"Overcomplete Sparse Decomposition"

Massoud BABAIE-ZADEH

Signal Decomposition

Decomposition of a signal x(t) as a linear combination of a set of known signals:

$$x(t) = \alpha_1 \, \varphi_1(t) + \dots + \alpha_m \, \varphi_m(t)$$

- Examples:
 - □ Fourier Transform ($\phi_i \rightarrow \text{complex sinusoids}$)
 - Wavelet Transform
 - DCT
 - **-** ...

Signal Decomposition

Decomposition of a signal x(t) as a linear combination of a set of known signals:

$$x(t) = \alpha_1 \, \varphi_1(t) + \dots + \alpha_M \, \varphi_M(t)$$

- Terminology:
 - Atomic Decomposition (=Signal Decomposition)
 - \Box Atoms $\rightarrow \phi_i$
 - □ Dictionary → Set of all atoms: {φ₁, φ₂, ...}

Discrete Case

$$x(t) = \alpha_1 \, \varphi_1(t) + \dots + \alpha_M \, \varphi_M(t), \quad t = 1, \dots, N$$

Time
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$

$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \dots + \alpha_M \quad \underline{\varphi}_M$$

Matrix form

Time
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$

$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \dots + \alpha_M \quad \underline{\varphi}_M$$

$$\mathbf{x} = \begin{bmatrix} \varphi_1 & \cdots & \varphi_M \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_M \end{bmatrix} \longrightarrow \mathbf{\Phi} \mathbf{\alpha} = \mathbf{x}$$

$$N \times M \quad M \times 1 \quad N \times 1$$

Complete decomposition: M=N

Time
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$

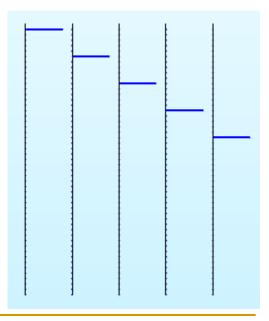
$$\mathbf{x} = \alpha_1 \quad \varphi_1 \quad + \dots + \alpha_M \quad \varphi_M$$

- M=N → Complete dictionary → Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

Dirac Dictionary:

$$\underline{\varphi}_{k}(n) = \begin{cases} 1 & n = k \\ 0 & n \neq k \end{cases}$$

$$\Rightarrow \alpha_{k} = x(k)$$



Complete decomposition: M=N

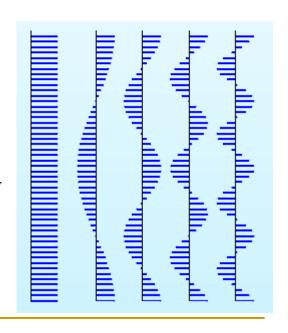
Time
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$

$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \cdots + \alpha_M \quad \underline{\varphi}_M$$

- M=N → Complete dictionary → Unique set of coefficients
- Examples: Dirac dictionary, Fourier Dictionary

Fourier Dictionary:

$$\underline{\varphi}_k = \left(1, e^{\frac{2k\pi}{N}}, e^{\frac{2k\pi}{N}}, \dots, e^{\frac{2k\pi}{N}}\right)^T$$



Over-complete decomposition: M>N

Time
$$\begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ \vdots \\ x(N) \end{bmatrix} = \alpha_1 \begin{bmatrix} \varphi_1(1) \\ \varphi_1(2) \\ \varphi_1(3) \\ \vdots \\ \varphi_1(N) \end{bmatrix} + \dots + \alpha_M \begin{bmatrix} \varphi_M(1) \\ \varphi_M(2) \\ \varphi_M(3) \\ \vdots \\ \varphi_M(N) \end{bmatrix}$$

$$\mathbf{x} = \alpha_1 \quad \underline{\varphi}_1 \quad + \dots + \alpha_M \quad \underline{\varphi}_M$$

- M > N
- Over-complete dictionary
- Under-determined linear system: $\Phi \alpha = \mathbf{x}$
- Non-unique α

Overcomplete Sparse Decomposition: Motivation

$$\mathbf{x} = \alpha_1 \, \underline{\varphi}_1 + \dots + \alpha_m \, \underline{\varphi}_m = \left[\underline{\varphi}_1, \dots, \underline{\varphi}_m\right] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix} = \mathbf{\Phi} \, \mathbf{\alpha}$$

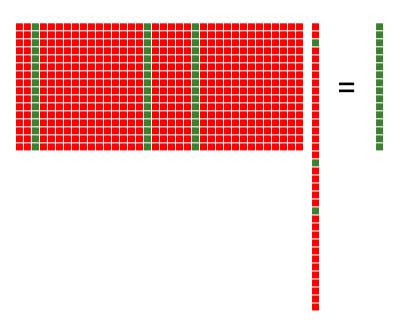
Example:

- A sinusoidal signal, $sin(\omega_0 t)$, \rightarrow Fourier Dictionary
- A signal with just one non-zero value, δ(t-t₀), → Dirac Dictionary
- How about the signal: $sin(\omega_0 t) + \delta(t t_0)$?
- A larger dictionary, containing both Dirac and Fourier atoms?
 → Non-unique α ⊗
- Sparse solution of $\Phi\alpha = \mathbf{x}$

Overcomplete Sparse Decomposition

$$\Phi \alpha = x$$

$$\alpha_1 \varphi_1 + \dots + \alpha_M \varphi_M = \mathbf{x}$$



Mathematical Abstraction

 Under-determined System of Linear Equations (USLE)

- M unknowns
- N equations
- M>N
- Sparse solutions?

Example (2 equations, 4 unknowns)

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

Some of solutions:

$$\begin{bmatrix} 0 \\ 0 \\ 1.5 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 5 \\ 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -0.75 \\ 0.75 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ -3 \\ 1 \end{bmatrix}$$
Sparsest

Two main issues

- Uniqueness?
- How to find the sparse solution?

Uniqueness of the sparse solution

x=As, n equations, m unknowns, m>n

Theorem (Donoho 2004): if there is a solution s with less than n/2 non-zero components, then it is unique under some mild conditions.

Sparsity Revolution!

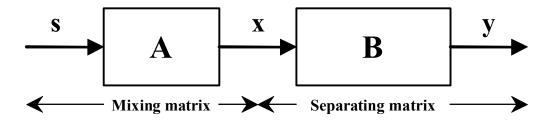
Examples of Applications

Application 1:

Blind Source Separation (BSS) and Sparse Component Analysis (SCA)

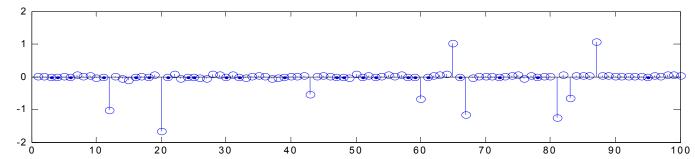
Blind Source Separation (BSS)

- Source signals s₁, s₂, ..., s_M
- Source vector: $\mathbf{s} = (s_1, s_2, ..., s_M)^T$
- Observation vector: $\mathbf{x} = (x_1, x_2, ..., x_N)^T$
- Mixing system \rightarrow **x** = **As**

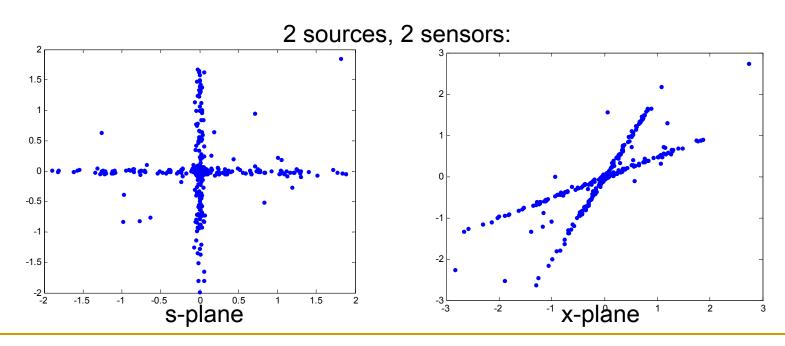


Goal → Finding a separating matrix y = Bx

Sparse Sources



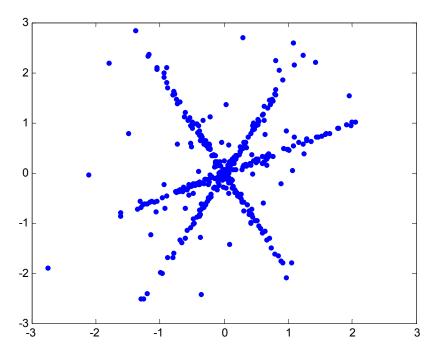
Note: The sources may be not sparse in time, but sparse in another domain (frequency, time-frequency, time-scale)



Sparse sources (cont.)

3 sparse sources, 2 sensors

Sparsity ⇒ Source Separation, with more sensors than sources?

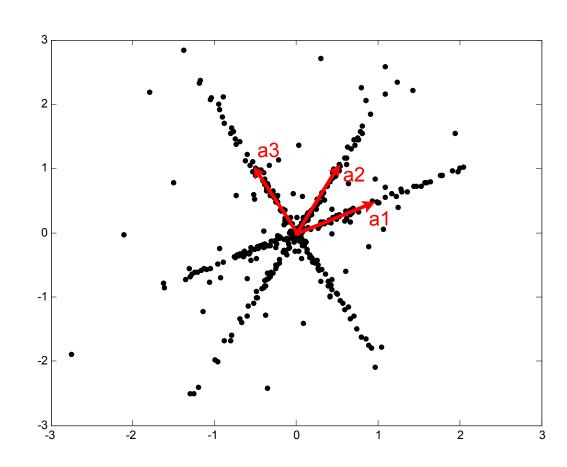


Estimating the mixing matrix

$$A = [a_1, a_2, a_3] \Rightarrow$$

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + s_3 \mathbf{a}_3$$

- ⇒ Mixing matrix is easily identified for sparse sources
- Scale & Permutation indeterminacy
- ||a_i||=1



Restoration of the sources

A known, how to find the sources?

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad or \quad \begin{cases} a_{11}s_1 + a_{12}s_2 + a_{13}s_3 = x_1 \\ a_{21}s_1 + a_{22}s_2 + a_{23}s_3 = x_2 \end{cases}$$

Underdertermined SCA

Application 2:

Error Correcting Codes

Coding problem

- $\mathbf{v} \rightarrow \text{code vector (length n)}$
- H → Parity check matrix, (n-k)×n
- **Hv**=0
- ullet **e** \rightarrow error
- x=v+e → received message
- r=Hx=H(v+e)=He → Syndrom
- Correcting errors: He=r → USLE

Application 3:

Compressed Sensing

Compressed Sensing

Why to record a large samples of a signal, and then compress it? → requires Expensive A/D

One-pixel camera (Rice university)

Other Applications

- Image Denoising
- OCR
- Sampling Theory

...

How to find the sparse solution

How to find the sparsest solution

- **A.s** = \mathbf{x} , n equations, m unknowns, m>n
- Goal: Finding the sparsest solution
- Note: at least m-n sources are zero.

Direct method:

- Set m-n (arbitrary) sources equal to zero
- Solve the remaining system of n equations and n unknowns
- Do above for all possible choices, and take sparsest answer.
- Another name: Minimum L⁰ norm method
 - □ L⁰ norm of s = number of non-zero components = $\Sigma |s_i|^0$

Example

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$\binom{4}{2}$$
 = 6 different answers to be tested

■
$$s1=s2=0 \Rightarrow s=(0, 0, 1.5, 2.5)^T \Rightarrow L^0=2$$

■
$$s1=s3=0 \Rightarrow s=(0, 2, 0, 0)^T \Rightarrow L^0=1$$

■
$$s1=s4=0 \Rightarrow s=(0, 2, 0, 0)^T \Rightarrow L^0=1$$

■
$$s2=s3=0 \Rightarrow s=(2, 0, 0, 2)^T \Rightarrow L^0=2$$

■
$$s2=s4=0 \Rightarrow s=(10, 0, -6, 0)^T \Rightarrow L^0=2$$

■
$$s3=s4=0 \Rightarrow s=(0, 2, 0, 0)^T \Rightarrow L^0=2$$

■ ⇒ Minimum L⁰ norm solution \rightarrow **s**=(0, 2, 0, 0)^T

Drawbacks of minimal norm L⁰

$$(P_0)$$
 Minimize $\|\mathbf{s}\|_0 = \sum_i |s_i|^0$ s.t. $\mathbf{x} = \mathbf{A}\mathbf{s}$

- Highly (unacceptably) sensitive to noise
- Need for a combinatorial search:

 $\binom{m}{n}$ different cases should be tested separately

Example. m=50, n=30,

$$\binom{50}{30} \approx 5 \times 10^{13}$$
 cases should be tested.

On our computer: Time for solving a 30 by 30 system of equation=2x10⁻⁴

Total time $\approx (5x10^{13})(2x10^{-4}) \approx 300 \text{ years!} \rightarrow \text{Non-tractable}$

A few faster methods

Method of Frames (MoF) [Daubechies, 1989]

- Matching Pursuit [Mallat & Zhang, 1993]
- Basis Pursuit (minimal L1 norm → Linear Programming) [Chen, Donoho, Saunders, 1995]
- Our methods

Method of Frames (Daubechies, 1989)

Take the minimum norm 2 (energy) solution:

$$(P_2)$$
 Minimize $\|\mathbf{s}\|_2 = \sum_i |s_i|^2$ s.t. $\mathbf{x} = \mathbf{A}\mathbf{s}$

Solution: pseudo inverse:

$$\hat{\mathbf{s}}_{MoF} = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T \right)^{-1} \mathbf{x}$$

- Different view points resulting in the same answer:
 - Linear LS inverse

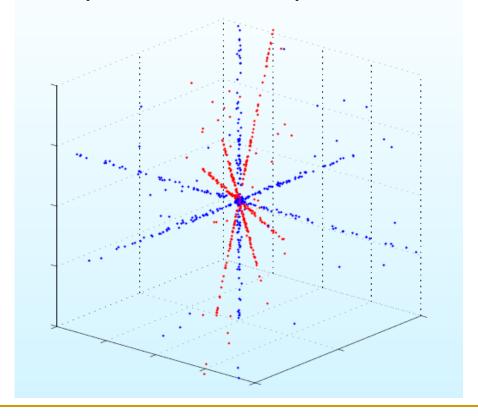
$$\hat{\mathbf{s}} = \mathbf{B}\mathbf{x}, \quad \mathbf{B}\mathbf{A} \approx \mathbf{I}$$

- Linear MMSE Estimator
- MAP estimator under a Gaussian prior $\mathbf{s} \sim N(0, \sigma_s^2 \mathbf{I})$

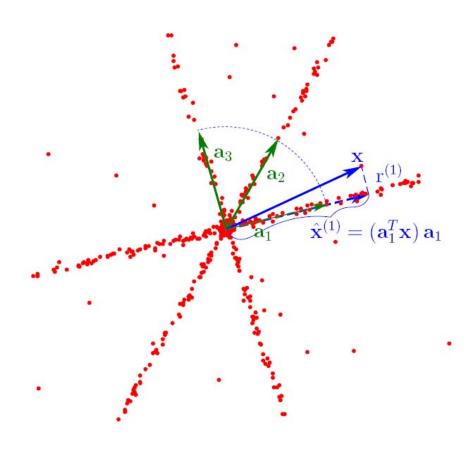
Drawback of MoF

- It is a 'linear' method: s=Bx
 - ⇒ s will be an n-dim subspace of m-dim space
- Example:3 sources, 2 sensors:

■ Never can produce original sources

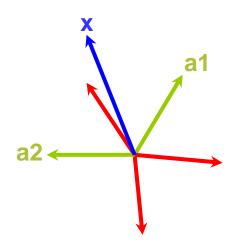


Matching Pursuit (MP) [Mallat & Zhang, 1993]



Properties of MP

- Advantage:
 - Very Fast
- Drawback
 - A very 'greedy' algorithm
 → Error in a stage, can
 never be corrected →
 Not necessarily a sparse solution



Minimum L¹ norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

$$(P_1)$$
 Minimize $\|\mathbf{s}\|_1 = \sum_i |s_i|$ s.t. $\mathbf{x} = \mathbf{A}\mathbf{s}$

- MAP estimator under a Laplacian prior
- Theoretical support (Donoho, 2004):

For 'most' 'large' underdetermined systems of linear equations, the minimal L¹ norm solution is also the sparsest solution

Minimal L¹ norm (cont.)

$$(P_1)$$
 Minimize $\|\mathbf{s}\|_1 = \sum_i |s_i|$ s.t. $\mathbf{x} = \mathbf{A}\mathbf{s}$

- Minimal L¹ norm solution may be found by Linear Programming (LP)
- Fast algorithms for LP:
 - Simplex
 - Interior Point method

Minimal L¹ norm (cont.)

- Advantages:
 - Very good practical results
 - Theoretical support
- Drawback:
 - Tractable, but still very time-consuming

Iterative Detection-Estmation (IDE)- Our method

- Main Idea:
 - Step 1 (Detection): Detect which sources are 'active', and which are 'non-active'
 - Step 2 (Estimation): Knowing active sources, estimate their values
- Problem: Detection the activity status of a source, requires the values of all other sources!
- Our proposition: Iterative Detection-Estimation

→ Activity Detection → Value Estimation

Thank you very much for your attention