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Signal Decomposition

Decomposition of a signal x(t) as a linear
combination of a set of known signals:

X(t)=ay o1 (t) +-+am on (t)

Examples:
a Fourier Transform (¢; — complex sinusoids)

o Wavelet Transform
o DCT
(|



Signal Decomposition

Decomposition of a signal x(t) as a linear
combination of a set of known signals:

X() =y o () +---+apm o ()

Terminology:

o Atomic Decomposition (=Signal Decomposition)
o Atoms — ¢

o Dictionary — Set of all atoms: {¢4, ¢,, ...}



Discrete Case
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Matrix form
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Complete decomposition: M=N

(x| | @ ] on (@)
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M=N — Complete dictionary — Unique set of
coefficients

Examples: Dirac dictionary, Fourier Dictionary

Dirac Dictionary:

1 n=k
Qk(n):{ )

0 n=xk

= a = x(K)




Complete decomposition: M=N
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M=N — Complete dictionary — Unique set of

coefficients

Examples: Dirac dictionary, Fourier Dictionary
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Over-complete decomposition: M>N
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M>N
Over-complete dictionary

Under-determined linear system: ®o=x
Non-unique o



Overcomplete Sparse Decomposition:
Mottvation

X=o, ¢+ +a, @, :[Ql""’gm} = Da

Example: -7

A sinusoidal signal, sin(o,t), — Fourier Dictionary

A signal with just one non-zero value, 5(t-t,), — Dirac
Dictionary

How about the signal: sin(w,t)+o(t-t) ?

A larger dictionary, containing both Dirac and Fourier atoms?
— Non-unique o ®

Sparse solution of @a=X
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‘ Overcomplete Sparse Decomposition




Mathematical Abstraction

Under-determined System of Linear
Equations (USLE)

AS=X

M unknowns

N equations

M>N

Sparse solutions?
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Example <2 equations, 4 unknowns>
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Two main issues

Uniqueness?
How to find the sparse solution?

'Y



Uniqueness of the sparse solution

X=AsS, n equations, m unknowns, m>n

Theorem (Donoho 2004): if there is a solution
s with less than n/2 non-zero components,
then it is unique under some mild conditions.

Sparsity Revolution!
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Examples of
Applications



Application 1:

Blind Source Separation
(BSS) and Sparse
Component Analysis
(SCA)



Blind Source Separation (BSS)

Source signals s,, S, ..., Sy,

Source vector: s=(s, S,, ..., Sy)'
Observation vector: X=(X,, X5, ..., X\)'
Mixing system — x = As

S X y
—>» A +—> B —>

< Mixing matrix —»>L&— Separating matrix _>

Goal — Finding a separating matrix y = Bx

ARY%



Sparse Sources
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Note: The sources may be not sparse in time, but sparse in another domain
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Sparse sources (cont.)

3 sparse sources, 2 Sensors

Sparsity = Source Separation,
with more sensors than
sources?
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HEstimating the mixing matrix

A=la, a a] =

X=s,a,+S,a,+S;a,

= Mixing matrix is easily
identified for sparse 4l
sources

Scale & Permutation Y
indeterminacy .

llayl[=1




Restoration of the sources

A known, how to find the sources?

] s,
dy, &, a3 s _|:X1:| or {a1131+a1252+a1333:x1
, | =
| Ay Ay B3 s X Ay;S) 85, T8,35; = X,
|3

Underdertermined SCA
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Application 2:

Error Correcting Codes
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Coding problem

v — code vector (length n)

H — Parity check matrix, (n-k)xn
Hv=0

e — error

X=vV+e — received message
r=Hx=H(v+e)=He — Syndrom

Correcting errors: He=r — USLE
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Application 3:

Compressed Sensing
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Compressed Sensing

Why to record a large samples of a signal,
and then compress it? — requires
Expensive A/D

One-pixel camera (Rice university)



Other Applications

Image Denoising
OCR
Sampling Theory



How to find the sparse
solution



How to find the sparsest solution

A.s = X, n equations, m unknowns, m>n
Goal: Finding the sparsest solution
Note: at least m-n sources are zero.

Direct method:

o Set m-n (arbitrary) sources equal to zero

o Solve the remaining system of n equations and n unknowns
o Do above for all possible choices, and take sparsest answer.

Another name: Minimum L° norm method
a L% norm of s = number of non-zero components = X|s;|°
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Example
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@] =6 different answers to be tested
s1=s2=0 = s=(0, 0, 1.5, 2.5)T = L0=2
s1=s3=0 = s=(0, 2,0, 0)" = .0=1
s1=s4=0 = s=(0,2,0,0)T = 9=1
s2=s3=0 = s=(2,0,0,2)T = | 0=2
s2=s4=0 = s=(10,0,-6,0)" = L9=2
s3=s4=0 = s=(0,2,0,0)" = L%=2

= Minimum L° norm solution - s=(0, 2, 0, 0)T



Drawbacks of minimal norm L.
(P,) Minimize [s| =>|s|" st x=As

Highly (unacceptably) sensitive to noise
Need for a combinatorial search:

m
(nj diffetent cases should be tested separately
Example. m=50, n=30,

50
(30) ~5x10" cases should be tested.

On our computer: Time for solving a 30 by 30 system of equation=2x10-4

Total time ~ (5x1013)(2x10-4) ~ 300 years! — Non-tractable



A few faster methods

Method of Frames (MoF) paubechies, 1989]
Matching Pursuit [Mallat & Zhang, 1993]

Basis Pursuit (minimal L1 norm — Linear
Prog ramming) [Chen, Donoho, Saunders, 1995]

Our methods
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Method of Frames (Daubechies, 1989)

Take the minimum norm 2 (energy) solution:
(P,) Minimize [s| =>|s[* st x=As
Solution: pseudo inverse: |
Svor =AT (AAT) x
Different view points resulting in the same answer:

LS

o Linear LS inverse s=Bx, BA~I
o Linear MMSE Estimator

o MAP estimator under a Gaussian prior s~N (0,051)
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Drawback of MoF

It is a ‘linear’ method: s=Bx
s will be an n-dim subspace of m-dim space

Example: A

3 sources, 2 sensors:

= Never can produce
original sources

\RJ



‘ MatChlﬂg Pur Sult <MP> [Mallat & Zhang, 1993]
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Properties ot MP

Advantage:
o Very Fast

Drawback

o A very ‘greedy’ algorithm
— Error in a stage, can
never be corrected —
Not necessarily a sparse
solution



Minimum L! norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

(P) Minimize |s|, =) |s| st x=As

MAP estimator under a Laplacian prior

Theoretical support (Donoho, 2004):

For ‘most’ ‘large’ underdetermined systems of linear
equations, the minimal L' norm solution is also the sparsest
solution
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Minimal L! norm (conz.)

(P) Minimize |s|, =) |s| st x=As

Minimal L' norm solution may be found by
Linear Programming (LP)

Fast algorithms for LP:
o Simplex
o Interior Point method



Minimal L! norm (conz.)

Advantages:

0 Very good practical results
o Theoretical support

Drawback:
o Tractable, but still very time-consuming
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[terative Detection-Estmation (IDE)- Our method

Main Idea:

o Step 1 (Detection): Detect which sources are ‘active’, and which
are ‘non-active’

o Step 2 (Estimation): Knowing active sources, estimate their
values

Problem: Detection the activity status of a source,
requires the values of all other sources!

Our proposition: lterative Detection-Estimation

—> Activity Detection —» Value Estimation ——
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Thank you very much for your attention



