. Although it is always possible to obtain an
to produce low-order rational approximations for each ent@symptotically stable model by simply discarding the unstable
in the admittance matrixy (s). A single-input single-output Poles, passivity is not guaranteed. The coordinate-transformed
(SISO) N-port model approach would perform model ordefrnoldi algorithm proposed in [9] was introduced as a remedy
reduction on each tern¥;; individually. Both asymptotic for the instability problem, but it cannot guarantee passivity.
waveform evaluation (AWE) [1] and Padiia Lanczos (PVL) The PACT algorithm [3] proposed a new direction for the pas-
[2], which are Pad approximations, can perform SISO reducsive reduced-order model f®C circuits based on congruence
tion by matching2q moments for agth-order approximation transformations. More recently, the same authors proposed
of eachY;; term. The Arnoldi algorithm [4] can also be usedplit congruence transformations [10] for passive reductions of
to obtain SISO approximations; however, it matches oply RLCcircuits, producing equivalent circuit realizations. In [10],

moments for ajth-order approximation. MPVL (matrix Pad however, the extra steps required to split the transformation
matrix can result in a decrease in accuracy.
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Fig. 3. lllustration of the formation of the MNA matrices for a two-p&t.C circuit example.

and arbitrary interconnections of (strictly) passive circuits arariables in KCL equations. Provided that the originalport
(strictly) passive, and therefore, (asymptotically) stable [12]is composed of passive linear elements oy H, and N are

In this paper, we propose a passive reduced-order symmetric nonnegative definite matrices. It is straightforward
terconnect macromodeling algorithm, PRIMA, based on thie show thatC is a symmetric nonnegative definite matrix
block Arnoldi algorithm, but with congruence transformationsith this MNA formulation.
that produce provably passive reduced-order macromodelsAn MNA formulation example for a small circuit is shown
for arbitrary RLC circuits. PRIMA demonstrates accuracyin Fig. 3. Since this is anV-port formulation, whereby the
comparable to MPVL and superior to block Arnoldi. Theonly sources are the voltage sources at ffigort nodes,
underlying technique for passive reduction, which is the bass= L whereB € ®**" . But we will maintain the separaf®
for PRIMA, is also general enough to employ numerousnd L notation throughout this paper for equation generality.

Krylov space generation methods [7], [8], [13]. Assuming for now that we are interested in admittance
parameters and returning to (1), following the notation in [2],
Il. BACKGROUND we define

As shown in Fig. 3, voltage sources are connected to the
ports to obtain the admittance matrix of a multiport. TNe
port, along with these sources, constitutes our time-dom
modified nodal analysis (MNA) circuit equations:

=-G!'C and R=G'B. (3)

Whth unit impulse voltages at the ports, taking the Laplace
transformation of (1) and solving for the port current variables,

Ci, = -Gz, + Buy the y-parameter matrix is given as
iv =L'x,. 1
e @) Y(s) = LT(G + sC)"'B. 4)
Theiy anduy vectors denote the port currents and voltages,
respectively, and Using (3), the admittance matrix can also be expressed as
0 N FE v _
C= {‘g H} G= [—ET 0} T = M @) Y(s) = L'(I, — sA)'R (5)

wherewv andz are the MNA variables [yielding a total numbemwhere I,, is the n x n identity matrix. It is apparent from

of n unknowns in (1)] corresponding to the node voltagd®) that the eigenvalues of represent the reciprocal poles of
and the branch currents for voltage sources and inductd¥q,s). We can define the impedance parameter ma(ix) in a
respectively. The matrice&s ¢ R*** and C € R**™ similar way. Specifically, with the unit impulse current sources
represent the conductance and susceptance matrices (excephected to théV port, the port voltages would represent the
that the rows corresponding to the current variables are negategrameter terms.

asin [9]).N, @, andH are the matrices containing the stamps Considering either the admittance or impedance represen-
for resistors, capacitors, and inductors, respectiMlgonsists tation, we define the block moments and the block Krylov
of ones, minus ones, and zeros, which represent the currgpace as follows for this paper.
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Definition 1: Theblock momentsf Y (s) are defined as the Therefore, in the Laplace domain
coefficients of Taylor expansion & (s) arounds = 0: .
Y(s)=L"X(I,-sH,)*X'R. (13)

Y(s)=Mo+M;s+Mys> + - (6)

. The reduced-order system equations and admittance matrix
where M; € RV, These block moments can be computegre given by (12) and (13), respectively. The poles of the
using the relation reduced-order system are the reciprocal eigenvalueH pf

M, = ITA'R. ) A' complete polg/residue decomposition can be obtained by
eigendecomposindd ,

In circuit terms, the entry in thgth row, kth column of M; H — SA -1 14
is theith moment of the current that flows into pgrtwhen e Tq LT (14)
the voltage source at poktis the only nonzero source. Y(s)=L"XS(I, - sA) 'S 'X'R. (15)

Definition 2: Theblock Krylov spacgenerated by matrices ) _ S o )
Ae R andR = [rg 7y - -rn] € WOV are defined ds ~ The inversion of(1, — sA,) is trivial because it is a diagonal

matrix.
Kr(A,R,q) = colsp[R, AR, A’R, - -, In [6], it is shown that

Ak_lR, Akro, Ak'rl, .- ,Ak'rl}

AR=XHX"R, 0<i< FJ (16)
k=1q/N], I=q—kN. (8)

N
o . . , from which one can derive that the first/N | block moments
From the circuit’'s perspective, thg vecm!‘rk contains the ¢ Y(s) in (13) andY'(s) in (5) match. In fact, it can be shown
set of jth moments for the MNA variables:[in (2)] when the 4t it X spans thesth moment vector that is generated by the
kth source is active and all other sources in the circuit are S&h source. then théth columns of thejth block moments of
to be zero. In matrix terms, the block Krylov space spans t s) and 11/(3) match.

F:ombingtion_ of moment vectors generated by different sourcesr,o accuracy of the block Amoldi approximation gradually
in the circuit. increases as the order is increased since more moments of

the original admittance matrix will be matched. Since it does
A. Block Arnoldi Algorithm not directly use moments, the block Arnoldi algorithm does
The block Arnoldi algorithm reduces the system matdix not suffer from the same numerical inaccuracy as AWE.
in (3) to a small block upper Hessenberg matfi,. The The algorithm requires one LU decomposition @f and g
algorithm involves successively filling in the columns &f backward—forward substitutions to generate the block Krylov
in the relation AX = XH, subject toX*X = I,. Here, space.
X € R"*? is an orthonormal matrix spanning the Krylov

spaceIZ(r(A, R,q), H, € R?*? s a block upper Hessenberg ll. PRIMA: PASSIVE REDUCED-ORDER
: N . i .
matrix,- and, € 79 is an identity matrix. In summary INTERCONNECT MACROMODELING ALGORITHM
colsp(X) = Kr(A, R, q) In this section, we present our passive reduced-order macro-
XTAX = H, modeling algorithm. The algorithm given here is based on the

block Arnoldi algorithm. However, it should be noted that
PRIMA is a general technique for the passive reduction of
Finding the reduced-order admittance matrix can be e®LC circuits, and is not bound to a particular Arnoldi or
plained by a change of variable in (1): Lanczos process. The P_RIMA angnthm, as applied with the
block Arnoldi algorithm, is summarized in Fig. 4.
z, =Xz, (10) After |g/N|+1 (the extra step is not necessary wiigpV)
is an integer) iterations of the block Arnoldi algorithm, the

wherez, € R7%! is now the reduced-order system variable, ¢ matrix X and ag x ¢ upper Hessenberg matril are
This reduces the number of unknowns in the system sinc&yund such that

is generally much smaller tham. Substituting (10) into (1),

X'x=1, (9)

then premultiplying first byG™" and then byX™ yields colsp(X) = Kr(A, R, q)
Ty _
-X"@'CXz, = X" Xz, - X"G ' Buy )1{ X=1I,
":N — LTqu. (11) X"AX =H. (17)
Recalling (3) and using the relations in (9) gives In the classical Arnoldi approach described in Section II-A

and as employed in [4], the reduced-ordg(s) is given as
H 2, =2z,— X" Rux
iv=L"Xz, (12)
1The |-] operator is the truncation to the nearest integer toward zero. INn the PRIMA algorithm, the conductance and susceptance
2A matrix H is an upper Hessenberg matrixBf,; = 0 wheni > j +1. matrices are directly reduced so that passivity is preserved

Y(s)=L"X(I - sH)"'X"R. (18)
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OConnect voltage sources to the multiport & obtain the MNA matrices as in (2).

OSet [ by Ibyl...Ibyl=Band[1;IL1..11y]=L
OSolve GR = B forR

O(X, T) = qr(R) ; gr factorization of R

p q . . q
OIf = 1is not an integer, set 1 = q1+1 ,elsesetn = =
N °8 \JVJ N

OFor k=1, 2, ..., n
Set V.= CX, _,

Solve G Xio) =V for X,((O)

Forj=1, ...k

T

- (-1
H = X, _ X}

() _ xU=D
X,” =x/""-x, ;H

(X, T) = qr(Xik)) ; qr factorization of X]((k)

OSet X = [XO X, X, 1:| and truncate X so that it has q columns only.

OCompute é = XTC X, é = XTG X

ORealize the macromodel as outlined in Scction 4.1 or
o - 1= _
OFind eigendecomposition of G C:: G C=SAS"
OA = diag(hy, Ay, ..., 7\,q)
OTo find poles and residucs for ¥ j(s) :
% T
Solve Gw = X bj for w
TT
Setp =8 X1, andv = Slw

q
N LV
Vi) = X

n=1

n

OCompute all ¥, j(s) to find Y(s) =

Fig. 4. Simple PRIMA implementation.

during reduction. Applying the change of variahlg = Xz,
in (1), and multiplying the first row byX* from (17) yields

(XTCX)zy = —(XTGX)z, + (X" B)uy

iv = (L"X)z,. (19)

So, for the macromodel, the reduced-order MNA matrices are

=XTGx

L Q
[
S
Q
5

QY

=XTL. (20)

(20), the reduced(s), namely,Y(s), is now

1
Y(s)=L" (é + sé’) B. (21)
Since the size off and C is typically very small, it is easy
to find the poles and zeros d?f(s) by eigendecomposition.
The complexity of the algorithm is basically equivalent to that
of the block Arnoldi process. As noticed, the block Arnoldi
algorithm is used only as a means to generate the block Krylov
space X that is used for the congruence transformations.
We will further explore the connections between PRIMA and
block Arnoldi in Section IlI-C.

A. Preservation of Passivity

If the system described by (1) and (2) is reduced by the
transformations in (20), it can be shown that the reduced
system is always passive. In [14], necessary and sufficient
conditions for the system admittance mattxs) = L¥ (G +
sC)~B to be passive are the following.

1) Y(s*) = Y*(s) for all complex s, where  is the

complex conjugate operator.

2) Y(s) is a positive matrix, that is,z*T(Y(s) +

Y7 (s*))z > 0 for all complex values ofs satisfying
Re(s) > 0 and for any complex vectaz.
The second condition also implies the analyticityfé(fs) for
Re(s) > 0 sinceY(s) is a rational function ofs (details in
[14]). Therefore, the test of analyticity is unnecessary.

Due to the fact that the reduced matri€#sC, B, andL are
all real since the transformation mattk is real, condition 1)
is automatically satisfied. To show that condition 2) is satisfied,
we first setY,(s) = Y(s) + Y*(s*) and use the property
B = L (since B = L in our formulation, X" B = X7 L) and
some algebra to obtain

Settingw = (G + s*C)"TBz ands = jw + o yields
2TY(s)z

— w7 [(é + (o +‘7‘w)é) + (é + (o — jw)é’)T} w

=w?[G+G" +0(C+C")|w
=wT[X"TGX + X"G"X + o(X"CX + X"C" X)|w
=w' X" [G+G" +o(C+C")| Xw. (23)

These types of transformations are known as congruenca&simijarly, lety = Xw to get
transformations. Congruence transformations were first intro-
duced by [3] for order reduction of circuits. From (19) and  z"Y(s)z=y"[G+ G" + o(C+C")]y. (24)
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Since € is symmetric,CT + C = 2C. C is known to be where

nonnegative definite [since we negate the rows corresponding B T —lp
to current variables as in (2)] so K=-X (X GX ) Xx'c. (34)
y*To(CT + Oy = 2047 Cy > 0 (25) From (33), it can be shown by recursion that
i i . q
for any complex vectoy anda = Re(s) > 0. N (the resistor K'R=A'R, 0<:< LNJ (35)
stamps) is a symmetric nonnegative definite matrix; therefo{%erefore, using (34), it follows that
T
. . N E N E _ i )
v (G + Gy =y T([_ET 0} + [_ET ODy x|-(x"6x)” (x"cx)| =K'X. (36)
_ T {ZN O}yz 0 (26) Replacing X[~(X"GX)"}(X"CX)]" in (29) with K'X
0 0 yields
is also nonnegative definite for any complex vecgorrom M. — LTKiX(XTGX)_lXTB' (37)

(24)—(26), it follows that the second passivity condition is

satisfied. The reader should note that in this proof, no assunijvaluating (30) wheri = 0 yields

tions on the transformation matriX had been made for none T

was needed. This gives the algorithm significant flexibility in R=XX"R (38)
choosingX to improve macromodel accuracy and/or run timq\-/lultiplying both sides byX~@G gives

B. Preservation of Moments X'B=(X"GX)X'R (39)

In this section, it will be shown that the transformation imnd it follows as
(20) preservegq/N |block moments of the original system, - 1
which is the same as the classical block Arnoldi reduction and X(X GX) X" B=R. (40)
half of that in MPVL. The block momenta4; of the original Then, combining (37) and (40)
system, as shown in (7), are '

9 i . q
M,=LTAR (27) M;=L'K'R,  0<i< LNJ (41)
whered = —G~'C. R = G'B. and@. C. B. L are the Finally, comparing (35) and (41) with (27), it follows that
system matrices as defined in (1). r o oag < q
Likewise, the moments of the reduced-order system are M; = M;, 0su< LNJ (42)

given by Note that the number of poles in each entry¥fs) is ¢,

M; = LT AR (28) and we have matched the firist//V| moments at allV ports,

, S o S yielding a total ofg moments. In fact, it can be easily shown
whereA = —G~'C, R = G™'B, and@G, C, B, L are as that if X spans thekth moment vector that is generated by
defined in (20). Substitution of (20) in (28) yields the jth source, then thiéth columns of theth block moments

. o i o of Y(s) and ¥ (s) match as in block Arnoldi. The number of
M; = LTX[—(XTGX) (XTCX)} (XTGX) "X"B.  moments matched in this particular implementation of PRIMA
(29) is, therefore, the same as that for the block Arnoldi algorithm
and half as many as matched by the block Lanczos algorithm.
For a gth-order approximation, the columns & span

Kr(A, R, q); therefore, it is shown in [6] that C. Connection to Block Arnoldi
AR= XH X"R, 0<i< |2l 30 The bIocI.<—Arn.oIdi.-bgsed PRIMA produces a redqced—order
4 =1 LNJ (30) model that is quite similar to that of the block Arnoldi process,

Rearranging the terms and using the definitions from (20) but slightly different in ways which seem to improve the
accuracy. We can express the PRIMA reduced-order system

AAT'R = XHQXTR as in these system equations:
-G 'CAT'R=XH.X"R
~CA™'R=GXH.X"R (31)
~XT"CA'R=X"GXH.X"R

&', =5, - G Buy

iy = L%,

(43)

The poles of the reduced-order system in the block Arnoldi

—X(XTGX)_IXTCAFlR =XH.X"R. (32) process are the inverses of the eigenvalueH pfrom (9). In
. . . PRIMA, however, the poles are the inverses of eigenvalues of
Inserting (30) in (32) results in —G7'C. In this section, we show that the matricks, and
ot _1 ot . . .
KA—'R = AR 0<i q 33 —G~ ' C are identical, except fo.r the laaf columns (V is the
’ ses LNJ (33) number of ports) and the relatidd'B = X R.
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Multiplying both sides withX? in (30) gives

XTAR=H'X"R, 0<i< L%J (44)
Inserting (35) into (44) yields
X"K'R=H.X"R, 0<i< L%J (45)
Inserting (38) into (45) results in
X"K'XXTR=H.X"R, 0<i< L%J (46)
We know from (36) that
XTK'X = [—(XTGX)_IXTCXT = [érlér. (47)
Using (47) in (46) gives
[—é—l(}} "XTR = H:X"R, 0<i< L%J (48)

Since X is obtained via a block Arnoldi procesX* R is
only nonzero in the firstV rows since the other rows of”
are built to be orthonormal ta:

]T

X'R= [TfrxN Onvxnv Onxn (49)
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A. Direct Stamping and Realization

Since the reduced-order circuit is described in real matrices,
it can be directly stamped into the SPICE MNA matrices.
Noticing that the reduced-ordej-variable system has the
governing equations as in (43), and recognizing that it is
possible to introduce&, as a circuit variable into the MNA
matrix, the direct stamps for the macromodel can be generated
as

Stamps for 0 0 TN
f('/L']\TLv U’p) I]\T 9 u,;
0 0 Iy ~-L" i
A—1 A—1 /A -
0 (G'B) 0 (I+G'ci)llz
UNL
_ | Y
=g | (50)
0

In (50), 1, denotes the other variables of the circuit (other
node voltages and currents), and¢, are port voltages and
currents, respectively, ang, denotes the extra variables that
are introduced from the inclusion of the realized macromodel
into the circuit. The realized macromodel will introduce only
q + N unknowns to the SPICE MNA matrix.

At this point, we understand it is possible to postprocess
the system in (43) to achieve superior performance or an
improved implementation. Without postprocessing, @ie'C
matrix will be block upper Hessenberg, which degrades the
sparsity of the SPICE MNA matrix, particularly wheN is
large.

where T" is the N x N upper triangular full rank matrix g y_parameter-Based Simulation
produced in the fourth step of the PRIMA algorithm given in

Fig. 4. Therefore, left multiplication of any matrix b¥* R
only extracts the information about the fiist columns of the
matrix.

Hence, evaluating (48) wheh= 1 means that the firstv
columns of H, and —-G~'C are the same. SincH, is an
upper block Hessenberg matrix (with blocks &f x ), the

In order to compute thg parameters of the reduced-order
system, the eigendecomposition steps [(14) and (15)] are used.
After finding the poles and residues f¥i(s), convolution is
needed since the finite-difference methods employed in SPICE
are for time-domain analysis and the macromodel is described
by its 4 parameters in the frequency domain. Specifically, the

first N columns of H (for i > 1) depend only on the first currents at the ports would be computed by

(¢ — 1)N columns of H,. From this information, evaluating
(48) fromi = 1 to |¢/N| — 1 recursively demonstrates that
the columns of-G~'C and H, are the same until the last

N columns. o
To demonstrate tha® B = X' R, we can simply multi-
ply both sides of (40) by and use the relatioX” X = I,.

IV. TIME-DOMAIN SIMULATION OF THE MACROMODELS

For a complete simulation, the nonlinear elements sho

u

N t
ip(t) = Z /prj(t — T, (T) dr, 1<p<N (5))

i=1

which requiresO(1%) complexity, whereT is the number

of time points during simulation. For this reason, recursive
convolution [16] and time-domaig-parameter macromodels
[17] were developed, where the complexity is linear with
the number of time points. Details of these approaches are
?gailable in [17] and [16].

be simulated along with the reduced-order macromodels. The

popular and reliable simulation tool for general nonlinear cir-

V. RESULTS

cuits is SPICE [15]. Here, we describe two ways to include theIn this section, our passive reduction algorithm is demon-
PRIMA macromodels into circuit simulators such as SPICEtrated and compared with other approaches. For the
The first technique is direct stamping of the reduced-ordgequency-domain examples, theparameters are compared
matrices into the general SPICE MNA matrix, whereas theith the reduced-order models from different reduction
second method is based onygparameter description of themethods. Time-domain results are obtained using a modified
macromodel. The first method can also lead to an equivaletrsion of SPICE3f4 [18] to perform recursive convolution.
SPICE netlist production as a result of the reduction. For all of the examples, the poles obtained via PRIMA were
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T

Padé apprx., 5 poles, _

all stable\

T

Voltage
w

/\/\/\/\
\/\/\/\/

PRIMA 1
5 poles i

interconnect is modeled by

40 lumped RLC scctions. . 5
Rtotal=10Q time (ns)
Ltotal=5nH
Ctotal=15pF
Fig. 5. Stable but nonpassive macromodel.
1.0 ' ' 5.0 -
PRIMA 8 poles
+ PRIMA 16 poles 1
exact response 3.0
L (indistinguishable) g
0.5 9 1.0
0.3 0.4

voltage(V)

0.0

PRIMA 8 poles

exact response

PRIMA 16 poles
(indistinguishable

0.4

651

-05 from the exact)
-1.0 : : I
0.1 02 time(ns) 0.3
Fig. 6. Waveform comparisons for a four port.
observed to bestable at all times, which was a practical TABLE |
verification for the analyticity condition o¥ (s). RUN TIME COMPARISONS OFDIRECT REALIZATION
AND y-PARAMETER-BASED SIMULATIONS
Exact Direct Realization

Y-parameter based

A. Nonlinear Driver Driving a Transmission Line

To demonstrate the importance of passivity, we considereg 75 ..
the analysis of a lossy transmission line which was modeled

0.6 with 8 poles
3.98 s. with 16 poles
10.29 s. with 24 poles

0.18 s. with 8 poles
(.28 s. with 16 poles
0.32 5. with 24 poles

by 40 lumpedRLC sections. The model order reduction was
performed by both PVL (Pd&) and PRIMA using five poles.
Although all of the poles from the Padapproximation were
stable (i.e., negative real parts), the overall system was cIearIy@
unstable in Fig. 5. Note that the fifth-order approximation from
PRIMA is indistinguishable from the exact response. @
®

B. Coupled Noise For a 2-Bit Bus @

In Fig. 6, a 2-bit bus driven by CMOS inverters is shown. @
One of the drivers is switching while the other is quiet. @
The interconnect, consisting of 40 couplBlLC sections, is

®OCO®E

modeled as a four-port and reduced by PRIMA. TransieRly. 7. Six coupled transmision lines forming a 12 port.
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Block Arnoldi, 48 poles
R exact

0.15 MPVL, 48 poles

IY11(HI (1/2)

0.05

PRIMA, 48 poles
0 10 20 30

Fig. 8. Y11(s) in frequency domain for six coupled TR lines.

1 2=0T7m
Ciz=tisp

Fig. 9. Three-port consisting of a large lump&LC circuit.

analysis is done using recursive convolution. The time-domdh Six Coupled Transmission Lines

waveforms at the load end are compared for various orderyns 5 second example, we analyzed a 12 port containing
of app_roximations. Since this is a fo_ur—port, an eight-polgy coupled transmission lines modeled by 40 coupRiC
approximation corresponds to matching only, and mi  sections (Fig. 7). The input admittanéi;(s)), reduced by
generated by four different sources. The plot shows that, jfbck Arnoldi, MPVL, and PRIMA, are compared with the
the time domain, even the coupled noise can be accuratghict input admittance original in Fig. 8 using 48 poles. Block
simulated using the eight poles from PRIMA. Although, in thigroldi captures the exact response up to 16 GHz, while
example, the inductance of the interconnect is exaggerated\{pv. and PRIMA match up to 28 GHz. When the order
make things worse, it is seen that an approximation of ordeip® approximation is increased to 72 poles, it is observed that
is enough to capture the coupled noise from the active drivife frequency spectrum is captured up to 60 GHz by MPVL
to the quiet load end. and PRIMA.

To compare the difference between direct realizationsnd
parameter-based simulation (i.e., recursive convolution here), o
the reduced-order circuit (via PRIMA) is simulated using botR- Large Coupled RLC Circuit
techniques. The run times are given in Table I. Although the The third example is a three-port, composed of a densely
circuit is relatively small (i.e.,.G is only 300 x 300), the coupledRLC circuit shown in Fig. 9. Approximations were
gain in using PRIMA reduced macromodel apgpbarameter- performed using 25 poles for the three methods. As can be
based simulation is about %0 For larger circuits, this gain is observed from Fig. 10, PRIMA and MPVL captures the entire
expected to be much larger. frequency spectrum.
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107 E E
[ Block Arnoldi, 25 poles 1
1072 E
g ]
= 10% F E
Y 3 ]
> . ]
104 F
indistinguishable PRIMA, 25 poles
s MPVL, 25 poles
108 : ;
freq. (GHz)
Fig. 10. Y2(s) for the three-port in Fig. 9.
VI. CONCLUSION [9] L. M. Silveira, M. Kamon, I. Elfadel, and J. White, “A coordinate-

transformed Arnoldi algorithm for generating guaranteed stable reduced-

_ This paper presgnted PRIMA, a novel algorithm ff)r p_rOdUC' order models of arbitrary RLC circuits,” itEEE/ACM Proc. ICCAD
ing provably passive macromodels for arbitr&i.C circuits. Nov. 1996, pp. 288-294.

A simple implementation of PRIMA given here uses thét

0] K. J. Kerns, “Accurate and stable reduction of RLC networks using
split congruence transformations,” Ph.D. dissertation, Univ. Washington,

block Arnoldi algorithm to generate the vectors needed for sept. 1996.
applying the transformations to the MNA matrices. Resul{$l] B. D. Anderson and S. Vongpanitlerdetwork Analysis and Synthesis

show that the approach tends to be comparable to MP\{i—z]

Englewood Cliffs, NJ: Prentice-Hall, 1973.
R. A. Rohrer and H. Nosrati, “Passivity considerations in stability studies

in terms of frequency-domain accuracy, but superior in that of numerical integration algorithms[EEE Trans. Circuits Systvol.
it guarantees the passivity that is critical for time-domaip . CAS-28, pp. 857-866, Sept. 1981.

3] I. M. Elfadel and D. D. Ling, “A block rational Arnoldi algorithm for

analyzes_- _USing t_he same p_rinciple_s that were introduced iN" mitipaint passive model-order reduction of multiport RLC networks,”
PRIMA, it is possible to obtain passive reduced-order models in IEEE/ACM Proc. ICCAD Nov. 1997, pp. 66—71.

for generalRLCcircuits in several ways. Further extensions 164l

E. S. Kuh and R. A. RohreiTheory of Linear Active Networks San
Francisco: Holden-Day, 1967.

PRIMA have already been demonstrated. In [13], the momemg] L. w. Nagel, “SPICE2, A computer program to simulate semiconductor
vectors from different frequency expansion points were used circuits,” Tech. Rep. ERL-M520, Univ. California, Berkeley, May

in forming the block Krylov space to increase the accuracyg

1975.
V. Raghavan, J. E. Bracken, and R. A. Rohrer, “AWESpice: A general

In [8], it is demonstrated that it is possible to obtain the  tool for the accurate and efficient simulation of interconnect problems,”
block Krylov space used in PRIMA viaksymmetric Lanczos 7] in IEEE/ACM Proc. DAC June 1992, pp. 87-92.

process with improvements in run time.
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