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Abstract—This paper describes an algorithm for generating
provably passive reduced-orderN -port models for RLC intercon-
nect circuits. It is demonstrated that, in addition to macromodel
stability, macromodel passivity is needed to guarantee the overall
circuit stability once the active and passive driver/load models are
connected. The approach proposed here, PRIMA, is a general
method for obtaining passive reduced-order macromodels for
linear RLC systems. In this paper, PRIMA is demonstrated
in terms of a simple implementation which extends the block
Arnoldi technique to include guaranteed passivity while providing
superior accuracy. While the same passivity extension is not pos-
sible for MPVL, comparable accuracy in the frequency domain
for all examples is observed.

I. INTRODUCTION

A S integrated circuits and systems continue to be designed
smaller and for faster operation,RLC interconnect effects

have a more dominant impact on signal propagation than
ever before. In addition, parasitic coupling effects and reduced
power supply voltage levels make interconnect modeling in-
creasingly important. Since these interconnect models can
contain thousands of tightly coupledR–L–C components,
reduced-order macromodels are imperative [1]–[4]. Ideally, a
simulator would isolate the large linear portions of the circuit
from the nonlinear elements (e.g., transistor models) and
preprocess them into reduced order multiport macromodels
(Fig. 1).

It is well known that an port can be fully represented
by its admittance parameters in the Laplace domain (Fig. 2);
however, the objective is to apply model order reduction
to produce low-order rational approximations for each entry
in the admittance matrix, . A single-input single-output
(SISO) -port model approach would perform model order
reduction on each term individually. Both asymptotic
waveform evaluation (AWE) [1] and Pad´e via Lanczos (PVL)
[2], which are Pad́e approximations, can perform SISO reduc-
tion by matching moments for a th-order approximation
of each term. The Arnoldi algorithm [4] can also be used
to obtain SISO approximations; however, it matches only
moments for a th-order approximation. MPVL (matrix Padé
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Fig. 1. Preprocessing of linear portion of circuit intoN -port macromodels.

Fig. 2. Multiport representation of a linear circuit.

via Lanczos) [5] and block Arnoldi [6] are multi-input multi-
output (MIMO) versions of PVL and Arnoldi, respectively.
The projection perspective to the block Lanczos process has
also been developed [7]. In the block techniques, the system
modified nodal analysis (MNA) matrices are directly reduced
by matrix transformations. Refer to [8] for a recent summary
of useful order reduction methods.

In general, the reduced-order model of anRLC circuit can
have unstable poles. Although it is always possible to obtain an
asymptotically stable model by simply discarding the unstable
poles, passivity is not guaranteed. The coordinate-transformed
Arnoldi algorithm proposed in [9] was introduced as a remedy
for the instability problem, but it cannot guarantee passivity.
The PACT algorithm [3] proposed a new direction for the pas-
sive reduced-order model forRCcircuits based on congruence
transformations. More recently, the same authors proposed
split congruence transformations [10] for passive reductions of
RLCcircuits, producing equivalent circuit realizations. In [10],
however, the extra steps required to split the transformation
matrix can result in a decrease in accuracy.

A passive system denotes a system that is incapable of
generating energy, and hence one that can only absorb energy
from the sources used to excite it [11]. Passivity is an important
property to satisfy because stable, but not passive macromodels
can produce unstable systems when connected to other stable,
even passive, loads. A property in classical circuit theory states
that: interconnections of stable systems may not necessarily be
stable; but (strictly) passive circuits are (asymptotically) stable;
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Fig. 3. Illustration of the formation of the MNA matrices for a two-portRLC circuit example.

and arbitrary interconnections of (strictly) passive circuits are
(strictly) passive, and therefore, (asymptotically) stable [12].

In this paper, we propose a passive reduced-order in-
terconnect macromodeling algorithm, PRIMA, based on the
block Arnoldi algorithm, but with congruence transformations
that produce provably passive reduced-order macromodels
for arbitrary RLC circuits. PRIMA demonstrates accuracy
comparable to MPVL and superior to block Arnoldi. The
underlying technique for passive reduction, which is the basis
for PRIMA, is also general enough to employ numerous
Krylov space generation methods [7], [8], [13].

II. BACKGROUND

As shown in Fig. 3, voltage sources are connected to the
ports to obtain the admittance matrix of a multiport. The
port, along with these sources, constitutes our time-domain
modified nodal analysis (MNA) circuit equations:

(1)

The and vectors denote the port currents and voltages,
respectively, and

(2)

where and are the MNA variables [yielding a total number
of unknowns in (1)] corresponding to the node voltages
and the branch currents for voltage sources and inductors,
respectively. The matrices and
represent the conductance and susceptance matrices (except
that the rows corresponding to the current variables are negated
as in [9]). and are the matrices containing the stamps
for resistors, capacitors, and inductors, respectively.consists
of ones, minus ones, and zeros, which represent the current

variables in KCL equations. Provided that the originalport
is composed of passive linear elements only, and are
symmetric nonnegative definite matrices. It is straightforward
to show that is a symmetric nonnegative definite matrix
with this MNA formulation.

An MNA formulation example for a small circuit is shown
in Fig. 3. Since this is an -port formulation, whereby the
only sources are the voltage sources at the-port nodes,

where . But we will maintain the separate
and notation throughout this paper for equation generality.

Assuming for now that we are interested in admittance
parameters and returning to (1), following the notation in [2],
we define

and (3)

With unit impulse voltages at the ports, taking the Laplace
transformation of (1) and solving for the port current variables,
the -parameter matrix is given as

(4)

Using (3), the admittance matrix can also be expressed as

(5)

where is the identity matrix. It is apparent from
(5) that the eigenvalues of represent the reciprocal poles of

. We can define the impedance parameter matrix in a
similar way. Specifically, with the unit impulse current sources
connected to the port, the port voltages would represent the
-parameter terms.
Considering either the admittance or impedance represen-

tation, we define the block moments and the block Krylov
space as follows for this paper.
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Definition 1: Theblock momentsof are defined as the
coefficients of Taylor expansion of around :

(6)

where . These block moments can be computed
using the relation

(7)

In circuit terms, the entry in theth row, th column of
is the th moment of the current that flows into portwhen
the voltage source at port is the only nonzero source.

Definition 2: Theblock Krylov spacegenerated by matrices
and are defined as1

(8)

From the circuit’s perspective, the vector contains the
set of th moments for the MNA variables [in (2)] when the
th source is active and all other sources in the circuit are set

to be zero. In matrix terms, the block Krylov space spans the
combination of moment vectors generated by different sources
in the circuit.

A. Block Arnoldi Algorithm

The block Arnoldi algorithm reduces the system matrix
in (3) to a small block upper Hessenberg matrix . The
algorithm involves successively filling in the columns of
in the relation subject to . Here,

is an orthonormal matrix spanning the Krylov
space is a block upper Hessenberg
matrix,2 and is an identity matrix. In summary

(9)

Finding the reduced-order admittance matrix can be ex-
plained by a change of variable in (1):

(10)

where is now the reduced-order system variable.
This reduces the number of unknowns in the system since
is generally much smaller than. Substituting (10) into (1),
then premultiplying first by and then by yields

(11)

Recalling (3) and using the relations in (9) gives

(12)

1The b�c operator is the truncation to the nearest integer toward zero.
2A matrix HHH is an upper Hessenberg matrix ifHHHij = 0 when i > j + 1.

Therefore, in the Laplace domain

(13)

The reduced-order system equations and admittance matrix
are given by (12) and (13), respectively. The poles of the
reduced-order system are the reciprocal eigenvalues of.
A complete pole/residue decomposition can be obtained by
eigendecomposing

(14)

(15)

The inversion of is trivial because it is a diagonal
matrix.

In [6], it is shown that

(16)

from which one can derive that the first block moments
of in (13) and in (5) match. In fact, it can be shown
that if spans the th moment vector that is generated by the
th source, then theth columns of the th block moments of

and match.
The accuracy of the block Arnoldi approximation gradually

increases as the order is increased since more moments of
the original admittance matrix will be matched. Since it does
not directly use moments, the block Arnoldi algorithm does
not suffer from the same numerical inaccuracy as AWE.
The algorithm requires one LU decomposition of and
backward–forward substitutions to generate the block Krylov
space.

III. PRIMA: PASSIVE REDUCED-ORDER

INTERCONNECTMACROMODELING ALGORITHM

In this section, we present our passive reduced-order macro-
modeling algorithm. The algorithm given here is based on the
block Arnoldi algorithm. However, it should be noted that
PRIMA is a general technique for the passive reduction of
RLC circuits, and is not bound to a particular Arnoldi or
Lanczos process. The PRIMA algorithm, as applied with the
block Arnoldi algorithm, is summarized in Fig. 4.

After (the extra step is not necessary when
is an integer) iterations of the block Arnoldi algorithm, the

matrix and a upper Hessenberg matrix are
found such that

(17)

In the classical Arnoldi approach described in Section II-A
and as employed in [4], the reduced-order is given as

(18)

In the PRIMA algorithm, the conductance and susceptance
matrices are directly reduced so that passivity is preserved
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Fig. 4. Simple PRIMA implementation.

during reduction. Applying the change of variable
in (1), and multiplying the first row by from (17) yields

(19)

So, for the macromodel, the reduced-order MNA matrices are

(20)

These types of transformations are known as congruence
transformations. Congruence transformations were first intro-
duced by [3] for order reduction of circuits. From (19) and

(20), the reduced , namely, , is now

(21)

Since the size of and is typically very small, it is easy
to find the poles and zeros of by eigendecomposition.
The complexity of the algorithm is basically equivalent to that
of the block Arnoldi process. As noticed, the block Arnoldi
algorithm is used only as a means to generate the block Krylov
space that is used for the congruence transformations.
We will further explore the connections between PRIMA and
block Arnoldi in Section III-C.

A. Preservation of Passivity

If the system described by (1) and (2) is reduced by the
transformations in (20), it can be shown that the reduced
system is always passive. In [14], necessary and sufficient
conditions for the system admittance matrix

to be passive are the following.

1) for all complex , where is the
complex conjugate operator.

2) is a positive matrix, that is,
for all complex values of satisfying

and for any complex vector.

The second condition also implies the analyticity of for
since is a rational function of (details in

[14]). Therefore, the test of analyticity is unnecessary.
Due to the fact that the reduced matrices , and are

all real since the transformation matrix is real, condition 1)
is automatically satisfied. To show that condition 2) is satisfied,
we first set and use the property

(since in our formulation, ) and
some algebra to obtain

(22)

Setting and yields

(23)

Similarly, let to get

(24)



ODABASIOGLU et al.: PRIMA 649

Since is symmetric, . is known to be
nonnegative definite [since we negate the rows corresponding
to current variables as in (2)] so

(25)

for any complex vector and . (the resistor
stamps) is a symmetric nonnegative definite matrix; therefore

(26)

is also nonnegative definite for any complex vector. From
(24)–(26), it follows that the second passivity condition is
satisfied. The reader should note that in this proof, no assump-
tions on the transformation matrix had been made for none
was needed. This gives the algorithm significant flexibility in
choosing to improve macromodel accuracy and/or run time.

B. Preservation of Moments

In this section, it will be shown that the transformation in
(20) preserves block moments of the original system,
which is the same as the classical block Arnoldi reduction and
half of that in MPVL. The block moments of the original
system, as shown in (7), are

(27)

where , and are the
system matrices as defined in (1).

Likewise, the moments of the reduced-order system are
given by

(28)

where , and are as
defined in (20). Substitution of (20) in (28) yields

(29)

For a th-order approximation, the columns of span
; therefore, it is shown in [6] that

(30)

Rearranging the terms and using the definitions from (20)

(31)

(32)

Inserting (30) in (32) results in

(33)

where

(34)

From (33), it can be shown by recursion that

(35)

Therefore, using (34), it follows that

(36)

Replacing in (29) with
yields

(37)

Evaluating (30) when yields

(38)

Multiplying both sides by gives

(39)

and it follows as

(40)

Then, combining (37) and (40)

(41)

Finally, comparing (35) and (41) with (27), it follows that

(42)

Note that the number of poles in each entry of is ,
and we have matched the first moments at all ports,
yielding a total of moments. In fact, it can be easily shown
that if spans the th moment vector that is generated by
the th source, then theth columns of the th block moments
of and match as in block Arnoldi. The number of
moments matched in this particular implementation of PRIMA
is, therefore, the same as that for the block Arnoldi algorithm
and half as many as matched by the block Lanczos algorithm.

C. Connection to Block Arnoldi

The block-Arnoldi-based PRIMA produces a reduced-order
model that is quite similar to that of the block Arnoldi process,
but slightly different in ways which seem to improve the
accuracy. We can express the PRIMA reduced-order system
as in these system equations:

(43)

The poles of the reduced-order system in the block Arnoldi
process are the inverses of the eigenvalues offrom (9). In
PRIMA, however, the poles are the inverses of eigenvalues of

. In this section, we show that the matrices and
are identical, except for the last columns ( is the

number of ports) and the relation .
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Multiplying both sides with in (30) gives

(44)

Inserting (35) into (44) yields

(45)

Inserting (38) into (45) results in

(46)

We know from (36) that

(47)

Using (47) in (46) gives

(48)

Since is obtained via a block Arnoldi process, is
only nonzero in the first rows since the other rows of
are built to be orthonormal to :

(49)

where is the upper triangular full rank matrix
produced in the fourth step of the PRIMA algorithm given in
Fig. 4. Therefore, left multiplication of any matrix by
only extracts the information about the first columns of the
matrix.

Hence, evaluating (48) when means that the first
columns of and are the same. Since is an
upper block Hessenberg matrix (with blocks of ), the
first columns of (for ) depend only on the first

columns of . From this information, evaluating
(48) from to recursively demonstrates that
the columns of and are the same until the last

columns.
To demonstrate that , we can simply multi-

ply both sides of (40) by and use the relation .

IV. TIME-DOMAIN SIMULATION OF THE MACROMODELS

For a complete simulation, the nonlinear elements should
be simulated along with the reduced-order macromodels. The
popular and reliable simulation tool for general nonlinear cir-
cuits is SPICE [15]. Here, we describe two ways to include the
PRIMA macromodels into circuit simulators such as SPICE.
The first technique is direct stamping of the reduced-order
matrices into the general SPICE MNA matrix, whereas the
second method is based on a-parameter description of the
macromodel. The first method can also lead to an equivalent
SPICE netlist production as a result of the reduction.

A. Direct Stamping and Realization

Since the reduced-order circuit is described in real matrices,
it can be directly stamped into the SPICE MNA matrices.
Noticing that the reduced-order-variable system has the
governing equations as in (43), and recognizing that it is
possible to introduce as a circuit variable into the MNA
matrix, the direct stamps for the macromodel can be generated
as

Stamps for

(50)

In (50), denotes the other variables of the circuit (other
node voltages and currents), and are port voltages and
currents, respectively, and denotes the extra variables that
are introduced from the inclusion of the realized macromodel
into the circuit. The realized macromodel will introduce only

unknowns to the SPICE MNA matrix.
At this point, we understand it is possible to postprocess

the system in (43) to achieve superior performance or an
improved implementation. Without postprocessing, the
matrix will be block upper Hessenberg, which degrades the
sparsity of the SPICE MNA matrix, particularly when is
large.

B. -Parameter-Based Simulation

In order to compute the parameters of the reduced-order
system, the eigendecomposition steps [(14) and (15)] are used.
After finding the poles and residues for , convolution is
needed since the finite-difference methods employed in SPICE
are for time-domain analysis and the macromodel is described
by its parameters in the frequency domain. Specifically, the
currents at the ports would be computed by

(51)

which requires complexity, where is the number
of time points during simulation. For this reason, recursive
convolution [16] and time-domain-parameter macromodels
[17] were developed, where the complexity is linear with
the number of time points. Details of these approaches are
available in [17] and [16].

V. RESULTS

In this section, our passive reduction algorithm is demon-
strated and compared with other approaches. For the
frequency-domain examples, theparameters are compared
with the reduced-order models from different reduction
methods. Time-domain results are obtained using a modified
version of SPICE3f4 [18] to perform recursive convolution.
For all of the examples, the poles obtained via PRIMA were
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Fig. 5. Stable but nonpassive macromodel.

Fig. 6. Waveform comparisons for a four port.

observed to bestable at all times, which was a practical
verification for the analyticity condition of .

A. Nonlinear Driver Driving a Transmission Line

To demonstrate the importance of passivity, we considered
the analysis of a lossy transmission line which was modeled
by 40 lumpedRLC sections. The model order reduction was
performed by both PVL (Padé) and PRIMA using five poles.
Although all of the poles from the Padé approximation were
stable (i.e., negative real parts), the overall system was clearly
unstable in Fig. 5. Note that the fifth-order approximation from
PRIMA is indistinguishable from the exact response.

B. Coupled Noise For a 2-Bit Bus

In Fig. 6, a 2-bit bus driven by CMOS inverters is shown.
One of the drivers is switching while the other is quiet.
The interconnect, consisting of 40 coupledRLC sections, is
modeled as a four-port and reduced by PRIMA. Transient

TABLE I
RUN TIME COMPARISONS OFDIRECT REALIZATION

AND y-PARAMETER-BASED SIMULATIONS

Fig. 7. Six coupled transmision lines forming a 12 port.
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Fig. 8. YYY 11(s) in frequency domain for six coupled TR lines.

Fig. 9. Three-port consisting of a large lumpedRLC circuit.

analysis is done using recursive convolution. The time-domain
waveforms at the load end are compared for various order
of approximations. Since this is a four-port, an eight-pole
approximation corresponds to matching only and
generated by four different sources. The plot shows that, in
the time domain, even the coupled noise can be accurately
simulated using the eight poles from PRIMA. Although, in this
example, the inductance of the interconnect is exaggerated to
make things worse, it is seen that an approximation of order 8
is enough to capture the coupled noise from the active driver
to the quiet load end.

To compare the difference between direct realization and-
parameter-based simulation (i.e., recursive convolution here),
the reduced-order circuit (via PRIMA) is simulated using both
techniques. The run times are given in Table I. Although the
circuit is relatively small (i.e., is only 300 300), the
gain in using PRIMA reduced macromodel and-parameter-
based simulation is about 50. For larger circuits, this gain is
expected to be much larger.

C. Six Coupled Transmission Lines

As a second example, we analyzed a 12 port containing
six coupled transmission lines modeled by 40 coupledRLC
sections (Fig. 7). The input admittance , reduced by
block Arnoldi, MPVL, and PRIMA, are compared with the
exact input admittance original in Fig. 8 using 48 poles. Block
Arnoldi captures the exact response up to 16 GHz, while
MPVL and PRIMA match up to 28 GHz. When the order
of approximation is increased to 72 poles, it is observed that
the frequency spectrum is captured up to 60 GHz by MPVL
and PRIMA.

D. Large Coupled RLC Circuit

The third example is a three-port, composed of a densely
coupledRLC circuit shown in Fig. 9. Approximations were
performed using 25 poles for the three methods. As can be
observed from Fig. 10, PRIMA and MPVL captures the entire
frequency spectrum.
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Fig. 10. YYY 12(s) for the three-port in Fig. 9.

VI. CONCLUSION

This paper presented PRIMA, a novel algorithm for produc-
ing provably passive macromodels for arbitraryRLC circuits.
A simple implementation of PRIMA given here uses the
block Arnoldi algorithm to generate the vectors needed for
applying the transformations to the MNA matrices. Results
show that the approach tends to be comparable to MPVL
in terms of frequency-domain accuracy, but superior in that
it guarantees the passivity that is critical for time-domain
analyzes. Using the same principles that were introduced in
PRIMA, it is possible to obtain passive reduced-order models
for generalRLCcircuits in several ways. Further extensions to
PRIMA have already been demonstrated. In [13], the moment
vectors from different frequency expansion points were used
in forming the block Krylov space to increase the accuracy.
In [8], it is demonstrated that it is possible to obtain the
block Krylov space used in PRIMA via aJ-symmetric Lanczos
process with improvements in run time.
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