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Part I

Introduction to BSS and ICA
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Part I Blind Source Separation (BSS)

Mixing System Separating System

PSfrag replacements

a11

a12

a21

a22

b11

b12

b21

b22

s1

s2

x1

x2

y1

y2

si: Original source (assumed to be independent).

xi: Received (mixed) signals.

yi: Estimated sources.
Goal: yi = si

Is it possible? Isn’t it ill-posed?
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Part I Some historical notes: Herault, Jutten and Ans’ work

X Observation in 1982: The angular position (p(t)) and the
angular velocity (v(t) = dp(t)/dt) of a joint is represented
by two nervous signals f1(t) and f2(t), each one is a linear
combination of position and velocity:







f1(t) = a11p(t) + a12v(t)

f2(t) = a21p(t) + a22v(t)

At each instant the nervous system knows p(t) and v(t)⇒

p(t) and v(t) must be recoverable only from f1(t) and f2(t)
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Part I Herault and Jutten (HJ) Algorithm
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Presented in GRETSI’85, COGNITAVA’85 and Snowbird’86.

Choosing m12 and m21 correctly results in separation:
{

y1 = x1 −m12y2

y2 = x2 −m21y1
→ y = x−My → y = (I+M)−1x

Main Idea: E {f(y1)g(y2)} = 0⇔ Independence (ICA)

The algorithm: m12 ← m12 − µf(y1)g(y2)

m21 ← m21 − µf(y2)g(y1)
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Part I Growing up interest

mid 80’s–mid 90’s: Slow development:

Neural networks scientists were challenging some other

topics!

Mainly French scientists.

1988: J.-L Lacoume work based on cumulant.

Starting 1989: P. Comon and J.-F. Cardoso’s papers.

1994: Bell & Sejnowsky work.

From mid 90’s: Exploring interest.

1999: First international conference, ICA’99 (France),

collecting more than 100 researchers.

ICA2000 (Finland), ICA2001 (USA), ICA2003 (Japan) and

upcoming ICA2004 (Spain).
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Part II

Separability
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Part II Linear (instantaneous) mixtures

A B-- -s x y

s = (s1, . . . , sN)T : source vector.

x = (x1, . . . , xN)T : observation vector.

y = (y1, . . . , yN)T : output vector.

x = As: unknown mixing system.

y = Bx: separating system.
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Part II Linear (instantaneous) mixtures

A B-- -s x y

Main assumption: The sources (si’s) are
statistically independent.

Separability: Does the independence of the
outputs (ICA) imply the separation of the
sources (BSS)?
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Part II Counter-example

C --s y

s1 and s2 independent ∼ N(0, 1).

C an orthonormal (rotation) matrix.

Ry = E
{

yyT
}

= CRsC
T = CCT = I

⇒ y1 and y2 are independent.
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Part II Darmois’ Theorem (1947)







y1 = a1s1 + a2s2 + · · ·+ aNsN

y2 = b1s1 + b2s2 + · · ·+ bNsN

si’s are independent

y1 and y2 are independent

If for an i we have aibi 6= 0⇒ si is Gaussian.

⇓

If y1 and y2 are independent, a Non-Gaussian source
cannot be present in both of them.
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Part II Separability of linear mixtures

A B-- -s x y

X Linear mixtures are separable, provided that there is no
more than 1 Gaussian source ([Comon 91 & 94] inspired
from [Darmois 1947]):

Independence of
the outputs ⇐⇒

Separation of
the sources

X Indeterminacies are trivial: Permutation and Scale.
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Part II Geometric Interpretation [Puntonet et. al. GRETSI 95]
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Bounded sources:

ps1s2(s1, s2) = ps1(s1)ps2(s2)

ps2|s1(s2|s1) = ps2(s2)
⇒

The distribution of (s1, s2)
forms a rectangular region

x = As, A =

[

1 a

b 1

]
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Part II Non-Gaussianity

Non-Gassianity, isn’t it too restrictive?
Many practical signals (speech, PSK,
bounded signals, . . . ) are not Gaussian.
Cramer’s Theorem:

X = X1 + X2 + · · ·+ XN .
Xi’s independent.
X is Gaussian ⇒ All Xi’s must be
Gaussian.

Gaussian sources can be separated if there is
some time dependence (non-iid) or
non-stationarity.

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.15/39



Part II Independence versus Decorrelation

Question: Can we use decorrelation (2nd order
independence) for source separation? → NO!

Example:

xi’s are decorrelated (Rx = I).

B any orthogonal (rotation) matrix.

y = Bx⇒ Ry = BRxB
T = I⇒ yi’s

decorrelated.

X Decorrelation property remains unchanged
under any orthogonal mixing matrix.
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Part II PCA

Principle Component Analysis (PCA) = Karhunen-Loève
Transform = Hotelling transform = Whitening

Rx = E
{

xxT
}

: Covariance matrix of x.

E and Λ: Eigenvector and eigenvalue matrices of Rx.

W , ET : The whitening matrix.

y =Wx⇒ Ry = Λ (diagonal)
⇒ yi’s are decorrelated.

PCA is NOT sufficient for ICA (it leaves an unknown
rotation).
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Part II Another interpretation

y = Bx→ B =

[

1 a

b 1

]

X 2 unkowns (a and b) must be determined.

X Decorrelation property (E {y1y2} = 0) gives
only 1 equation ⇒ Not sufficient.

⇒ Decorrelation (2nd order independence) is not
sufficient ⇒ Higher Order Statistics (HOS).
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Part II Summary of Part II

A B-- -s x y

Linear mixtures can be separated (At most 1 Gaussian
source).

Remaining indeterminacies: Scale, Permutation.

Output independence is sufficient for source
separation.

Independence cannot be reduced to decorrelation.
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Part III

Some famous approaches for
solving BSS problem
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Part III Using Higher Order Statistics (HOS) techniques

4th order independence is sufficient.

Higher order characteristics of a random variable is usually

described using its cumulants.

cumulants: Coefficients of Taylor series of the second

characteristic function Ψx(s) = lnΦx(s) = lnE {esx}.

Cross-cumulants: Coefficients of Taylor series of

Ψx1x2(s1, s2) = lnE {es1x1+s2x2}.

4th order independence ≡ Cancelling Cum13(y1, y2),

Cum22(y1, y2) and Cum31(y1, y2).

Requires non-zero 4th order statistics, Only for linear

mixtures.
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Part III Mutual Information, an independence criterion

Independence of x = (x1, . . . , xN)
T⇔ px(x) =

∏N

i=1 pxi
(xi)

I(x) = KL

(

px(x)‖
N
∏

i=1

pxi
(xi)

)

=

∫

x

px(x) ln
px(x)

∏

i pxi
(xi)

dx

=
∑

iH(xi)−H(x)

H Shannon’s entropy→ H(x) = −E {px(x)}

Main property:

I(x) ≥ 0.

I(x) = 0 iff x1, . . . , xN are independent.
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Part III Minimizing output mutual information

∂
∂B
I(y) = E

{

ψy(y)x
T
}

−B−T .

ψy(y) , (ψy1(y1), . . . , ψyN
(yN))

T .

ψyi
(yi) , − d

dyi
ln pyi

(yi).

Steepest descent: B← B− µ ∂
∂B
I(y).

Equivarient algorithm [Cardoso&Laheld 96]:
B← B− µ∇BI(y)B

∇BI(y) =
∂
∂B
I(y)BT = E

{

ψy(y)y
T
}

− I.

Not applicable for more complicated mixtures
(I(y +∆)− I(y) =?).
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Part III Some definitions

Score function of a random variable x:

ψx(x) , −
d

dx
ln px(x)

For a random vector x = (x1, . . . , xN)
T :

Marginal Score Function (MSF):

ψx(x) , (ψx1
(x1), . . . , ψN(xN))

T , ψi(xi) , −
d

dxi
ln pxi

(xi)

Joint Score Function (JSF):

ϕx(x) , (ϕ1(x1), . . . , ϕN(xN))
T , ϕi(x) , −

∂

∂xi
ln px(x)

Score Function Difference (SFD):
βx(x) , ψx(x)−ϕx(x)

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.24/39



Part III Differential of mutual information

I(x+∆)− I(x) = E
{

∆Tβx(x)
}

+ o(∆)

For a differentiable multi-variate function:
f(x+∆)− f(x) =∆T · (∇f(x)) + o(∆)

SFD can be called the stochastic gradient of the
mutual information.
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Part III Some other ideas for source separation

X Maximizing Non-Gaussianity of the outputs.

x1 = a11s1 + a12s2 + · · ·+ a1NsN : each xi is
‘more Gaussian’ than all sources.

y1 = b11x1 + b12x2 + · · ·+ b1NxN : Determine
b1i’s to produce as non-Gaussian as possible
y1 ⇒ Separation.

Measure of non-Gaussianity: Neg-entropy.

Example: FastICA algorithm [Hyvärinen 99].
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Part III Some other ideas for source separation (continued.)

X Second order approaches (applicable for Gaussian
sources, too):

Exploiting time correlation

E {y1(n)y2(n)} = 0 and E {y1(n)y2(n− 1)} = 0.

Requires time correlation (non-applicable for iid
sources).

Exploiting non-stationarity: Joint diagonalization of
Covariance matrix [Pham 2001].

Requires non-stationarity.
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Part III Non-separable source

X Non-separable if ALL these three properties:

Gaussian.

iid.

stationary.
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Part III Summary of Part III

Algorithms based on output independence:

Cancelling 4th order cross-cumulants.

Minimizing mutual information.

Algorithms based on non-Gaussianity.

Second order algorithms:

Algorithms based on time correlation.

Algorithms based on non-stationarity.
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Part IV

Extensions to ICA
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Part IV Extensions to linear instantaneous mixtures

Complex signals.

Noisy ICA:

x = As+ n

Different number of sources and sensors:

Overdetermined mixtures.
Estimating number of sources?

Underdetermined mixtures.
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Part IV Convolutive Mixtures

Mixing System Separating System
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Part IV Convolutive Mixtures

Mixing System Separating System

PSfrag replacements
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X Separation system:
y(n) = B0x(n) +B1x(n− 1) + · · ·+BMx(n−M)

X Extension to the Widrow’s noise canceller system.
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Part IV Convolutive Mixtures

Mixing System Separating System

PSfrag replacements
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X Separation system:
y(n) = B0x(n) +B1x(n− 1) + · · ·+BMx(n−M)

X Extension to the Widrow’s noise canceller system.

X Convolutive mixtures are separable, too [Yellin,
Weinstein, 95]: Output independence→ Separation.
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Part IV Non-linear Mixtures

A B-- -s x y
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Part IV Non-linear Mixtures

F G-- -s x y

Blind Source Separation (BSS) and Independent Componen Analysis (ICA) – p.33/39



Part IV Non-linear Mixtures

F G-- -s x y

X In general, non-linear mixtures are not separable:

Output Independence ; source separation

X Independence is not strong enough for source
separation.
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Part IV Non-linear Mixtures

F G-- -s x y

How to overcome this problem?

Regularization techniques (smoothness)?

Structural constraints

Others (temporal correlation? non-stationarity?)
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Part IV PNL (Post Non-Linear) mixtures
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Mixing System¾ - Separating System¾ -

X Separability theorem [Taleb & Jutten, IEEE trans. SP, 99]:

The outputs are independent iff:

gi = f−1i

BA = PD

Provided that: The sources are really mixed (at least 2 non-zero

entries in each row of A).
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Part IV CPNL (Convolutive PNL) mixtures
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Part V

Applications, my works and
perspectives
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Part V Applications

Feature Extraction.

Image denoising (using noisy ICA methods).

Medical engineering applications (ECG, EEG, MEG,
Artifact separation).

Telecommunications (Blind Channel Equalization,
CDMA).

Financial applications.

Audio separation.

Seismic applications.

Astronomy.
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Part V My works, mainly at my PhD thesis

CPNL mixtures.

Gradient of mutual information (SFD):

General approach for any (separable) parametric model.

Gradient approach.

Minimization-Projection approach.

Special cases: Linear, convolutive and PNL.

Proof of separability of PNL mixtures.

A geometric method for separating PNL mixtures (compensating sensors’
nonlinearities before separation).

Post Convolutive mixtures and their properties.

Even smooth non-linear systems may preserve the independence.

(Not at my PhD thesis) Blind estimation of a Wiener telecommunication channel
(linear channel + nonlinear receiver).

Manuscript downloadable from:
http://www.lis.inpg.fr/theses
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Part V Perspectives

Continuation of my previous works

Writing 2 papers.

Adaptive algorithms.

Underdetermined mixtures: it seems that the minimization-projection
approach can be used for identifying (but not separating) such systems.

Working on PNL-L mixtures:

A
f1

fN
B-

-

-

-

-

-

-

-...
......

PNL mixtures: Compensating sensor non-linearities before separation.

Further work on developed algorithms (improvements, convergence analysis,
. . . )

Searching for £nding better (maybe optimal) SFD estimators.

A few other small ideas.

Working on audio source separation.
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