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VvLaminar Boundary Layer Flow:
Flow(Velocity and Temperature fields)
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Laminar Boundary Layer Flow:

Integral Solution




Convection Heat Transfer

LAMINAR BOUNDARY LAYER FLOW
INTEGRAL SOLUTIONS

The next step in the sequence of refining the answers to the friction and heat
transfer questions amounts to determining the numerical
coefficients (factors) missing from the scaling laws.

In the realm of scale analysis, we made no distinction between the local values of
r and h (the values right atx =L) and the average values and defined as:
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»In the integral method, we recognize that
what we need is not a complete solution for g
the velocity u(x,y) and temperature T{x,y) T 9
near the wall, but only the gradients [ I
d(u,T)/dy evaluated aty = 0. 'ﬂ##-—# Path of max (5, ;)
*+We have the opportunity to simplify the o5 - ) -
boundary layer equations by eliminating y as "
a variable. My
. N s |
[ — P P +dP.,
SIS
“»This is accomplished by integrating each My —> ~—— Meose
equation term by term fromy=0toy =Y, =1 ";
where Y > max (4, dt) is situated in the free v —
stream. - R
]
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D ity oy =19 T

== (u*) + = (uv) i + v ay? (47)
d o °T

3y DL D) e g (48)

Integrating Egs. (47) and (48) fromy = 0 to y = Y, and using Leibnitz's integral
formula, yields :

d " ; s " I Yr;f'P== 5 du u
— < dy = L po— ] = P —
dx Jo 1T O T T T gy ay/, \ay/, (49)
d f’ oT oT

Ll utdy+v,T,—v,Ty,=al =] - ol = (50)
= ui ay + vyly — Uyl a(ﬂ}-)f a(ay)ﬂ
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Since the free stream is uniform, we note that (3/ dy)y =0, Uy = Uoo, and Ty = Too.
Also, since the wall is impermeable, vo = 0, and vy by performing the same integral on
the continuity Equation (7):

d
ﬂu‘ ﬂ[. _Uﬂzo

e ) — ] "d“vr (51)

Substituting Vy into Egs. (49) and (50), assuming that Too is, in general, a function
of x and rearranging the resulting expression, we obtain:

L, dP. deJ'*’ ‘ u
fu(y u)dy—p e A ﬂud}«-k-u(a )ﬂ (52)

¥

dT, aT
—-j w(T, —T)dy = o L udy + a(a—y) (53)
0
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d ) Y

d J’ WU — u) dy = L dP.  dU, J i V(ﬁ) Integral boundary

dx Jo p dx  dx Jo ay/, layer equations for
(" - 1yay == [y + o P
L wer - - At ol
dx Jo ” Y dx Jo eex & ay A gy

They account for the conservation of momentum and energy not at every point
(x,y) as Egs. (26) and (27), but in every slice of thickness dx and height Y

MY
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me I
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OEquations (52) and (53) can also be derived by invoking the x momentum
theorem and the first law of thermodynamics .

OFor example, the momentum Equation (52) represents the following force
balance:

]MI ___-"\
l—-l- - -1—1|

P = ..‘.....1 P +dP.,

— =

M — My

g —
I e T

Forces acting from left to right on the . _conwo
control volume —
i ‘.E:'H:Tx

M, = [} pu® dy Impulse due to the flow of a stream into the control

volume

M, = U.dm Impulse due to the flow of fast fluid (U.) into the con-
trol volume, at a rate dm, where m = [} pu dy is
the mass flow rate through the slice of height ¥

10 P.Y Pressure force
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Forces acting from right to left on the

control volume

M

X

cqe = M+ (dM /dx) dx Reaction force due to flow of a stream out
T dx

of the control volume

Tangential force due to friction

Y[P. + (dP./dx) dx] Pressure force

Setting the resultant of all

My
[} —=
- I
Pm_:- -‘—-lP + dPF,
these forces equal to zero, - B v
we derive Eq. (52). p— —
Db Al aa]
__Control
r' wirlume
d ", | dP,  dU. F au * “Rxsar
— wlU,—wydy=—-Y—+ — udy + v| — 52 rdx
5 Js ™8 S T s *Y 3y /. (52)
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OConsider the simplest laminar boundary layer problem—the uniform
flow (Uoo , Poo= constants).

OTo solve for the wall shear stress, let us assume that the shape of the
longitudinal velocity profile is described by:

B {U,m(n). 0<n=]l 51)
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where m is an unspecified shape function that|

—
varies fromOtolandn=y/é Sl
d (¥ _ 1 _dP, dU, (¥ au -
aLu{U,—quy=;}}’d—x+d—x A udy+p(§;)ﬂ (52) 5 1
Substituting this assumption into Eq. (52) and ol . 0! L.
noting that @

o=

et b5

dP oo /dx = 0 and dU oo /dx = 0 yields a first-order
ordinary differential equation for the velocity
boundary layer thickness 6(x)

Selection of (a) velocity profile and (b)
temperature profile for integral
13 boundary layer analysis.
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0 After substitution, we have:

S@IJ: m(l —m)dn] =-J—(£;—:) (55)
x n=0

dx
OThe resulting expressions for local boundary layer thickmess and skin friction
coefficient are :

2= 4 Re;” (56)
C.. = —— = g, Re-1? 5
OWnere: = Fpuz T (57)
2(dmldn), ., N )
R [J.I il —}m}dnjl (56)

- [A®) [wo-ma]’ 57y

a=0

14




Convection Heat Transfer
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The numerical coefficients a1 and az depend on the assumption made for the profile
shape function m: Table shows that as long as this shape is reasonable, the choice of
m(n) does not influence the skin friction result appreciably.

Nu Re ' Pr'™
Profile Shape Uniform Uniform
MKIH\J or m{ ) E Rel? Cr. Temperature Heat Flux
(Fig. 2.4) o Rel? {Pr = 1) {Pr = 1)
m=n 3.46 0.577 0.289 0.364
m=(nf2)y (3 — ) 4.64 0.646 0.431 0.417
m = sin (mmi2) 4.8 0.654 0.337 0424
Similarity solution 4.2 0.664 0,337 0.453

“Thickness defined as the ¥ value comesponcing o w'[f, = 099,
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Heat transfer coefficient information is extracted in a similar method from
Eq. (53) with dT/dx = 0. Thus, we assume the temperature profile shapes:

To— T = (T, — Tom(p), fl=ps]
Y] 0 (58)

T=T. 1 =p

where p = y/6T . We assume that:

8
3 A (59)

where A is a function of Prandtl number only and § is given by Eq. (56): E = 4, Re,
Based on these assumptions and 0t < § (high-Pr fluids), the integral energy

= ¥ ¥ .
Equation (53] &_{i J; W(T. — T) dy = % L v dy u(:_j‘)u reduces to:

2(dmldp),, . I
e L ma] (o
| :
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Assuming the simplest temperature profile, m = p, Eq.(60) becomes:

A=Pr? (61)

The results usually listed in the literature correspond to the cubic profile:
m = (pf2Y(3 = p?)

A= %T= 0.976P¢~ 1% (62)
h = 0.331 E Pr'® Re!” (63)
Nu = "f = 0.331Pr'” Re!? (64)

The local heat transfer results listed above are anticipated correctly by the scale

Analysis Egs.(44) and (45):
y as.(44) (45) h~ % Pr'®Rel? (Pr>=>1) Nu~Pr'”Re/* (Pr>>1)
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In the case of liquid metals (A >> 1), instead of Eq. (60), we obtaim;

_ 2(dmldp), _, !

(LAY !
@) Uﬂ m(pA)1 — m(p)] dp + fmll — m(p] d!-‘] (65)

The sum of two integrals stems from the fact that when 6t >> § , immediately
next to the wall (0 <y < 9), the velocity is described by the assumed shape
cm, whereas for ¢ <y < 4T, the velocity is uniform, u = ét [Eq. (54)].

Since A is much greater than unity, the second integral dominates in Eq. (65).
Taking again the simplest profile m = p, we obtain:

a=2

= =@P)"?  @Pr<<1) (66)

S0

et -2 Da-172
. 2Pr™"* Re; Pr<<1) (67)
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we derive the local heat transfer coefficient:
heklbpnggs @ (68)
or the local Nusselt number
Nu = %’ = l:Pr'” Rel?  (Pr<<1) (69)

These results compare favorably with the scaling laws [Egs. (37)-(40)].
They also compare favorably with more exact (and expensive) solutions.

%T,,_ Pe;_”? ~ Pr-12 Rﬂfm %I ~ Pr 12 > 1

k
h~7Pi?Rel?  (Pr<<1) Nu ~ Pr'2 Re!?
19 :
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vLaminar Boundary Layer Flow:
Similarity Solution




