2.1

2.2

CUMULANT SPECTRA OF
mHOOE\»mHﬁO mHQZ>Hm

INTRODUCTION

In this chapter we are concerned primarily with the definitions and properties of mo-
ments, and cumulant spectra of stationary random processes. 'Although the value
of stochastic signals at each instant of time is not kriown exactly, their higher-order
statistica (moments and cumulants), when they exist, are multidimensional deter-
ministic functions that possess special symmetry properties. We start by defining
moments and a set of random variables, and by establishing their relationships.
This is followed by the definition and properties of moments, and cumulant spectra
of stationary random processes. Cumulant spectra of linear, non-Gaussian pro-
cesses are then discussed, as well as their similarities and differences with cumulant
spectra of nonlinear processes. Our primary goal in this chapter is to introduce all
the important definitions and properties associated with polyspectra that can be
found useful in applications of stochastic signal processing methods.

MOMENTS AND CUMULANTS

2.2.1 - Definitions

‘Given a set of n real random variables {z;,z3,...,2,), their joint moments of

order r = ky + k2 + ... + k, are given by [Papoulis, 1984]

Mom [z}',z87,...,z5 ) & E{zhizhs | 2t} =

lAluvawsO?:.Eu. Q.E....V ) : (2.1)
)t Ow /3" ... Own

W) Swys - Ew, =0
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where
@(wy,wa, - wn) 2 E{exp(i(wizs +waza + -+ +wazn))}
is 2.&_. joint characteristic function. E{-} denotes the omvanpwso: operation. For
example, for two random variables {z),z2}, we have the second-order moments
Mom([z}, z) = E{z1 - z2}, Mom (23] = E{z}} and Mom|[z3] = E{z3}).
Another form of the joint characteristic function is defined as the natural loga-
rithm [Papoulis, 1984) of &(wy, w3, .- wWa); i€

V(wy,wa, ... Wn) a In[®(w;,wa,. - ,wa)l. (2.2)
The joint " cumulants (also called
semi-invariants) of order r, O—_Bﬂnu..nw»...._a\w&. of the same set of random

variables, are defined as the coefficients in the Taylor expansion of the second char-
acteristic function about zero [Shiryaev, 1960; 1963; Brillinger, 1965; Rosenblatt,
1983; 1985); i.e., :

%-.@AE_.EN_..._E-—V . AN“V

ks kay & (_;
Cumlz} 25, zat) 2 (=5) me._:mewf:ms:-

. E-"Eu":.utaﬂo ]
Thus, the joint can be expressed in terms of the joint moments of a set of random

variables. For example, the moments

I

Mom(z,] = E{z}) my = Mom[zy,z:] = E{z}}

m
; Momizy,z1,z1] = E{z3} my = Mom(z;, z1,21,21) = E{z}}

m3

of the random variable {z,} are related to its cumulants by

2

i = Cumfz]=m ¢ = Cum[zy, z1] = ma2 — My
ca = Cumlr;,z;,z1]=m3— 3mamy + 2m3 (2.4)
ca = Cumlzy,zy,21,21) =My —4mam; = 3m2 4 12mymi - 6mj.

These relationships can be verified by substituting

, wi Gur )
OAELH_+~E_§~!.NI__..SN.:+ L. mg+ e
into (2.1), (2.2), (2.3) and working out differentiations about zero. If E{z;} =

- 2
my = 0, it follows that ¢y = mg, c3 = M3, and cq = mq — 3M3.

Example 2.1

Consider the three symmetric probability density functions (pdfs) shown in Figure
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2.1; namely, Laplace, Gaussian, and Uniform. Their moments m,, of order n =
1,2,3,4 can be generated from [Papoulis, 1984]

Mn ".\...ooh: \AHV dz

where f(z) is the probability density function (pdf). From (2.1), we compute the
characteristic function )

.

+00
B(w) = \ expljwx) f(z) dz.

—o0

The cumulants ¢,, n = 1,2,3,4 of the pdfs follow easily from the moments in (2.4).
Figure 2.1 also illustrates the moments and cumulants of the pdfs from order first
to fourth. Let us note that for the symmetric pdfs all m, and ¢, for n odd are
identical to zero and that for the Gaussian case all cumulants ¢, of order greater
than second (n > 2) are also zero. o

Example 2.2

Figure 2.2 illustrates three nonsymmetric pdfs; i.e., Exponential, Rayleigh, and K-
distribution [Watts, 1985], as-well as their moments and for orders n = 1,2,3,4.
[m]

2.2.2 Relationship Between Moments and Cumulants

The general relationship vopimo-. moments of {z},Z2,...,zn} and joint cumulants
O:-:Trau.. ..., Zn] of order r = n is given by [Leonov and Shiryaev, 1959; Brillinger,
1965; Rosenblatt, 1985]

O—.—B—H».Hn. sevy Hau = Mﬁlmvvl;ﬂ -1k
2.
MAHHHL.@*HHHL:.M*U_HH“L (28)
. i€s i€9 i€s, :
where the summation extends over all vw_.:so.sm (51,52,.- -, %), p=1,2,...,n,0f

the set of ::.nmol (1,2,...,n). For example, the set of integers (1,2,3) can be
partitioned into )
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Figure 2.1 The nth-order moments and cumulanis for n = 1,2,3,4 of the Laplace, Figure 2.2 The nth-order moments and cumulants for n = 1,2,3,4 of Exponential,
Gaussian, and Uniform Probability Density Functions (pdis) . Rayleigh, and K-distribution pdfs ’
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p=1 s ={1,2,3}
p=2 5§ = {1}, 83 =1{2,3}
s =1{2}, 83 ={1,3}
8 = *ww. 8 = .:.ww
p=3 & ={1}, . 8 ={2}, #u={]

and therefore (2.5) becomes

O:E—H_.HN.H& = MAH_HuHuv - GAHL . @A—Hnﬁuv - @*Huu . @An..nﬂuw Aw Qv
- mﬁﬂuv .NAH—HUVA—.NNAHuw .WAHuu .N*Huw. )

Clearly, (2.6) is identical to ¢c3 of (2.4) for £y = z2 = za. On the other hand, if we
are given {z,, 72,23, 24}, then all possible partitions of the set of integers (1,2,3,4)
is given in Table 2.1. As such, (2.5) takes the form shown in (2.7):

Cum(zy,z2,23,24] = E{z1z2z3z4) — E{z122} - E{z324} ‘\..

- M*H—Huw . NAHuHAw - mﬁhnﬁﬁw . Mﬁﬂxvn.uw

- h.?ﬂ; . W*Rnhunaw - @*Huu . @ﬁ.ﬂﬂﬂunaw
W*Huw . Nﬁﬂnunﬂaw - @AHAu . N*H—Huﬂuw )

+ 2E{z127) - E{z3} - E{z4) (27)
+2E{z1za} - E{zy}- WAH: +2E{z1z4} - E{z3) - E{za}
+wNAHuH;w . m*u:w . mﬁﬂuv + N@*Huﬂaw . N..nﬂuw . H*H»w
+NMAHuHuv . @AHL . m.*.ﬁaw .
—6E{x,} - E{za) - E{zs}- E{z4}.

- Two important observations can be made from (2.7). First, (2.7) becomes identical
to c4 of (2.4) if we assume ) = 22 = T3 = z4. Second, if the random variables have
zero-mean (i.e., E{z;}=0,i 1,2,3,4), then (2.7) turns out to be the well-known

expression

O:—:mH—.H»_H? HL = NAH—HuHuH;w - @mﬂ—ﬁuw . mﬁ.ﬁuﬂaw AN mv
—  E{zi1z3) - E{z3z4} - E{z1z4} - E{z223} '

The relationship (2.5) implies that the computation of joint of order r requires

knowledge of all moments up to order r.

2.2.3 Properties of Moments and Cumulants

The properties of moments and cumulants may be summarized as follows [Shiryaev,
1960; 1963; Sinai, 1963; Brillinger, 1965; Rosenblatt, 1983; 1985; Brillinger and

Rosenblatt, 1967; Rao and Gabr, 1984]:
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TABLE 2.1 ALL POSSIBLE PARTITIONS OF SET (1,2,3,4} NEEDED FOR
: COMPUTATION OF Cumlz, 22, za, 24].

p \ Partions I 52 83 34

1 1,234 L) [

1,2 34 ¢ ¢

1,3 24 ¢ ¢

14 23 ¢ ¢

e 2 1 234 ¢ ¢

2 134 ¢ ¢

3124 ¢ ¢

4. 123 ¢ ¢

1,2 3 4 ¢

1,3 2 4 @

14 2 3 ¢

3 24 1 3 ¢

34 1 2 @

2,3 1 4 ¢

4 1 2 3 4

1. Mom(a;z;,83%3,...,8nZs] =41 ...Gn Mom(z;,...,z,) and
Cumla;zy,a323,...,8n2,] = a1 ...6n Cum|zy,...,Z,]
where (a;, a3, .. ., a,) are constants. This follows directly from (2.1) and (2.5).

2. Moments and cumulants are symmetric functions in their arguments, e.g.,
Zo:..?..u..:nu_ = Mom([z3, z,,23) = Mom][z3, 2, z,], and so on.

3. If the random variables {zy,z3,...,%,} can be divided into any two or
more groups which are statistically independent, their nth-order cumu-
lant is identical to zero; i.e., Cumlzy,z3,...,z,] = 0 whereas, in gen-
eral, Mom(z;, z3,...,za) # 0. For example, if the two independent groups
are {z;,z2 ..J.H»u and {Zx41,.--,Tn}, then their joint characteristic func-
tion is ®(wy,waz,.--,wn) = Py(wy,....wa) - ®a(wrgrs--- wn).  On the
morn_. hand, their joint second characteristic function is W(wy,wa, ... ,wa) =
¥ (wy,...,wn) + @»AE».I, ...,wy). The proof of this property easily follows
if we substitute ¥(wy, ...,ws) and ®(wy,...,w,) into (2.3) and (2.1), respec-
tively. ‘

4. If the sets of random variables {£1,23,...,%2} and {y1.¥2,...,¥n} are inde-
pendent, then .

Cumizy +y1, 22+ y2,... 120 +Q=_ = Q:—:HH_.....HL + Cumlyy, .. o)
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whereas in general

Mom{zi + 11,....za +¥a] = E{(z1+un)(za+12) - (Zn + tn))
# Mom[zy,...,za} + Mom[yy, ..., ¥a).

However, for the random variables {y;,21,22,... ,Zn} we have that
Cum{z; + y1,232,...,%a) = Cum[z;, 23,...,2a) + O....:.F..H». cee)Zn)
and

Mom{z; + yi,23,. .., Za) H..Ko:.?:au.. .o i Zq] + Mom[yy, 23,..., Za).

5. If the set of random variables {z),...,zq} is jointly Gaussian, then all the
information about their distribution is contained in the moments of order
n < 2. Therefore, all moments of order greater than two (n > 2) have no
new information to provide. This lcads to the fact that all joint cumulants
of order n > 2 are identical to zero for Gaussian random vectors. Hence, the
cumulants of order m~ownm~ than two, in some sense, measure the non-Gaussian
nature (or nonnormaliiy) of a time series.

Example 2.3

Consider the random variables
i = yi + =i, i=123

where the joint probability density function of {y1,¥2,¥3} is non-Gaussian and
{z1, 22,3} is jointly Gaussian and independent from {y;,y2,v3}. Let us also assume
that E{y;} #0, E{z;} #£ 0 for i =1,2,3. From properties (4), (5) of cumulants, it
follows that

" Cumlzy, 22, 23} = Cum[yy, v2. ¥3]
because Cum[z;, £z, 23] = 0. On the other hand,

Mom(z),23,20) = Efa1-2 -2} = E{(n1 +21)(ya + 22)(v3 + 23)}

=" Momiy:, 2, ys] + Mom[zy, 22, z3)

+ Mom[y1,z2,y3] + Mom(zy,y2, ya] + Mom(z, z2,¥3]
+_So_.:?_..s_nu_+Zo:—?_.nu.uu_+ Zoaﬁu_.s.a&.

We see that if E{y;} = E{zi} = 0 for all i, then

Mom(z1, 22, 23] = Momlys, vz, ya] + Mom[z1, 23, z3].
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This simple example demonstrates one of the key motivations behind the use of
cumulants in signal processing problems; namely, their ability to suppress noise
(z:) when it is additive Gaussian. - u}

2.2.4 Moments and Cumulants of Stationary Processes

If {X(&)}, &=0,£1,£2,43,... s a real stationary random process and its mo-
ments up to order n exist, then .

Mom[X (k), X(k +7),..., X (k +.aHo__n E{X(k)- X(k+ 1) X(k+ razy)}

will depend only on the time differences 1y, 13,...,Ta-1, 73 =0,%1,£2,... for all
i. We now write the moments of a stationary random process as:

ME(TaT20 e s Tat) 2 E{X(E)- X(k+1) - X (k+ Tam0)) (2.9)

Similarly, the nth-order cumulants of {X(k)} are (n — 1)-dimensional functions
which we now write in the form:

E(T1a a0 sTnmt) 2 Cum[X(k), X (E+ 1), .., X(E + Tomy)]- (2.10)

Combining (2.5), (2.9), and (2.10), we obtain the following relationships between
moment and cumulant sequences of X (k):

.1st-order cumulants:

&f =mf = E{X(k)} (mean value) (2.11)

2nd-order cumulants:

(n)

m$(n) - (m§)? (covariance sequence)

mi(—n) - (mf)? = () (212)

i

where m§(r;) is the autocorrelation sequence.

3rd-order cumulants:

e5(n1, ) = m§(r, 1) - mi[mE(n) + mi(r2) + mi(ma = m)] + 2Ami)° (2.13)
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where m5(ry,73) is the 3rd-order moment sequence. This follows if we combine
(2.6) and (2.10).

4th-order cumulants: Combining (2.7) and (2.10), we get

G(rumym) = mi(ri,a,7s) = mi(n) -mi(rs = 72) - mi(r) - m3(rs = 1)

mE(ra) - m(m — 1) —mi[m3(ra— 11,73 — n)

+ m3(r, )+ BNAJ.#@ + m§(n, )]

+2.(mE)2[mE(r) + mE(ms) + mi(rs) + mE (7 = 1) + m(ra = )

+ m§(ra — )] - 8(m)".
(2.14)
If the process { X (k)} is zero-mean (m? = 0), it follows from (2.12) and (2.13) that
the second- and third-order cumulants are identical to the second- and third-order
moments, respectively. However, to generate the fourth-order, we need knowledge

of the fourth-order and second-order moments in (2.14).

The nth-order cumulant function of a non-Gaussian stationary random process

X (k) can be written as (for n = 3,4 only):

ﬂw—ﬁﬂ: T2y« ﬂ:l—v = ﬁ.—”ﬁﬂ—. T2+ ﬂ:lwv - smAﬂ—.ﬂu. erey .—..-I—V
where mZ(r1,...,Ta-1) i3 the nth-order moment function of X(k) and
mS (11,72, .1 Tna1) I8 the nth-order moment function of an equivalent Gaus-

sian process that has the same mean value and autocorrelation sequence -as
X (k). Clearly, if X (k) is Gaussian, mE(Ty,. ey Tel) = mS(r,...,Tn-1) and thus
AT Ta-1) = 0. Note, however, that this is only true of orders n = 3 and 4.

2.2.5 Variance, Skewness, and Kurtosis Measures

By puttingn = =73 =0in (2.12), (2.13), (2.14) and assuming mi = 0 we get

¥ = E{X(k)?’)=c(0) (variance)
v = E{Xk)}= ¢5(0,0) (skewness) (2.15)
= E{X'(k)}- 3[13)? = ¢5(0,0,0) (kurtosis).

Normalized kurtosis is defined as v§/Ivs)*. Equation (2.15) gives the variance,
skewness, and kurtosis measures in terms of cumulant lags.
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2.2.6 Time-Reversible Process

A process { X (k)} is said to be time-reversible if the probability structure of {X(—k)}
is the same aa that of {X(k)}. This implies that

QNAi:J......J.I—V“Qﬂ.ﬁlﬂ_.l.qd.....lﬂal—v Aw—@v

for L_,.mn_...amo_. values of 71, 72,...,Ta—1- If the nth-order cumulants of a process
satisfy (2.16), the process is time-reversible [Rao and Gabr, 1984]. Clearly, Gaus-
sian processes (n = 2) are om3?~n<o,4-mv~o due to the symmetry property of the
covariance function; i.e., c§(n) = c§(~71). Remember that higher-order (n>2)
cumulants of a Gaussian process are all zero.

2.2.7 0-6--0:5.,.?5»-

Suppose we are given stationary real random processes {X(k)}, {Y(k)}, {Z(k)},
k=0,%1,42,.... Their cross-cumulants may be defined as follows.

2nd-order cross-cumulants

nu-?.-v = O:B—X:&_v\:u +n))
(cross — covariances) (2.17)
eys(m1) = Cuml[Y(k), Z(k+ n)).
Thus, if the processes are zero-mean, s::.. cey(nn) = E{X(K)Y(k + n)} and
eys(n) = E{Y(K)Z(k + n)}.

u—.m.o-.mc,n cross-cumulants

ceys(ri,ms) = Cum[X(E),Y(k+mn), Z(k+ 7))

E{(X (k) = m)(Y(k + 1) — my{Z(k + 72) = m,)) (2.18)

where m, = E{X(k)}, my = E{Y(k)}, and m, = E{Z(k)}. For zero-mean pto-
ceases we have

cops(mym) = ELXY ( + )2k + ).

Additional cross-cumulants are, for example
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Cum[X(k),Y(k+ 1), Y(k + 1))
Cum[X(k), Y (k + 1), X (k + m3))

[l

coyy(T1,72)

nnnhad.ﬂuv Aw.uov

So, the nth-order cross-cumulant sequence of stationary processes {X;(k)}, i =
1,2,...,n is defined as

Coreren (711720 e e s Tnen) & Cum[Xy(k), Xa(k + 1), ., Xn(k + Taos)). (2:20)

These quantities become useful in monlinear system identification problems when
we have access to input and output measurements [Brillinger, 1965; Brillinger and
Rosenblatt, 1967; Brillinger, 1977)]. Essentially, we will use ¢z, «,,...,s. (11,1 Tnc1)
to test for the nonlinearity of a function of order n — 1.

Example 2.4

Consider the narrow-band process

Z(k) = X(k) cos (wok) +Y(k) sin (wek) o

where X(k),Y(k) are independent stationary random processes with
E{X(K)} = E(Y(¥) = 0, mi(r) = E(X(t)X(k + )} = mi(r), and
mE(ry, ) = E{X(K)X(k + 1) X (k + 12)} = mi(r1, m2). :
We now evaluate the autocorrelation and third-order moment sequence of Z(k).

The second-order moment is:

E{(X (k)cos(wo k) + Y (k)sin(wo k))-
(X(k + 7)cos(wo(k + 7)) + Y (k + r)sin(we(k + 7))} =

= m3(r) cos(we) = mi(r)

Mom[Z(k), Z(k + 7))

i

which is independent of k. Thus, {Z(k)} is a wide-sense stationary random process. )

However, the third-order moments are

Mom(Z(k), Z(k + 1), Z(k + 72))
= m5(ry, 72)[cos(wek) cos(wa (k + 1)) cos(wo(k + 72))

+ sin(wo k) sin(we (k + 1)) sin(w,(k + 72))]
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and the quantities in square brackets are dependent on k for 7y, ;. Hence {Z(k)}
is nonstationary in its third-order statistics. s]

2.2.8 Ergodicity and Moments

According to Papoulis [1984], a process {X(k)} is ergodic in the most general form

" if, with probability one, all its moments can be determined from a single observation.

In othef-words, the expected values E{-} (or ensemble averages) can be replaced
by time averages; i.e.,

~

S

E{X(E)- X(k 4 1)+ X(k+ Tac)} =< X(B) - X(k + Tay) >=

. 1 (2.21)
lim

+M
Moo 2M 41 M »Akv XAWL- ﬂ—v...kAknf.—.:l—v

k=~-M

‘where < - > is the time-average operator which has the same properties as the

ensemble average operation E{-} if the process is ergodic [Sinai, 1963].

We see from (2.21) that time-averages of higher-order moments are functions of
infinitely many random variables and, therefore, can be viewed as random variables
themselves. What ergodicity implies is that the time averages of all possible sam-
ple sequences are equal to the same constant which, in turn, equals the ensemble
average. Clearly, a process might be ergodic for certain higher-order moments and
not for others [Papoulis, 1984).

We shall not discuss here the various criteria for ergodicity related to time
averages of higher-order moments. Throughout this chapter we assume that if
the process is ergodic, then (2.21) holds for all orders up to n. This implies that
nth-order cumulants exist and can be generated from (2.5).

In practice, when we are given a finite length single realization of an ergodic
process, i.e., X(k), k= -M,...,0,...,+M, we cannot compute the limits of (2.21)
but the estimates

1
2M +1

+M
ST Xk X(k4Tany).  (222)
k=-M

< X(B)- - X(k +Tacy) >M =

The estimation of higher-order moments and thus of a stochastic process is a prob-
lem of statistics which will be examined in Chapter 4.
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CUMULANT SPECTRA

Suppose that the process {X(k)}, k=0,%1,£2,... is real, strictly stationary, with
nth-order cumulant sequence c5(71,. .., Tn—1) defined by (2.10).

2.3.1 Definition

Assuming that the cumulant sequence satisfies the condition

+00 +007"
D | e5(my.aact) | < 00
3= —00 Tawi=—00 '
or the condition
400 +o0
T o ) (1+ 15D} €5(r1s -2 Tam1) | <00 (2.23)
rI==00 Th~)=—00

forj=12,... ,n—1, the nth-order cumulant spectrum Cp (wy, - .. ,wn—t1) ol {X(k)}
exists, is continuous, and is defined as the (n - 1)-dimensional Fourier transform
of the nth-order cumulant sequence; ¢.g., —m-w_::,mo_.. 1965; Rosenblatt, 1983; 1985].
Note that (2.23) describe the usual conditions for a Fourier transform to be well
defined. The nth-order cumulant spectrum is thus defined:

400 400
Co(wiway--ywno1) = 2 S, dlrum.iTa)
Ty=—00 Tawl==00
exp{—j(win +war2a+ - + Wno1Tn-18) (2.24)

|wi] € = for i = 1,2,...,n—1and _E_+Eu+...+E=|__Ma.. .
In general, Cx{w1,wz,. .- ,wn—1) is complex, i.e., it has magnitude and phase

CZ(wiy-+ 1 Wn-1) = _QMAE_......E.TL_ oxvCew_nE_.....EaL:. (2.25)
The cumulant spectrum is also periodic with period 27, i.e.,
Ci(wy,. .- wn-1) = Calwn +2%, ... W1 +27).

The notion of considering a spectral representation for a cumulant function as shown
in (2.24) (cumulant spectrum) is acknowledged to be due to Kolmogorov [Shiryaev,
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1960; 1963]. The term “higher-order spectrum” is due to Brillinger [1965] and
Akaike [1966]. The term “polyspectra” is due to Brillinger {1965].

2.3.2 Alternative Definition

The physical significance of cumulant spectra becomes apparent when expressed in
terms o.a the components dZ(w) of the Fourier-Sticltjes representation of {X(k))}
(Cramer ipectral representation) [Rosenblatt, 1983; 1985).

+o00

X(k) = ww expljwk} dZ(w) (2.26)

for all k, where

E{dZ(w)} =0

Ci(w1,. .., Wn-1)dw «erdwpn_y, for
wytwrt...F...Wna +w,=0
0, for

wytwe+...+wp + wp ﬂmc
(2.27)

It is therefore apparent that the cumulant spectrum of order n represents the cu-

Cum[dZ(w1),dZ(w3), .. .,dZ(wn W=

mulant contribution of n Fourier components, the sum of whose frequencies equal
zero. Although the cumulant spectrum of order n is a function of n — 1 vari-
ables wy,ws,. .. ,Wn-1, it should be kept in mind that there is a hidden variable
Wp = =Wy — ... —=Wn_1 in (2.27) [Rosenblatt, 1983).

2.3.3 Special Cases of Cumulant Spectra

The power spectrum, bispectrum, and trispectrum are special cases of the nth-order
cumulant spectrum defined by (2.24) [Brillinger and Rosenblatt, 1967 a and b].

Power Spectrum: n=2

+00

Ciw)= Y, &(r) exp{-ilwm)}, 4 (2.28)

r=-00

jw] < 7 where cj(r) is the covariance sequence of {X(k)} given by (2.12). If the
process { X (k)} is zero-mean, then (2.28) becomes the Wiener-Khintchine identity.
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From (2.12) and (2.28) we have

4 = -0
Fw) = Ci(-w) . (2.29)
Ci(w) 2 0 (real, nonnegative function)

Bispectrum: n=3

+ 00 400 ..
Ci(wy,wq) = MU M c&(n, 1) exp{—j(win + wama)} (2.30)

TI=—00 Ty= =00

—F.—_ M x, _Eu_ < ﬂ._t: +E»_ <

where c§(1, 72) is the third-order cumulant sequence of { X (k)} described by (2.13).
Important symmetry conditions follow from the properties of moments and (2.13):

g(r,n) =ci(-m,n — 1)
(s —n,-n)=cj(n-—n,-n) (2.31),

(-n,2-mn)

BNA.J. ._-uv

As a consequence, knowing the third-order cumulants in any of the six sectors, |
through VI, shown in Figure 2.3(a), would enable us to find the entire third-order
cumulant sequence. These sectors include their boundaries so that, for nxw:.v_m.
sector I is an infinite wedge bounded by the lines n, = 0, and =7 1,72 2 0.

m

vl

(a)

Figure 2.3 (a) Symmetry regions of third-order moments. (b) Symmetry regions of the
bispectrum.
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The definition of the bispectrum in (2.30) and the properties of third-order
cumulants in (2.31) give

Ci(wi,wa) = Cj(wa,w)
= C§*(~wa,—wy) = C5(—w1 —w2,w2)
(2.32)
= Ci(w),~w —ws) = C5(—w) ~wa,wi)
~ = uhAE»..IE_ ‘|Euv.

Thus knowledge of the bispectrum in the triangular region wp > 0, wy > w,

w; + wy < x shown in Figure w.u?w./i;o:o:mr for a complete description of the
bispectrum. For real processes, the bispectrum has 12 symmetry regions.

Trispectrum: n=4

+00 +00 +o0
Cilwrwawa)= Y. X O ci(n mm)exp{—j(win +wam +ws7a)}

)= ~00 73=—00 T3 =—00

(2.33)
_E—_ M ﬂ._.Ew_ M ﬂ._Eu_ M ﬂ.._«s: + wa +Eu_ M x

where c(m1, 72, 73) is the fourth-order cumulant sequence given by (2.14).

From the definition (2.14) of fourth-order cumulants, a lot of symmetry prop-
erties can be derived for the trispectrum, similar to those given in (2.32) for the
bispectrum. For example, since the moments and are symmetric functions in their

arguments, we have

C§ (w3, wi,w3) = C§ (w3, wz,w))

Cf (w1,w32,w3)

Ci(wy, w3, w1) = C§(wy,w3,w1) (2.34)

Ci(wa,wy,w2) = etc.

Pflug et al. [1992] point out that the trispectrum of real processes has 96 symmetry

regions.

2.3.4 Variance, Skewness, and Kurtosis Measures

Inverse Fourier transformation on (2.24) yields
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. 1 1 4w 4
naﬁﬂu..ﬂu...._ﬂ:luv" ANH.V_\I—.\ v\ ....\ QMAEn.....E‘-Imv
-r Jex - . :
exp{i(wimi + ... +WnoiTa-1))

dwy -+ dwn—1.
. (2.35)
By choosing n = 2,3,4 and setting () =0, i=12,...,n— 1, we get

. +x -
c3(0) = mw.. C3(w)dw (variance 77)
w +¥ +n )
50,0 = g [ [ Calorwnindss (ahowness 1)
1 +r +x + %
50,00 = G \ . \ O (wn, wa wa)dudwadug  (kurtosis 75)

: (2.36)
which are the measures also described in (2.15). However, the measures in (2.36)
are expressed in terms of cumulant spectra.

2.3.5 Time-Reversible Processes

An alternative way to (2.16) of testing whether a given stationary random process
{X (k)} is time-reversible is by examining the imaginary part of its cumulant spectra
[Rao and Gabr, 1984]. From the condition of time-reversibility (2.16) and the
definition of cumulant spectra (2.24), it follows that a process {X(k)} is said to
be time-reversible if the imaginary parts of all its cumulant spectra are identically
zero. Since a Gaussian process has all its cumulant spectra of order n > 2 equal
to zero and the imaginary part of its 9nd-order spectrum (power spectrum) is also
zero, we conclude that a Gaussian process is time-reversible.

2.3.6 Non-Gaussian White Noise Processes

If {W(k)} is a stationary non-Giaussian procéss with E{W(k)} =0 and with nth-

order cumulant sequence
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(i, Taml) = Cum(W(k),W(k+mn),... W(k+ Ta-1)]
v (2.37)
= QM- %Aﬂ_.ﬂw.....ﬂ:luv
where 7¥ is constant and 8(r1,72,..., Tn1) is the (n — 1)-dimensional Kronecker

delta function, then {W(k)) is said to be white of order n [Brillinger, 1965; Gian-
nakis and Mendel, 1989]. Of course, one need not assume all 7 are finite. The
cumulaiits ¥ cannot all be zero (assuming they exist) for n > 2. Combining (2.37)
and (2.24) we obtain A

Cr(wiy-+ Wa=1) = Tn (2.38)

which-is a flat spectrum for all frequencies. Hence, consideration of (2.36), (2.37),
and (2.38) leads to the following important special cases of white noise higher-order
spectra.

7 (W)
CY¥ (w1, w3)

QM\AE_.EPEGV

4%  (Power Spectrum)
7Y (Bispectrum) - (2.39)
9¥ (Trispectrum)

where 7Y is the variance, 73 - the skewness, and 7¥ - the kurtosis of {W(k)}.

Example 2.5

Consider the simple example {Lii and Rosenblatt, 1988)

X(k) = W(k) - W(k~1), k=0,£1,%2,...

where {W(k)} are independent,. identically distributed (i.i.d.) with E{W(k)} =0,
E{W?*(k)} = 1and E{W3(k)} = 1. The covariance sequence of {X(k)} is given by

CE{X(E)X(k +7)}
E{(W(k) - W(k— D))W(k+7) = W(k+7-1))
26(r) = 8(r — 1) = &(r +1)

e&(r) = m§(7)

where 6(r) is the Kronecker delta function. Thus,

2, r=0
g(n)=¢ -1, r=lr=-1
0, otherwise.
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On the other hand, the third-order cumulants of {X(k)} are computed from

Gln,m)=mi(r,m) = E{X(E)X(E+m)X(E+))
E{(W(k) - W(k = 1)) (W(k+7) - W(k+n -1))

(W(k+ )~ W(k+n-1))}

i

which leads to

Gnm) = — B(n-1m)+8n—1Ln=1)-6nmn-1)

+ &T‘— + H. ...wv + %AJ +1,mn+ c - m?.—,.ﬂu + :
Figure 2.4 illustrates the covariance and third-order cumulant sequences of {x(&)}.
It is important to note that although the skewness c3(0,0,0) = 7§ = 0, the third-
order cumulants c§(ny, 73) are generally different from zero.
The power spectrum of the random process is given by

41
3 e5(r) exp(—jwr)

r=-1 .

{2 — 2 cosw)

V Ci(w)

]

whereas its bispectrum is given by

i

_jon | jletea) _jtea) | giten)
5 (w1,w2) Alng R A e A T

o gt nt......v
= Aw&.um:.E_ + 2jsinwg — 2jsin(w) + Ean

= 2j Am:_r: + sinwy — sin{w); + Euvv.
We observe that the real part of the bispectrum is zero and the imaginary part
equals 2(sinw; + sinw, — sin{w; + E»vv. Figure 2.4 also illustrates the power spec-
trum and the bispectrum of {X(k)}. This example illustrates that zero skewness
does not necessarily imply zero bispectrum because the skewness ofa nmn__w._
‘contributes to the real part of the bispectrum only. o

2.3.7 One-Dimensional Slices of Cumulants and their Cumulant
Spectra

Since higher-order cumulant spectra are multidimensional functions, their compu-
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tation may be impractical in some applications due to excessive number crunching.
Nagata [1970] suggested the use of certain 1-d slices of multidimensional cumulant
sequences, and their 1-d Fourier transforms, as ways of extracting useful information
from higher-order statistica (or moments) of non-Gaussian stationary processes.
Consider a non-Gaussian process {X(k)} with third-order cumulants given by
(2.13); i.e., :
c&(n, ) = Cum{X(k), X(k+n), X(k+m)}. (2.40)

One-diffensional slices of c§(r1,7;) can be defined as shown in (2.41):
ria(r) 2 Cum{XTRNX(E),X(k+7)) = c5(0,7)
rfa(r) & Cum{X(k), X(k+7), X(E+ )} = c5(r,7) (2:41)
ralr) & ra(-1)

which represent two straight lines with slopes 90° and 45°, respectively. Further-
more, we can define

= a .un x *
-»._Aﬂv ibu mﬁﬂuLAﬂv + J.uA.ﬂ:. ANANV

a....“__Al meLT.V - 1m.u?i
which correspond to even and odd functions, respectively. Il we define as 1-d

spectrum
400

R5 )& Y r5.a(r) exp(—jur) (2.43)

T= =00

it follows from (2.42) and (2.43) that

+00 :
R5, )= Y {85,(r)cos(wr) — ja3,,(7)sin(wr)}. (2.44)

7=~—00

Since #3,(0) = 15 and ew._ﬁs =0, the effective contribution 1o the skewness comes
only from the real and symmetrical part. Furthermore, from (2.41), (2.43), and
(2.30), we obtain the relation between R ;(w) and the bispectrum C% (w1, ws); viz.

4

B =5 [ Gy, (2.45)

-

which' represents the integrated bispectrum along a frequency-line. Nagata (1970}
points out that because the real part of C3(w1,w3) is not positive definite, even
if R§;(w,) is very small, we cannot conclude that the value of R7 |(w) at w = w,
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(d) Imaginary Bispectrum, Im {Ci e, w)}

Figure 2.4 (a) The covariance sequence, (b) power spectrum, {c) third-order cumulants,
and (d) bispectrum of the random process X (k) = W{k) — W(k —1). Note that the real

bispectrum is zero.
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does not play a major role in determining the skewness. Gurbatov et al. [1987]
point out that the imaginary part of R5,(w) corresponds to “energy transfer” in
the spectrum. A positive value of I [R5 (wo)] indicates energy transfer to the
frequency w = w,, and a negative value indicates the leakage of energy from w,.

If we now consider the fourth-order cumulants of {X(k)} given by (2.14), we
can define the following 1-d slices:

1u._?.v.- 2 Ozaﬂkﬁwv.u:kv. X(k), X(k + ﬂ& = ¢c§(0,0,7) = 5(0, r,0) = ¢f(+,0,0)

ra,2(r) "2 Cum{X (k), X (k), X(k + ), X(k + 1)} = ¢5(0, 7, ) = c§(r,0,7)
: ’ =ci(n,1, 0)

ra(r) 2 Cum[X(k), X(k+ ), X(E¥ 1), X(k+ 1) =d(r,7,7)

. . (2.46)
and their functions
Bu(r) = Slra()+rialn)] (even)
Falr) = lsa(r) = malr)] (odd) (247)
. 85,(r) = raa(r). (even)
Useful 1-d spectra based on 4-th order cumulants (2.46) are the following:
g0
$aw) = D ria(r)exp(=jwr)
o (2.48)
= 3 {s5a(r)cos(wr) + jgi(r)sin(wr))
and
400
Riaw) = 3 ria(r)exp(=jur)
. oo (2.49)
= MU 85 5(T)cos(wr).

T==—00

Since 83 ;(7) is an even sequence, its resulting spectrum Rj ,(w) is real.
Combining (2-48), (2.46), and (2.33), we obtain the relation between R} ,(w) and
Cj(w1,w3,w3). That is :

w +ﬂ +l
400 = o [ Ci(w,01,02) doy dos (2:50)

where Cj§(w,01,03) can be replaced by Ci(o1,w,02) or Ci(01,02,w). Because
¢5.(0) = 0, the net contribution to kurtosis comes from 55 ,(7) and thus




30 Chapter 2

from the real part of RS, (w). From (2.49), (2.46), and (2.33) we obtain

~ +x 4+
Ristr+un) =5 [ [ Ctwnunus) dloy —un) din. (251)
-t -
Therefore, RS ;(w,) represents the integrated ..luvon:.::._ on the plane w; w3 = w,
or equivalently on the planes wy + w3 = w, OF W3 + W3 = W,.

Example 2.6

Let us consider the process { X (k)} described in Example 2.5. One-dimensional
slices of its third-order cumulant sequence (shown in Figure 2.4) are obtained by
utilizing (2.41); i.e.,

ﬂn.-A.ﬁv .luﬁﬂv + QT. + :
ﬂ_.uﬁﬂv .&A.ﬁv -— %A.ﬁ + —V.

From these expressions and (2.42) we obtain

sii(r) = 0

g3a(7) =§(r-1)+é(r+1)
which is consistent with the fact that the real part of the bispectrum of {X (k)} is
zero. Applying to this example equation (2.43) or (2.44) we obtain

fa(w) = —j(-sin(w)) + sin(-w)

= 2jsinw.
This result is verified if we substitute in (2.45) the bispectrum of {X(k)}; i.e.,

Qw?.i = 2j(sinw + sino - sin(w + 7)) v
and perform the integration
) = & [ C3w.o) do
' 2 J_» .

= 2jsinw.
Figure 2.5 illustrates the 1-d cumulant slices and Rj ,(w) of the process {X(k)}.O
2.3.8 Why Cumulant Spectra and not Moment Spectra?

Cumulant spectra can be found more useful in the processing of random signals
than moment spectra. The reason is threefold: (a) cumulant spectra of order n > 2
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are zero if the process is Gaussian and nonzero cumulant spectra provide a measure
of extent of non-Gaussianity; (b} cumulants provide a suitable measure of extent
of statistical dependence in time series; (c) the cumulant spectrum of the sum of
two independent, nonzero mean, stationary random processes equals the sum of
their individual cumulant spectra. However, this latter property does not hold in
the case of moment spectra. Finally, Brillinger (1965] points out that ergodicity
assumptions are met more easily in estimating cumulants rather than moments.

=

2.3.9 The nth-Order Coherency Function

A normalized cumulant spectrum or the nth-order coherency index is a function
that combines two completely different entities, namely, the cumulant spectrum
of order n, C(w,... ,wn-1) and the power spectrum Cj(w) of a process. The
nth-order coherency index is defined as

Calwr,wa, ... wn)

Pi(w1,w3,...,wau1) & T
Tﬁe_v. Ci{wa) - Cf(wn1) - Cf(wr +wa -+ +wny)
(2.52)

The third-order (n = 3) coherency index is also called bicoherency (normalized bis-
pectrum) [Hasselman et al., 1963; Raghuveer and Nikias, 1985]. The nth-order co-
herency index is very useful for the detection and characterization of non-linearities
in time series via phase relations of their harmonic components. Also, the nth-order
coherency index becomes :w.o_.._..._.m:. studying the phase response of non-Gaussian lin-
ear processes, i.e., processes whose spéctra are modeled by the same linear filter.
The magnitude of the nth-ordeér coherency, |PZ(wy,...,wn—1)|, is called the coher-
ence index.

2.3.10 Cross-Cumulant Spectra

The cross-cumulant spectra are defined as the multidimensional Fourier transforms
of the corresponding cross-cumulants. Formation of the Fourier transform of the
relationship (2.20) gives

a +00 +o0
Qu—hu:.ul AF..—.EN.....E:I—Vu MU te MU

NET0  tecimeco A (2.53)

Cryza (T1372y 000y Tamp)exp{—~jlwin + warg + - - +wooiTnoy))
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Figure 2.5 Random process X(k) = W(k)-W(k-1) described in Example (2.6) (a)
1-d slices of its third-order cumulants, (b) the corresponding 1-d spéctrum.

which is the nth-order cross-cumulant spectrum of processes {(xi(k)},i=12,...,n
The summability of the cross-cumulant sequence is assumed. For example, com-
bining (2.18) and (2.53) we get a cross-bispectrum of {X(k)} and {Y(k)}; i.e.,
[Brillinger, 1977

400 +00 .
Copplwnwr) = Y. D ceyy(T1, T2)exp{—j(wr 1 +wama)}. (2.54)

71 ==00 T3=~00
On the other hand, combining (2.17) and (2.53) we obtain

+ o0

Cry(w) = MU cey(T)exp{—jwr} (2.55)

7= =00

which is the cross-spectrum (2nd-order) between {X(k)} and {Y(K)}.
Akaike [1966) defines as “mixed spectrum” the quantity
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400

Beyy(w;o) 8. M Cype(0, ) exp{—jwr} (2.56)
r=—00 4 .\..\

as it relates to a spectral function mixed in time and frequency. The “mixed

spectrum” By, (w; o) gives the cross-spectrum between {X(k)} and {Y (k)Y (k+7)}

under the assumption of being stationary. The cross-bispectrum Cyyz(wr,w2) and

the mixed spectrum B,,.(w; o) satisfy the relationship [Akaike, 1966]

.

+o0 ’
Cyys(wr,wa) = MU Byye(wa; o)exp{—juw,c}. (2.57)

0% =00

Extensions of the “mixed -von:::.... definition (2.56) to higher-order cases will be
straightforward.

2.3.11 Linear Phase Shifts

Consider a zero-mean stationary random process {X(k)} with finite moments up
to order n. Let us form a new process Y(k) = X(k — D) where D is a constant
integer. From (2.5), (2.9), and (2.10) we conclude that
Cum[X(k), X(k+mn),.... X(k+ Ta-1)] =
Cum[Y(k),Y(k+m),...,Y(k+ ma-1)] (2.58)
= B“Ai._.ﬂn-....ﬂ.:luv
which implies that processes {X(k)}, {Y (k)) have identical cumulant spectra. In

other words, cumulant spectra suppress linear phase shifts.
On the other hand, if we form the signals X;(k) = X (k) for all i # 2, Xa(k) =
Y (k) = X(k — D), and generate the cross-cumulants
Coye.. (T T2 Tacr) = Cum[X(E),Y(k+71), X(k +72),. ., X(k +7o-1)]
we obtain
Coyss(Ti T s Tac1) = a1, 2~ D73, Taon)- (2.59)

Combining (2.53) and (2.59), we obtain

Quen:.nAE—_E». oostina1) = CR(wr,wa, .o Wnot) .GNUAH.EMUM. (2.60)
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From (2.59) and (2.60), it is apparent that cross-cumulants and their corresponding
cross-spectra do preserve linear phase shifts. Specifically, the cross-cumulant spec-
trum between {X(k)} and {X(k — D)} equals the cumulant spectrum of {X(k)}
times a linear phase shift component with slope determined by D. Extensions of
(2.59) to higher-order cross-cumulant spectra are straightforward. This key prop-
erty of cross-cumulants will be considered further later in this book in the study of
time delay estimation and array processing problems (Chapter 8).

2.3.12 Complex Regression Coefficients

The complex “regression” coefficient, R(w), of a process {X (k)} on the process
{Y(k)}, is defined by Brillinger [1977] as

Rw) 2 mw%& : (2.61)

where Cpy(w), C:z(w) are the cross-spectrum and power spectrum, respectively.
Higher-order complex “regression” coefficients may be defined as

a Cies, AETEuV ) )
Ri(wi,wy) = Illrullo.:?_vo.&?nv. . (2.62)
and
Ra(unwa) & Geez{onn) (2.63)

Qnﬂu?_:.r\»v.
Regression coefficients (2.61), (2.63) become useful, as we see later, in linear and
non-linear system identification problems _..a:_m cumulant spectra of input/output
measurements [Rosenblatt, 1985].

2.3.13 Complex Processes

If a given process {X(k)} is complex, its nth-order cumulant sequence has more
.:.w:o:amami:o:mo_vo:&:mo:iro_.miov_wnnprnnoa:mw:oa..q.. ovm_.n:o?

For example, 3rd-order cumulant sequences may be defined as

1>

(n,m) Cum(X (k), X (k + 1), X (k + )]
Cum[X (), X" (k + 1), X (k + )} (2.64)

Cum(X(k), X*(k +7), X" (k+ 7))

>

(r1,m)

e

nm:?‘_ ,T2)
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omn.. and their bispectra will follow from (2.30). Each one of these bispectrum
functions will be different from the others. In general, there are 2" different nth-
order complex cumulant definitions.

Example 2.7

Let us consider the process

X (k) = a exp{jwok}

where w, is constant and a is a random variable with E{a} = 0, E{a®} = Q,
E{a®} = 0 and E{a*'} = u. Its second-order moments are given by (2.9).

Mom{X (k), X*(k+7)] = E{X(k)X*(k+ 1))
= Q exp{j(—woT)} (2.65)
= (7),
which implies that the process is wide-sense stationary.

Two of the sixteen possible definitions of the fourth-order moments of {X(k)}
are

Mom[X (k), X*(k+ 1), X(k + 73}, X*(k + m3)}

1 exp{jwo(ma — 1 — 13)}

mi(7, 72, 73)

(2.66)
and

Mom [X(k), X(k + 71), X(k + 12), X*(k + m3)] =
= exp{j(2wok)} - exp{jwo(ra + 11 — 1)) =
mi(k; 71,72, Ta).

Here we see two different fourth-order moment sequences of the process where only
the first one is stationary. Combining (2.65) and (2.66) with (2.14), we obtain

~ di(num ) = (48— 3Q%) expljwe(ra — 11 — 13)}. (2.67)
Combining (2.46), (2.47), and (2.67), we can get the following 1 — d slices of
ﬁﬂﬁﬂ:ﬂw_ﬂuv“

r5a(r) = 7 exp{j(-w,7)} .
ris(r) = 7expli(-war)} : (2.68)
ria(t) = v

where v = p — 3Q?. If we substitute (2.68) into (2.47), we obtain
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Y nxvC.AIE.._.:
0
7.

.m.-ﬂl
aw._ (r)
a“.»?.v

Substituting these results into (2.48), we see that

R (W)= w - C5(w)

where Cj(w) is the power spectrum of the process. o

2.3.14 'The Wigner Bispectrum

Gerr {1988] introduced the third-order Wigner time-frequency distribution or Wigner
bispectrum which is a mixed time-frequency representation that extends the stan-
dard Wigner distribution in the same way that the bispectrum extends the power
spectrum. The Wigner time-frequency distribution of a real-valued signal {X(k)}
may be defined as

Wi(t.w) = \ xﬁ+a?:x:+.zé‘§1¢a¢% (2.69)

where a(T) 2 r/2,b(r) £ ;/2. It {X (1)} is a zero-mean stationary random process,

then

E{W;(t,w)} .\ c3(r) exp{—jwr}dr (2.70)

= O.MAEV
where ¢5(7) is the covariance function and Cj(w) is the power spectral density of
{X(t)}). Analogous to (2.69), the Wigner bispectrum is defined as [Gerr, Smm_‘

Wa(t,w,w2) 2 \ \ XC +a(n, )X+ b(r,m)) X(t + e(n, 1)) (2.71)
- exp{—j(wi +w2)T1 — jwarz}dndr

where the lag functions are given by

a(n,m) = -3m - 3™

br,m) = MJ - MJ

1
1
2
+
e
3

o(m.m) =3 3
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It is easy to see from.(2.71) that

E{Wa(t,wi,w)} = ,\\.nm?.__.: + 1) - exp{—j(w + wa)7i — jwar}dridry
= C5(w1,w2)

(2.72)
where ¢§(71, 13), C§ (w1, ws) are the third-order cumulants and bispectrum of {X'(¢)},
respectively.

The Wigner bispectrum may prove useful for extracting ::ﬁ.?a.ﬁ:m phase in-
formation or phase coupling between frequency components, as well as for detection,
parameter estimation, and classification of deterministic signals in stochastic noise.

CUMULANT SPECTRA OF NON-GAUSSIAN LINEAR PROCESSES

Let {X(k)} be a zero-mean non-Gaussian process with all its moments finite up to
order nth (stationary to order n) and with cumulant spectrum C7 (w1, wa, ... \Wn-1)-
Assume that {X (k)] is the input to a linear time-invariant. (LTI) system described
by

400
Y(k)= Y h(k-i)X(0) (2.73)
where
a1l [ .
h{k) = Py H(w) exp{jwk}dw (2.74)

is the impulse response of the system and H(w) its frequency responsc function.
The LTI system is assumed to be stable; i.e., its impulse response is absolutely

summable
. 400

S k)| < oo

=00

2.4.1 Cumulant Spectra of LTI Systems

Brillinger and Rosenblatt {1967 a and b] established that the nth-order cumulant
spectra of the input {X(k)} and output {Y(k)} are related by

H*(wy+ - +waa1)

. QHAE_......E,.LV.

Cl(wr, .- wn1) = H(w1) - H(w) -+ H(wn-1)

(2.75)




