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Part |

Problem Statement

and

Uniqueness
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‘ Problem statement

Underdetermined System of Linear equations (USLE):

A§=x
v \

m x 1 nx1

n equations
m unknowns
m>n

= Infinitely many solutions!
What is the sparsest solution?
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Example (2 equations, 4 unknowns)

S
1 2 1 1]s, 4
L 1 2 —2} S, {—2}
_54_
Some of solutions:
0| [5] [ 2 ] [o] [2] 7[6]
0 1 1 2 0 0
15| |-3| " |-075| [0 "|O0| |-3
25 |0] |075] |0] |-2 |1
|

Sparsest
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Issues

Applications?
Uniqueness? — Yes! =Useful
How to find the sparsest solution?

Stability (sensitivity to noise)
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Uniqueness of the sparse solution

x=As, n equations, m unknowns, m>n

Theorem (Gorodnitsky & Rao 1997, Donoho 2004,
Gribonval&Nielson2003, Donoho&Elad2003): if there is a
solution s with less than or equal n/2 non-
zero components, then it is unique under
some mild conditions.

Sparsity Revolution!
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Part Il

Examples

of applications of

Sparse solutions of USLE’s
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Application 1:

Signhal decomposition

using overcomplete
dictionaries
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Signal Decomposition

Decomposition of a signal x(t) as a linear
combination of a set of known signals:

X(t) =ag o1 (t) +-+ am o (t)

Examples:
o Fourier Transform (¢, > complex sinusoids)

o Wavelet Transform
o DCT
a
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Signal Decomposition

Decomposition of a signal x(t) as a linear
combination of a set of known signals:

X(t) =y (t) +---+apm oy ()

Terminology:

o Atomic Decomposition (=Signal Decomposition)
o Atoms — o

o Dictionary — Set of all atoms: {¢4, ¢, ...}
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Discrete Case

X)=a1 () +--+ay on ), t=1

Time

X(2)
X(3)

_X(N)_

D)

I @ (1) ]
@ (2)
¢ (3)

+t+ay | oy Q)

_¢1(N)_
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Matrix form

x@®) ] [ 2@ [ ou (@) ]
Time| x(2) ?(2) ov (2)
X3 |=a| ¢(3) |[++ay| o)
J : : :
X(N) ] [ e(N) ] | ou (N) |
X =, @ +ot oy Oy
e
cln o] | o [@e=s
ay | i

NxM Mx1 Nx1
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Complete decomposition: M=N

Time

@)
X(2)
X(3)

_X(N)_

X

—-¢HCD ]
»(2)
@ (3)

:al

@ (N) |
2

+-ta,

_Q%ACD._
o (2)
P (3)

9w (N) |

tot oy Py

M=N — Complete dictionary — Unique set of

coefficients

Examples: Dirac dictionary, Fourier Dictionary

Dirac Dictionary:

fk(n)

:{

= o = x(K)

1 n=Kk
0 n=xk
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Complete decomposition: M=N

Time

x| | 2@ |
x(2) ¢ (2)
X(@3) |= o (01(3)

X(N) | [e(N) ]
X =a @

+-ta,

I Py (1)
o (2)
P (3)

9w (N) |

tot @y Py

M=N — Complete dictionary — Unique set of

coefficients

Examples: Dirac dictionary, Fourier Dictionary

D =

Fourier Dictionary:

2kz 2Kz,
1 eN eN ..

2krx
N
, €

T
(Nl)j
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Over-complete decomposition: M>N

(xO) ] [ @ | oy @) |
Time| x(2) ?.(2) Py (2)
X@) |[=a| @,3) |+--+ay| ¢u ()
J : : :
| X(N)|  [&(N) ou (N)
X = @ +ot ay Py

M >N
Over-complete dictionary

Under-determined linear system: ®o=x
Non-unique a
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Overcomplete Sparse Decomposition:
Motivation

X=o,¢++a, ¢, :[Ql,...,gm] : |=Da

Example:

A sinusoidal signal, sin(oyt), — Fourier Dictionary

A signal with just one non-zero value, 6(t-t;), — Dirac
Dictionary

How about the signal: sin(w,t)+5(t-ty) ?

A larger dictionary, containing both Dirac and Fourier atoms?
— Non-unique o ®

Sparse solution of ®a=x
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Do =x
Q@+t am Pm =X

‘ Overcomplete Sparse Decomposition
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Application 2:

Blind Source Separation
(BSS) and Sparse
Component Analysis
(SCA)
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Blind Source Separation (BSS)

Source signals s4, S,, ..., Sy
Source vector: s=(s4, S,, ..., Sy)'
Observation vector: x=(X,, X, ..., Xy)"

Mixing system — x = As

S X y
—» A I G —»

h Mixing matrix * Separating system ﬁ

Goal — Finding a separating system y = G(x)
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Sparse Sources

Note: The sources may be not sparse in time, but sparse in another domain
(frequency, time-frequency, time-scale)

2 sources, 2 sensors:
T T 1 3 T

2, ‘
v .
1.5- -
} 2 ) i
1- ." ° - ®
<« . / )
05 . 3 f b L e ™ *
d . % * ..ﬁ“
. ) “ [ )
0-%0 o Spo Bge and s AW B iy e, Cees - 0- o N -
[ ] * ”‘
05- . - >
o o° -1 o" * .' -
1 - - a S"
3
1.5- . - 2 -... :
-2‘ :. ‘ ° [ ]
2 15 1 0.5 0 0.5 1 15 2 3 5 ; : 1 2 3
s-plane x-plane
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Sparse sources (cont.)

3 sparse sources, 2 sensors

[ ) ° .o
2 .': o.'
S . 4 .
1- °® e oo
\ [ e
Sparsity = Source Separation, o o v""
with more sensors than , ;/ : N
-
sources? SN
od ~.
2 °® .
31 I
-3 2 1 0 1 2 3
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HEstimating the mixing matrix

A=Ja,a, a;] =

0- ° _
= Mixing matrix is easily
identified for sparse 4 ]
sources
Scale & Permutation P .
indeterminacy . .
||a|||=1 _3\ | | | | | |
-3 2 1 0 1 2 3
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Restoration of the sources

A known, how to find the sources?

_ s | - -
dy, d, a5 s |— X or {31151 T 8,5, +a35; = X
, | =
|8y Ay B3 s X5 Ay;S) F8ppS; T 8,353 = X,
|3

Underdertermined SCA
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Application 3:

Compressed Sensing
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Traditional Sampling vs. Compressed Sensing

Traditional Signal Acquisition:

Sampling

Analog

Compression

Non-Compressed

Compressed Sensing (CS)

Compressed
Sensing

Analog

Compressed

Digital

Vv

Compressed
Digital
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CS: Sample — Measurement

Sample Measurement
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‘ CS: A (smaller) set of random measurements

(- T D
= 1t measurement —! x1:=cp11s1+cp1232+...+ Q4 Sy

= 2" measurement — 1 X,!= QPypq S4+ Py Sy F.ut Qg Sy

= nt" measurement — X”,:z Q1S+t PpSot... QS
)
n<m =USLE
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‘ CS: A (smaller) set of random measurements

Measurement Measurement
matrix \ vector
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‘ CS: A (smaller) set of random measurements
Ds = x
:
= ¥ . ., — sparsifying transform:
s =Y%0,

where 0 is sparse

U

(® V) 6=Xx
(USLE with sparsity)

mx
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Application 4.

Error Correcting Codes

(Real-field coding)
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Coding Terminology

u=(u,,..., u,) — the message to be sent (k symbols)
G — Code Generator matrix (nxk, n>k)

v =(vq,..., v,) — Codeword:

v=G.u
(adding n-k “parity” symbols)

H — Parity check matrix ( (n-k)xn):
HG=0

v is a codeword if and only if: H.v=0
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‘ Error Correction

v Error-prone |r=v+e
channel .

Vv

= vsent, r=v + e received
(e is the error — assumed sparse)

» Syndrome ofr—» s =H.r
—~ s=H.(vte)=H.e

— USLE
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‘ Error Correction

The receiver:
o Receives r = v+e
o Computes s =H.r
o Finds sparse solution of USLE H.e=s

o = Error Correction
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Sparsity of e?

v | Error-prone |r=v+e
| channel .
i B ot
i
(n = k) xN i A
i N

= Galois fields (binary) codes < small probability of error

= Real-field codes < Impulsive noise, Laplace noise
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Summary of Part 11

Atomic Decomposition
on over-complete dictionaries

Real field
Compressed sensing codes

Underdetermined SCA /

Finding sparsest solution of «—_

an USLE T~

~
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Part Il
HOW

to find the
Sparsest Solution?
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How to find the sparsest solution

A.s = X, n equations, m unknowns, m>n
Goal: Finding the sparsest solution
Note: at least m-n unknown are zero.

Direct method:

o Set m-n (arbitrary) unknowns equal to zero

o Solve the remaining system of n equations and n unknowns

o Do above for all possible choices, and take the sparsest answer.

Another name: Minimum L° norm method
o LY norm of s = number of non-zero components = X|s|°
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Example

w
=

1 2 1 1
1 -1 2 -2

wvw v um
w N
(|
|
N
1

4

(;j =6 different answers to be tested
s1=s2=0 = s=(0,0,1.5,2.5)T = L0=2
s1=s3=0 = s=(0,2,0,0)T = L9=1
s1=s4=0 = s=(0,2,0,0)T = L9=1
s2=s3=0 = s=(2,0,0,2) = L0=2
s2=s4=0 = s=(10,0,-6,0)7 = L0=2
s3=s4=0 = s=(0,2,0,0)T = L0=2

= Minimum L° norm solution — s=(0, 2, 0, 0)T
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Drawbacks of minimal norm I."

(P,) Minimize s| =>|s;| st x=As

Highly (unacceptably) sensitive to noise
Need for a combinatorial search:

(r:j diffetent cases should be tested separately
Example. m=50, n=30,

50
(30) ~5x10" cases should be tested.

On our computer: Time for solving a 30 by 30 system of equation=2x10-4

Total time = (5x1013)(2x104) ~ 300 years! — Non-tractable
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Some 1deas for solving the problem

Method of Frames (MoF) paubechies, 1989]
Matching Pursuit maiiat & zhang, 1993]

Basis Pursuit (minimal L1 norm — Linear
Prog ramming) [Chen, Donoho, Saunders, 1995]

SLO
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ldea 1 (obsolete):

Pseudo-inverse
[Daubechies, 1989]

42/77



Method of Frames Daubechies, 1989)

Use pseudo-inverse: .
Swor = AT (AAT) " x
It is equivalent to minimizing the L2 (energy) solution:

(P,) Minimize HsHZ:Z\Si\Z s.t. x=As

Different view points resulting in the same answer:

LS

o Linear LS inverse s=Bx, BA~I
o Linear MMSE Estimator

o MAP estimator under a Gaussian prior s~ N(0,071)
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Drawback of MoF

It is a ‘linear’ method: s=Bx
s will be an n-dim subspace of m-dim space

Example:
3 sources, 2 sensors: '

N :A*..;Ir‘";' g
= Never can produce | o \% 5
original sources ot PR iAE

"'-+.__\._._i__,.-"
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|dea 2:

Matching Pursuit
[Mallat & Zhang, 1993]
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‘ Matching Pursuit @\/[P) [Mallat & Zhang, 1993]

46/77



Properties of MP

Advantage:
o Very Fast

Drawback

o A very ‘greedy’ algorithm
— Error in a stage, can
never be corrected —
Not necessarily a sparse
solution
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Variants

OMP: Orthogonal MP [tropp&Gilbert, IEEE Tr. On IT, 2007]

StOMP: Stagewise MP [Donoho et. al., TechReport,
2006]

CoSaMP: Compressive Sampling Matching
Pursuit [Needell&Tropp, Appl. Comp. Harmonic Anal., 2008]
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ldea 3:

Minimizing L1 norm
[Chen, Donoho, Saunders, 1995]
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Minimum I.! norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

= Minimum norm L1 solution:

(P) Minimize ||s| =) |s,| st x=As

= MAP estimator under a Laplacian prior
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Minimal L' norm (conz.)

(P) Minimize ||s|, =) |s,| st x=As

Minimal L' norm solution may be found by
Linear Programming (LP)

Fast algorithms for LP:
o Simplex
o Interior Point method

A theoretical guarantee for finding the sparse
solution, under some limiting conditions
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Theoretical Support for BP: Mutual Coherence

Mutual Coherence [Gribonval&Nielsen2003,
Donoho&Elad2003]: of the matrix A is the maximum

correlation between its columns

M =max<a;,a, >= maxaa

1# ] I¢=j

For an A (n x m) with normalized columns:
M>—

f
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Theoretical Support for BP: Theorem

Theorem [Gribonval&Nielsen2003, Donoho&Elad2003]:
If the USLE As=x has a sparse solution s such that

then it is guaranteed that BP finds this solution.

Loosely speaking: BP is guaranteed to work
were there is a “very very” sparse solution.
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Example

m=1000 unknowns, n=500 equations

Uniqueness: a sparse solution with at most ||s]||,<n/2=250 is the
unique sparsest solution.

BP: M-! < sqrt(500)=22.36 = (1+M-1)/2<11.68

So:

o If there is a sparse solution with 250 out of 1000 non-zero entries,
it is the unique sparse solution.

o If there is a sparse solution with 11 out of 1000 non-zero entries,
it is guaranteed that it can be found by BP.
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Summary of minimal I.! norm method

Advantages:
o Good practical results
o Existence of a theoretical support

Drawbacks:

o Theoretical support is limited to very sparse
solutions

o Tractable, but still very time-consuming
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Part IV

Smoothed L0 (SLO)
Approach
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Reterences

Developed mainly in 2006 by:
o Hossein Mohimani,

o Massoud Babaie-Zadeh,

o Christian Jutten

Papers on SLO:
o Conference ICA2007 (London).

o Journal: IEEE Transactions on Signal Processing, January 2009 ( >50 citations
till now).

o Complex-valued version: ICASSP2008.
o Convergence analysis: arXiv (co-authored with |.Gorodnitsky).

Extentions
o Robust-SLO [Eftekhari et.al., ICASSP 2009]

o Two-dimensional signals [Ghaffari et. al., ICASSP2009],[Eftekhari et. al., Signal Processing,
accepted]
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Smoothed 1.O Norm: The main idea

(P,) Minimize s| =>|s;| st x=As

Note: Problems of the LO norm:
o Computational load (combinatorial search)
0 Sensitivity to noise

Both due to discontinuity of the LO norm

Main ldea: Use a smoothed LO norm
(continuous)
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‘ Smoothed LLO (SL.0O): Smoothing function

fo(s) £ exp (—s7/207),

: 1 ;its=0
= i%f"(s)_{o if s #£ 0

1

Fy (s /\
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SI.O: Finding the sparse solution

Goal: Forasmall o
Maximize F _(s) s.t. As=x

Problem: Small o — lots of local maxima

ldea: Use Graduated Non-Convexity (GNC)
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‘ Graduated Non-Convexity (GNC)

= Global minimization of a non-convex f(-)
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GNC: Example

The function to be minimized
(many local minima)




‘ GNC: Example (cont.)
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‘ GNC: Example (cont.)

IIIIIIIIII
''''''''''''''''
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‘ GNC: Example (cont.)
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‘ GNC: Example (cont.)
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GNC

= Global minimization of a non-convex f(-)

decreasing

a0 Use a sequence of functions f_(-), 6=64,6,,04,...,
converging to f(-):

lim ()= ()

n For each o, minimize f_(-), by starting the search
from the minimizer for the previous o
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S1.0:

Goal: Forasmallc
Maximize F(s) s.t. As=x

Use the GNC idea:
o Start with large o, and decrease it gradually.

a0 For each o, maximize E(s) by starting the search
from the maximizer of the previous E(s) (which

had a larger o).

Starting point? (corresponding to c—x)?
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‘ Initialization

= Theorem: For very large o:
Maximize F_(s) s.t. As=Xx

has no local maxima, and its unique solution is
the minimum L2 norm solution of As=x (given
by pseudo-inverse)

= = starting point of SLO: min L2 norm solution
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Constraints?

Goal: Forasmall o
Maximize F _(s) s.t. As=x
Use a Gradient-Projection approach.

Each iteration:
n Gradient: s <~ s + u_VF (s)
o Projection onto {s|As=x}

Decreasing step-size: p_= p, 62
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Final Algorithm

o Initialization: Set §g = ATx. Choose a suitable decreasing
sequence for o: [o1...07].
e Foryg=1,...,.J:
1) Let 0 = ;.
2) Maximize F,(s) subject to As = x, using L iterations of
steepest ascent:
— Intialization: s = S;_1.
—For ¢ =1,2,...,L
a) Let s < s + (o )V Fy(s).
b) Project s back onto the feasible set {s|As = x}:

s« s—AT(As — x).

3) Set S§; = s.

e Final answer is S = § ;.
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Simulation result

n equations
m unknowns
m>n

As=X
nxm/ / \1
m x 1 nx 1

= m=1000
= n =400
= About 100 non-zero entriesin s
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‘ Experimental Result (cont.)

TABLE I
PROGRESS OF SLO FOR A PROBLEM WITH i = 1000, n = 400 AND
k=100 (p = 0.1).

ir. # i) MSE SNR (dB)
1 1 1.84e -2 282
2 0.5 2.02e -2 5.19
3 0.2 1.96e -3 11.59
4 0.1 2.30e -3 16.44
3 0.05 H.E3e —4 20.69
6 0.02 1.17e —4 28.62
7 0.01 h.o3e =5 30.85
algorithm total time MsE SNE. (dB]
SLO 0.227 seconds 5.53e—-5 30.85
LP 30.1 seconds 2.31e -4 25.63
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Experimental Result (cont.)

Original:

o=1

200

300
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Comparisons

SLO versus LO:

o No need for combinatorial search (Fast)
o Not sensitive to noise (Accurate)

SLO versus L1:

0 © Highly faster
0 © Better accuracy
0 ® Non-convex (need for gradual decreasing o)
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‘ Conclusions

= LO intractable and sensitive to noise? Use its smoothed
version!

= = A highly faster algorithm compared to L1 minimization
approach.

= Try it yourself!
http://ee.sharif.edu/~SLzero or google “SLO algorithm?”.
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Conclusions (cont.)

We have used it in many applications, including:
o Two dimensional compressive classifiers (ICIP2009)

Two dimensional random projections (to appear in Signal
Processing)

Image inpainting (MLSP2009)
Image denoising (MLSP2009)
Image compression (ICA2009)
Dictionary learning (ICASSP2009)

U

o O O O O

Not yet enough fast to solve n=8000, m=200000
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Thank you very much for your attention
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