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Convection Heat Transfer

Convection heat transfer is the study of heat
transport process by fluid

It should be represented in terms
of conduction or radiation
correlations

It is not an independent >
mode of Heat Transfer

The objective is to find the convection heat transfer coefficient (h)
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Convection Heat Transfer

Convection heat transfer can be 20°C
studied in different categories: . AR

gForced, free convection or mixed Jo==4,

CO nve Cti O n {a) Forced convechion
glnternal or external flow - " Wi
glLaminar or turbulent flow ol i |

Ecr 1al
\ (H) Free convection
\\\\ v)l . No convection
¢ currents
{
/ J/

J’;H::I - - () Conduction
Internal flow of water in a pipe
and the external flow of air over Heat transfer from a hot surface to
the same pipe the surrounding fluid by convection

- and conduction



Convection Heat Transfer

Typical examples of convection heat transfer
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. Hot wron block
Heat transfer through a fluid 400°C

sandwiched between two parallel plates

The cooling of a hot block by forced
convection



Convection Heat Transfer

Typical examples of convection heat transfer

Cold
water

Hot
waler
e

Typical values of &

Light hot I

water rising

storage tank
{above the top
of collectors)

Dense cold l
water sinking

e

P rocess

hi W/m*® -° C)

)

Free conveetion
Gases

Liquids

3=30
20-1000

Hot water

Foreed convection
Giases
Liguids
Liguid metals

20-300
50-20,000
5,000-50,000

Phase change
Boiling
Condensation

2,000-100,000
5,000- 100,000

Natural circulation of water in a solar
water heater by thermosiphoning
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(a) Lanunar flow (B) Turbulent flow

Isotherms in natural convection
over a hot plate in air



Convection Heat Transfer

FUNDAMENTAL EQUATIONS IN CONVECTION HEAT TRANSFER

1- Mass conservation equation

2- Momentum principle

3- First law of Thermodynamics

4- Second law of thermodynamics



Convection Heat Transfer

g Local approach:Differential form
MASS CONSERVATION
qgintegral form: Global approach
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Convection Heat Transfer

MASS CONSERVATION

z4

Plane of
z = constant

(b} Cylindrical coordinates (¢} Spherical coordinates



Convection Heat Transfer

MASS CONSERVATION : Differential Formulation

Dividing through by the constant size of the control volume (Ax Ay),

oM. | |
—X = D o~ D,
of inlet outlet (1)
ports ports

Taking u and v as the local velocity components at point {x,y), the mass
conservation equation (1) requires that:
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Convection Heat Transfer

MASS CONSERVATION : Differential Formulation

It is the conservation of mass in a closed system or the "continuity"
of mass through a flow (open) system.

d J d
dt ox dy

0 3)

In a three-dimensional flow, an analogous argument yields
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Convection Heat Transfer

MASS CONSERVATION : Differential Formulation

Expanded formulation of mass conservation equation is:

9 +ull Ua—p—kwa—p+p(%+av+aw):(} (5)
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ot ax ay 9z dx  dy 0z
or D_P tpV:v=0 (6)
Dt

D/Dt represents the "material derivative" operator,

T | £ g + g + g + 0 (7) Spatial

empora —=—4u—+v—+w-— patia

derivative ¢t 0t | 0x _dy Z_| derivative
b =

If temporal and spatial variations in density are negligible relative to the
local variations in velocity, we have:
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Convection Heat Transfer

MASS CONSERVATION : Differential Formulation

The equivalent forms of eq. (8) in cylindrical and spherical coordinates:

Cylindrical coordinate 9 4 o o 1 dv, o v, 0 9)
ar r r o6 Jdz
Spherical coordinate l.‘}_ (r’v) + i (v, sin @) + l_9v, =0 (10)
ror " singap ¢ sin ¢ 96

These forms are valid only for incompressible fluids;

In fact, their derivation shows that they apply to flows (not fluids) where
the density and velocity gradients are such that the Dr/Dt terms are
negligible relative to therV e vtermsin eq. (6).

Most of the gas flows encountered in heat exchangers. heated enclosures
and porous media obey the simplified version of the mass conservation
principle.
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Convection Heat Transfer

Assignment #1

Considering the differential approach, derive
the mass conservation equations in the
cvlindrical and spherical coordinate systems

Due date: One week after this session
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Convection Heat Transfer

MOMENTUM PRINCIPLE : Differential Formulation

The force balance on a control volume requires that:
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ports ports

In which F represents for surface and body forces
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Force balance in the x direction on a control volume in two-dimensional flow.
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Convection Heat Transfer

MOMENTUM PRINCIPLE : Differential Formulation

Projecting all these forces on the x axis, we obtain:

—;_?r (pu Ax Ay) + pu’ Ay — l:,phr3 + :‘ (pu?) ﬂ._r] Ay
d
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do
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ax :
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ay

Dividing by AXAy Ay in the limit (AXAy) >0, we have:
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where X is body force in the x direction
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Convection Heat Transfer

MOMENTUM PRINCIPLE : Differential Formulation

According to the mass conservation eguation (6), the quantity in brackets
Is equal to zero, as such:

r .

_ o - Jd7,.,
0 H[W)Jz_féﬂ+i:+x—)pgﬂ _ 90 T v a9
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=0 ; due to continuity

Next, we relate the stresses oxand 7xy to the local flow field by recalling the
constitutive relations:
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Convection Heat Transfer
MOMENTUM PRINCIPLE : Differential Formulation

Combining egs. (14)-(16) yields the Navier-Stokes equation,

Du_ P 3|, @_2_#(%+.a£
Por— ax  ox H ox 3 \ax dy/ (17)
d
+ . L 6‘_u = == =K
dy dy  dx

In the case when the flow may be treated as incompressible and the viscosity
may be regarded as constant, the X-equation will be:
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Convection Heat Transfer

MOMENTUM PRINCIPLE : Differential Formulation

Vector form of the momentum equation:

Dy
—=-VP+ uVv+F
P Dt 5 A

(20)

r-Momentum equation in cylindrical and spherical coordinate systems:
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Convection Heat Transfer

MOMENTUM PRINCIPLE : Differential Formulation

Definitions in spherical coordinate system:
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Convection Heat Transfer

Next session:

Vv Thermodynamics laws

VAn introduction to scale analysis
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