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Blind Source Separation (BSS)

Source signals s1, s2, …, sN

Source vector: s=(s1, s2, …, sN)T

Observation vector: x=(x1, x2, …, xM)T

Mixing system → x = F(s)

Goal → Finding a separating system y = G(x)

F G 
s x y 

Mixing system Separating system 
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Blind Source Separation (cont.)

F G 
s x y

Mixing system Separating system 

Totally Blind:
No information about source signals
No information about mixing system

Simply Impossible!
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Blind Source Separation (cont.)

F G 
s x y

Mixing system Separating system 

prior information for the so-called “Blind” case:
Statistical “Independence” of sources

“Structure” of the mixing system (linear, convolutive, PNL, …)

No. of sources? 
If F is invertible, then identification of F leads to source 
separation
Main idea: Find “G” to obtain “independent” outputs (⇒
Independent Component Analysis=ICA)
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BSS in linear (instantaneous) mixtures

A B 
s x y

Mixing matrix Separating matrix 

Mixing system: x=As  (A full rank)
Separating system: y=Bx

Considering signals as random variables i.e. ignoring their temporal 
structure (iid assumption):
Separability Theorem [Comon 1994,Darmois 1953]: If at most 
1 source is Gaussian: statistical independence of outputs ⇒
source separation (⇒ ICA: a method for BSS)
Indeterminacies: permutation, scale
Note: 2nd order independence (decorrelation) is not sufficient 
(Gaussian sources cannot be separated).
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BSS in linear mixtures
A B 

s x y

Mixing matrix Separating matrix 

Separation idea:
Output Independence:

Non-linear decorrelation:    E{ f(y1) g(y2) }=0
HOS: eg. Cancelling 4th order cross-cumulant
Cancellation Outputs’ Mutual Information

Output Non-Gaussianity

Restrictions:
Indeterminacies: scale, permutation
Sources should be non-Gaussian (except possibly one)
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Semi-Blind approaches

There is more a priori information (but very 
weak) → Exploit it! → Semi-Blind

Advantages:
Improving the separation performance
Providing simpler algorithms
Situations for which a Blind solution is difficult

More sources than sensors
Separating Gaussian sources
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Gaussian mixtures and 2nd order methods

SS not possible where sources are at the same time 
(Cardoso, ICA2001):

Gaussian
White  (first “i” in “i.i.d”)
Stationary (“i.d.” in “i.i.d”)

Any of these dropped ⇒ SS is possible
Dropping Gaussianity ⇒ iid non Gaussian : “Blind”
(Gaussian signals - except one - cannot be separated)
Dropping stationarity or whiteness ⇒ Gaussian non iid: 
“Semi-Blind” (Gaussianity is not required, i.e. second-order 
statistics is enough, Gaussian signals can be separated)
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Non-white (temporally correlated sources)

Minimize cost function (joint diagonalization):

off(M) → a measure of diagonality of M, eg.
(SOBI, TDSEP)

(Kawamoto et. al. 1997)
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Non-stationary sources

Minimize (Matsuoka et. al. 1995)

See also Pham, Cardoso (IEEE 2001)
Similar criterion as for colored sources ⇒ Joint 
diagonalization of variance-covariance matrices
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Colored or Non-stationary sources

A few advantages:
Only 2nd-order statistics
Separating Gaussian sources
Fast iterative algorithms for jointly diagonalizing
matrices (JADE, SOBI, TDSEP, algo. of Yeredor,
Pham, etc.)

Paper by Deville et al.
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Some Semi-Blind approaches

Geometrical approaches
Bounded sources (papers by Vrins and Pham, Lee et al.)
Discrete-valued sources

Sparse sources (paper by Gribonval)
Bayesian approaches (papers by Mohammad-Djafari and 
Bali et al.)
Audio-Visual approaches
Other prior: known source spectrum (paper by Igual
et al.)
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Geometric: Bounded Sources
Independence ⇔ ps1s2 (s1,s2)=ps1 (s1) ps2 (s2)
Bounded support for ps1 and ps2 ⇒ rectangular
support for ps1s2

⇒ scatter plot of sources forms a rectangle
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Bounded Sources (cont.)

x = As transforms this 
rectangle to a 
parallelogram
Mixing matrix assumed: 

Slopes of borders → 1/a
and b → mixing matrix
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Bounded Sources (cont.)

Post Non-Linear (PNL) 
mixtures: linear mixtures 
but non-linear sensors

Geometric: Transform 
again to a parallelogram, 
and then separate
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Sparse sources

Like speech, ECG, EEG,...
The rectangle is not well 
filled (requires lot of data 
sample).
Source PDF’s are 
concentrated about zero.
Probability of having a 
point on the border of 
parallelogram is too low.
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Sparse sources

Geometrical approach: Using “axes” instead of 
“borders”
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Sparse Sources

Possibility to separate more sources than sensors
Identification of mixtures ≠ source separation
Review paper, and a demo by Dr. Rémi Gribonval
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Discrete-Valued Sources

(Belouchrani and Cardoso, 1994; Puntonet et. al., 1995; Taleb
and Jutten, 1999; Grellier and Comon, 1998)
Other example of sparsity. Usual in digital communications
Possibility to separate more sources than sensors
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Bayesian approaches

Provide a general framework for modeling 
prior information :

source distribution, 
time correlation,
additive noise, 
…

Can process more sources than sensors, and 
additive noise
Review paper, by Dr. Ali Mohammad-Djafari
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Audio-visual source extraction

s1(t)

s2(t)

A: mixing matrix y1(t)

y2(t)

x1(t)

x2(t)
B: separation 

matrix

Spectral
criterion

Video Signal

A
B

Audio 
Signal

Speaker

V1(t)

Extraction on the source of interest 
A, B, audio ⇒ p(spectrum/video, audio) ⇒ B estimated by  ML
A,B ⇒ Voice activity detector ⇒ cancel permut. in convol. mixt.
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Conclusion

Semi-Blind methods, i.e. using priors
simpler and more efficient methods
can process problems that Blind methods cannot 
(Gaussian sources, more sources than sensors)
Disadvantage: more priors, less general

This review is completed by
Bayesian Source Separation, by Dr. A. Mohammad-Djafari
A survey of Sparse Component analysis for BSS, by Dr. R. 
Gribonval and S. Lesage (+A Demo with music separation)

Other papers in the special session give new 
examples of semi-blind approaches
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Thank you very much for your attention


