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Materials: crystalline, poly-crystalline, amorphous
Bonds in Solids

Crystal Structure

Basis i

Lattice: Bravais Lattice vs. Non Bravais Lattice

Unit Cell, Primitive Unit Cell, Wigner-Seitz Unit Cell
Crystal symmetry

Miller Indices
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Why we call it solid-state?

States of the matter:

1. Solid: density ~ 10 /em®
1. a: Crystal: long range order (lattice + basis) {Example: Epitaxial silicon and diamond}
1. b: Polycrystal: short range order (um~10pm) {Example: Most metals (Al, Cu) Ploy-5i}
1. c: Amorphous: no order  {Example: Glasses like Si0,}

Gram  Grain Boundary
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{a) Crystalline (b} Polycrystaliine (c) Amarphous

Figure 1: Schenvatic repr ian of crystalling, polycrystalline, and amorphous material structures [Ref: Micro
Electro Mechanical System Design - James ). Allen]

2. Liquids: no order, takes the shape of the container, still weak bounds; density ~ 10 /cm®
3. Gases: no order, no bounds between molecules

4. Liquid crystals: atoms mobile, type of long range order Applications: LCDs

5. Plasma: lonized gas/liquid = {Examples: Sun, Aurora, Lightning, (RIE, Sputtering, PECVD]}

Semiconductor devices used in, for example:
Electronics, e.g.,
Silicon integrated circuit electronics
High-performance electronics for, e.g., communications
e.q., GaAs (gallium arsenide) for cellular communications, satellite receivers
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Power electronics
Optoelectronics, e.g., o

CCD (charge coupled device) cameras )

Photo detectors for, e.g., WS 4
Telecommunications, night vision

Light emitting diodes for, e.g.,
Indicators and displays, remote controls

Semiconductor lasers for, e.g.,
Telecommunications, compact disc players

New kinds of devices, e.g.,
Modulators for high-speed telecommunications
Wavelength shifters for wavelength division multiplexed networks
Two-dimensional arrays of very small devices for optical interconnects ...

Table 1: Abbreviated periodic chart of the elements

Broad range of usable semiconductor materials:

1. Elemental semiconductors:
e silicon (Si
s germanium (Ge)
s+ diamond (C)

2. Binary ttwo-com'_ifonent] compound semiconductors, e.g.,
s IV, e.g., gallium arsenide (GaAs), indium phosphide {Lgf)
s I-VI, e.g., zinc selenide {EnSei, cadmium telluride (CdTe)
o V-1V, e.g., silicon carbide (SIC) _—
e V-Vl e.g., lead sulphide (PbS)

3. Alloys,
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e.g, ternary (three component)
e aluminum gallium arsenide (Al;,Ga,As)
x is fraction of gallium in group |1l elements (still equal numbers overall of group Il and group
V elements)
e mercury cadmium telluride (Hg;..Cd,.Te)
e.g., quaternary (four component]
s indium gallium aluminum arsenide (Ing..yGa,AlAs)
e indium gallium arsenide phosphide (In;.,Ga,As.,Py)

Bonds in solids: [Ref: U of Exeter]

Atoms vibrate with small amplitudes about fixed equilibrium
positions, We assume that atoms are fixed, unless phonons are
considered.

Atoms look like outer valence electrons orbiting around the core.
Core consists of nucleus plus inner core electrons

valence electrons

1. lonic bonding:

Complete transfer of electrons from one atom (usually a metal) to
another (non metal ion) (compounds only, not elemental solids). Bond comes from electrostatic
attraction between ions.

Na+Cl—> Na'+Cl"— NaCl

All ionic compounds have a degree of covalent
bonding. The larger the difference in electronegativity
between two atoms, the more ionic the bond is.

= Bond is strong (high melting point, large elastic
modulus)

number)

* Compounds only

« Good insulators (except near melting point)

« Transparent up to UV (strong bonds —» electrons need a lot of energy to become free)
Mathematical form: Energy ~ 1/r, Example: Sodium Chloride

2. Covalent Bonding:

Equal sharing of electrons between atoms — both atoms
have full shells (Example: Diamond, Silicon)

Note continuum of behavior, ionic — covalent (e.g. lll-V {
compounds GaAs, InSb, are partially covalent and partially ¢
fanic.) L
+ Bond is strong (high melting point, large elastic modulus) \R

« Directional (from orientation of QM orbitals) — low P Mg
density

@ Saturable {limited number of bonds per atom) T

* Good insulators

Shared Betos
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3. Metallic Bonding:

Positive ions plus gas (sea) of electrons. Think of this as the - i i
limiting case of ionic bonding in which the negative ions are ‘““° °"" 9 °
electrons. (BUT electrons can't be forced to sit at lattice o " X
points from Uncertainty Principle: ApAx = h/2 as for —0 °"""° ‘_e
electrons m is small so the zero point energy AE = Ap?/2m il — =
is very large; the electrons would shake themselves free and - — o
are therefore delocalized) ° Q_o-— o

+ Bonds are non directional (high coordination number, r<l -
high density, malleable and ductile)

* Variable strength

» Free electrons — high electrical conductivity, shiny

(Electric field associated with incident light makes free electrons at surface move back and forth, re-
radiating the light, as a reflected beam)

4. Van der Waals Bonding:

Even a neutral atom with a full shell, can, at a given instant, have a dipole moment (i.e. one side of
the atom more positive than the other)

This instantaneous dipole will induce a dipole in a neighboring atom, and the resulting dipole-dipole
interaction is the origin of the van der Waals bond. Although the original dipole time-averages to zero,
the interaction does not — it is always attractive, E ~ 1/r®

« Bond is weak (— low melting point, large expansion coefficient)

+ Non directional so high coordination number BUT

+ Long bond lengths (— low density)

Examples: Solid inert gases (Argon, Neon), molecular solids (solid Oxygen)

5. Hydrogen Bonding: .

Hydrogen loses its electron and becomes positively charged particularly easily. Therefore the region
of a molecule around a hydrogen atom is often quite positive, and this allows an electrostatic bond to
form between it and negative parts of neighboring molecules.

Example: ice — the strength of the hydrogen bond explains the anomalously high melting point of ice.

Central Core Repulsion: Overlap of orbitals rapidly increases the energy of the electrons (Pauli
Exclusion Principle forces energies up as soon as electron wavefunctions start to overlap). Present in all
cases — need a repulsion to give an equilibrium separation. Characterized mathematically by a high
power law, or an exponential — but this is empirical.

Table 2: Strength of bonds

Bond Energy (GPa) Example of Bond

Covalent 1,000 Diamond

lonic 30-100 Salt and Ceramics

Metallic 30-150 Metals

Hydrogen 8 Ice

Van der Vaals 2 Polythene |
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Crystal Structures:

Translation symmetry: The lattice can be obtained by repetition of a building block called basis.
Bravais lattice: is the set of points defined by B.= nydy+ nada + nady as ny is integer.
Shortest possible a; gives us primitive vectors

The volume cell enclosed by the primitive vectors is called the primitive unit cell V, = a,-(d, xd,)
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Figure 2: Lattice, basls, crystal Structures, and unit cells

Symmetry operations:

For categorizing crystal systems, symmaetry characteristics are to be studied. Many physical
Eraperties depend directly on the crystal symmetry. (For biological molecules only rotation and/or
translation operations is acceptable. Since, biological protein molecules mainly consist of I-amino acids,
‘hence, reflection or inversion symmetries are not allowed.)
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N-fold rotation syhmetw, C,: Rotation by an angle 2m/n about an axis through the crystal. (There
are restrictions for n {n = 1, 2,3, 4, 6), why? Note that n=1 corresponds to a rotationally asymmetric
object) (rotation will be about a certain point for 2D or axis for 3D)

n=10

Figure 3 : Ditferent orders of ratational symmetry

Inversion center symmetry, /; Transformationr — —r, fixed point is selected as origin (lack of
inversion symmetry may lead to piezoelectricity) -

Plane of symmetry (reflection), a: Reflection across a plane (one side of the plane is a mirror image
of the lattice on the other side)

Rotation-inversion symmetry (Improper Rotation), S,,: Rotation Cy, followed by reflection in the
plane normal to the rotation axis.

One-Dimensional Lattices:
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Two-Dimensional Lattices: Table 2 14 Bravais lattice types into 7 lattice systems [Ref: Wikipedia]

There are 5 basic cl f 2D Bravais lattices - T ]
ere gags of 2 | The 7 lattice systems The 14 Bravais Lattices
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A lattice system is a class of lattices with the same point group. In 3D, there are 7 lattice systems. For
convenience a Bravais lattice is depicted by a unit cell which is a factor 1, 2, 3 or 4 larger than the
primitive cell. The Bravais lattices were studied by Frankenheim (1801-1869), in 1842, who found that
there were 15 Bravais lattices. This was corrected to 14 by Bravais in 1848.There are just 14 different
ways of arranging points in space lattices such that all the lattice points have exactly the same
surroundings. (Why we do not have face-centered tetragonal lattice? (=body-centered tetragonal))

Most known semiconductor material (elements, compounds, or alloys) are members of either cubic
or hexagonal system.

Specific semiconductor lattices:

Table 4 : Crystal structure and lattice constants (at 3007k) [Ref: P, p.12]

Diamond 5.43085
Ge Diamond 5.64613
GaAs Zincblende 5.6536
CdS Zincblende 5.8320
Wurtzite a=4.16, c=6.756
PbS Rock-Salt 5.9362

Diamond:

Diamond lattice consists of two interpenetrating FCC Bravais lattices, displaced along the body
diagonal of the cubic cell by one quarter of the length of the diagonal. Diamond lattice appears in
materials such as silicon, germanium, and diamond (C). In this form each atom has four neighboring
atomns.

Figure &: Diamand {Zincblende) lattice unit cell

Zincblende:

The zincblende is similar to diamond structure except that the two interpenetrating FCC sublattices
are of different atoms. Again for each atom there are four neighboring atoms of different kind. GaAs,
InP, mast Ill-V, and some II-VI are constructed in this from.

Wourtzite:

Named after the mineral wurtzite, is a crystal structure for many of 11-VI such as Zn0O, CdS, CdSe, and
GaN. As shown in the next Figure it consists of interlocking hexagonal lattices. This structure lacks
inversion _s_ymme_tn_.r_}herefore these crE'g_a_Is may show properties such as piezoeleiﬁﬁf_"m_

pyroelectricity. HE
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Figure 7 : Wurtzite #iruttﬁre
Rock salt: R T I SRR P P S ST
Formed in cubic cells with two different atoms alternating-atomic positions, Found in IV-VI lead-
based semiconductors, such as PbS. v

Figure 8 : Rock salt structure

The Wigner-Seitz unit cell:

The Wigner-Seitz primitive unit cell is defined as the locus of points in space that are closer to that
lattice point than to any of the other lattice points

1. Choose a lattice point, and draw lattice vectors from it to its neighbors

2. Draw the perpendicular bisectors of these vectors

3. Take a smallest region formed by these bisectors about the point

(The Wigner-Seitz cell in itself is not of paramount importance in the direct space, it is extremely
important in the reciprocal space,The Wigner-Seitz cell in the reciprocal space is called the Brillouin
zone, which contains the information about whether a material will be a conductor, semiconductor or
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Figure 9 : Wigner-Seitz unit cell for different Bravais lattices

Miller indices:
That is a method to label distinct planes and direction within a crystal structure. For any given plane,

Miller indices easily can be obtained following these steps:

1. Note where the plane to be indexed intercepts the axes (chosen along unit cell directions). Record
result as whole numbers of unit cells in the x, y, and z directions, e.g., 2, 1, 3.

2. Take the reciprocals of these numbers, e.g., 1/2, 1,1/3

3. Convert to whole numbers with lowest possible values by multiplying by an appropriate integer,
e.g., x6 gives 3, 6, 2.

4. Enclose number in parentheses to indicate it is a crystal plane categorization, e.g., (3,6,2)

Planes parallel to a unit cell coordinate axis are viewed as intercepting the axis at infinity, so have an
a;sﬁéﬁtéd Miller index i i nof zero, e.g., (100} plane.

Planes intersecting along the negative axis use a bar over the index rather than a megative sign, e.g., 1
rather than -1, e.g., (111).

Mot (L0, < Groups of equivalent planes, ( (100), (010), (001), (100), (010), and (001) all equi_\ia_l_e_n}‘be:ause

rotation about the 3 fold axes ofi the cube diagonals maps the various faces into one anather, making

',1.’( = | _,b ()7 the planes equivalent) are notated in curly brackets, i.e., {100} for the above set of equivalent planes.

t4 H &

te)

Figure 10 : Miller indices [a) The {362} piane. (b} The {100} plane. [<]} The {171} plane.

Similar procedure can be used to define Miller indices for directions.
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/1, Set up a vector of arbitrary length in the direction of interest (must be a crystal direction, i.e.,
connecting two crystal points)

2. Decompose the vector into its basis vector components in the a, b, and c directions

3. Convert the resuiting numbers to the lowest possible set of integers by multiplying by an
appropriate number

Directions are notated using square brackets, e.g., [111)

For cubic crystals, directions perpendicular to particular crystal planes can be indexed using the same
index as the plane. Sets of equivalent directions are specified by triangular brackets, e.g., (100)
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Figure 11: Sample direction vectors and Miller indices



Introduction to Solid State Physics :_.;_Cha:ptt?r_ 2= Rewew of Quanturq _M_echanics

e Wave-particle duality

Time-independent Schrédinger Equation

Probability densities

Operators

Properties of Eigenfunctions and Eigenvalues
Time-Dependent Schrédinger Equation

Free Particle, Particle In a Box, Quantum Wells, Tunneling

. s s & 8

Why do we need quantum mechanics?
Not all of the electrons contribute in conductance.

Periodic

Criginal
Problem i Electrons In periodic

potential: Problem
we want to solve

Figure 1: electrons in periodic potential

Carrier number = Number of states x filling factor

e
e

=

L

HemoY

Figure 2

Quantum Mechanics Fundamentals:

Wave particle duality is one of the basic ideas of the quantum mechanics, both fundamentally and
chronologically. 4 main concepts that lead us to QM are:

1. Black-body radiation: The black-body radiation could not be explained until in 1900 Max Planck
assumed that the frequency of the emitted light is quantized. He assumed that the light is emitted from
oscillators which their energy increases linearly with frequency; the famous E = hvrelation, This was
not a radical proposal - even at that time - since classic oscillators operate similarly.

Introduction to Solid State Physics Review of Quantum Mechanics

_» Rayleigh-Jeans Formula C u:J\I:/LA:‘L_gy » )
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T Wein's Formula

dd
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dr Al

w( f.T)=u(A,T) 7

S
Occupation
Probability

EM emission occurs in discrete quanta of

bt L el bt
E=hf n=12, ... N

Figure 4: Planck's interpretation of the formula

2. Photoelectric Effect: In 1905 Albert Einstein took Plank’s model and found a solution to another
unsolved problem at that time, the photoelectric effect. Light here is absorbed as quanta while in black-
body radiation it has been emitted’in quanta. ;

P cathode

W hf

Figure 5: Phatoelectric effect
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3. Bohr atomic model: To explain Rydberg formula for the spectral lines of atomic hydrogen emission,
Bohr assumed that made of positively charged nucleus surrounded by electrons. Electrons travel in
circular orbits around the nucleus, similar to the solar system. Bohr model is guantum mechanically
modification of the Rutherford model.

Nuclau, conlaming

pumsitiv ely chargd
protons

Urbital glectrom.
megatively ch

;,J)-#’L! (-c-m-[t ZCJ

Figure 6: Bohr model

He assumed that the angular momentum is quantized.

Ly = mgur, = nhi n=1273

v=nhinyr,

mv & ,
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1 1
KE. = 'imnv’ =3 (g 14megry)

PE. = —g*4meyr, (PE.set =0 atr= 0)

1
E,=KE. +PE. = -3 (g dmregry)

e _ i 136

E_...w-_.?—ev Em=ram!x[

4, Wave-particle duality: As photons act as wave and particle, what about electrons? How about

other objects?
E=mc?= )mgc‘ + pzcz

photons(mg = 0) = hv = pc

e
* Chapter 2 — Review of Quantum Mechanics
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This is called De Broglie's wavelength.

Uncertainty principle:

Published by Werner Heisenberg in 1927, the principle means that the position and velocity of a
particle cannot both be measured, exactly at the same time (actually pairs of position, energy, and
time). This is not about the physical limitations in the measurements. In quantum world, each particle is

L L_,» be w = described by a wave packet. This wave behavior of the particle is reason behind uncertainty principle.
The particle is most likely to be fnund in those places v where the undulations of the wave are greatest, or
most intense. The more intense the undulations of ﬂi’u associated wave become, however, the more ill
defined becomes the wavelength, which in turn determines the momentum of the particle. So a strictly
localized wave has an indeterminate wavelength; its associated particle, while having a definite position,
has no certain velocity. A particle wave having a well-defined wavelength, on the other hand, is spread
out; the associated particle, while having a rather pr. may be almost anywhere. A guite
accurate measurement of one observable involves a relatively large uncertainty in the measurement of
the other,

Mathematically we describe the uncertainty principle as the following

Axbp=ih  or  AEAt=3h

vel

A sing wavas of wavelength ), irplies that the
MONeMUIT P is precisely known: U
Rt tha wavefuction Al s :

Pracisaly determined momentum
probability of finding the perticle
Wy |s spread over all of space. P prociae

AVAVAVAVAVAVAY Sk

WV, 2mmmmsmmme o
Ny
VY ) 1

"N o=
AVAVAVAVARE-—--<tr it

in the uncertainty Ao when ﬂl is
.‘ddo»ﬂ)ay_ﬂ”}/}luﬂﬂc-['& -.3-_#- “— dec'eases.
AXApP > 5
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One of the implications of this principle is to calculate the confinement energy.

Vmited

Schrédinger Equation:

Electron can behave like plane wave with 1= h/p as ¥ o exp (2miz/ 1) . We need a wave equation
to describe this. Helmholtz wave equation is as V2 ¥'= —k? ¥ where k is k = 2n/A = p/h. Rewriting
wave equation in terms of p we will have: —h?V? ¥= p* ¥, By dividing both sides by 2mg, where myis
the free electron mass at rest my = 9.11 x 1073 kg we will get:

h2 pZ
—_— e
2my 2my

But pZ/ZmD is the kinetic energy of electron and in general

Total energy (E) = Kinetic energy (K. E.) +Potential energy (V)

Hence we could rewrite the above equation as:

k4

hz
-2 = (E -
2mg Y=(E-V(@)HY¥

h 2
(—-Z——V + V(r)) P=E¥

This is the time-independent version of the Schrodinger equation. Note that we have not derived
Schrédinger equation we merely suggested it as an example. This equation has to be postulated.

E= "J'ml,lc‘J +plet mme! [1 +piet f2mjiet + :|
E-myge® = 1 + (p f2m,)

N
h=ho =V + (m. i2my)
he = Pk 72m)+V

Assume, Py f}= dexp(—i{ar — kx))

AW dt =~V and d7W/dv = kT

2 2,
A (L)

- 2m, dx?
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Assume
Wy _ f’ﬁ N gl o
2, e +—+ U =ih Pix, ) =wix)e
1Er
3 2 ‘{ w(r] A }
g Lr -1'." ----- {‘ *
2mu de? e (x)y(a) = ih- fi v
__t"_ﬂ+{;(x)w=5y
2my dx
d)
Y2 -y =0
dx’ n

Probability densities:
In practice P(r), the probability of finding an electron at specific point r, is proportional to | ¥(r)|2,
where ¥{r) is the solution of the Schrodinger’s equation. Without changing this equation one can
normalize wave function such that

[ ar=1

Operators:

In quantum mechanics, a system is always presumed to be in some “state”. The state may be
described by some set of NUMBers ¢y, ¢z, .. - We could write all of these numbers out as a vector
[er.c2, ... )T . Forexample, we are saying that the state of the electron may be described by the set of
numbers that is the set of values of the wavefunction at each paint in space, [Y(x;), P (xz), ...]", where
X1, Xz, ... are all the points in the space. (The vector for our wavefunction would have an infinite number

“of elements, one for each point in space, though we will ignore the mathematical complications of this
infinity, and think of the wavefunction as a finite but very large vector.) There are other numbers
required actually to completely specify the state of an electron, including its “spin” (+1 (up) or -1
(down)), but we will omit this here for simplicity.)

A convenient way of thinking of an operator (and one that defines it as a “linear” operator) is to think
of the operator as a matrix M that multiplies the vector. In this way, the result depends possibly on all of
the values in the vector that describe the state

51
]

When the vector is an teigenv'ectoﬁ of the matrix (or the state is an (—gi g_e_n_st_a't§ of the operator),
we are saying that we have the remarkable situation that this process results in a vector of exactly the -

same form a form as when we started, multiplied only by a constant that is the elgenvaiue

] -<[
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The Schradinger equation is just such an eigenvalue equation, though up to now we have only
though of it with f as a differential cperamr.?We could also think of it as a matrix, in which case we
would find it as some kind of “stripe” d'lag?:sl matrix, because we only need the values of the most
adjacent points in order to calculate local derivatives.

In practice in guantum mechanics, nearly all calculations are done by representing the operators as
matrices, though usually the vector elements are not the values of the functions &t specific points in
space, other “bases” are usually mare efficient for representing the state.

Energy operator:
2
The operator H = — %?2 + V(r) is known as the Hamiltonian. It is the energy operator. The hat
0

sign is used to distinguish this entity as an operator from a number. Schrodinger equation now can be

written as § %= E ¥ (H is an operator but E is simply a number, the energy of electron) This equation
can be read as:

When H operates on ¥ the result is the total energy E.

Momentum Operator:
We can see for the specific case of a plane wave in the z direction | « exp(ikz) that
ha
——1f o ik =
752% p=pyp
Generalizing to three dimensions (to handle plane waves propagating in any direction), we could
postulate that the momentum operator is

sy
PRI
This postulate works, even for states that are not plane waves is consistent with the energy operator
since ¥
1 - ho . d
P T

The (vector) momentum is
7= hk
Note that the relation between momentum jj and wavevector k does not involve the mass of the
electron, because § and k are related only by a fundamental constant. k has a more direct physical
meaning in terms of physical lengths in the material of interest. We will henceforth talk almost always
about k rather than .

Eigenstates:
Starting from Schrédinger equation

2
—_—— V( EY

Only particular set of () will be solutions of this equation, and only particular energies £
correspond to that. The equation is a very specific relationship between the second derivative
{curvature (72 of the function) and the difference between the total and potential energies. In linear
algebra this is and eigenfunction/eigenvalue problem. Solving this problem will give a set of

- oz ol
o b fha it K
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“eigenvalues” E,, with each of which there is associated some eigenfunction 1, (1) that is a solution of
the equation (there can be more than one distinct 10, (r) for a given E,,, a situation called degeneracy)

The wavefunction 1 (1) describes the “state” of the electron. If the wavefunction is one of the
eigenfunctionsy, () , the electron is said to be in an m, with corresponding total energyE,,.

We know from Fourier analysis that any time-dependent function can be broken down into it-
freguency companents, and that the function can equally well be defined by the amplitudes of these

.c_o_m_ponents, but sine (and/or cosine) are not the only possible bases. )

The eigenfunctions of many (linear) operators form complete sets. For example, the eigenvectors ofa
matrix form a basis that can describe any vector in the “space” of vectors. It is a postulate of quantum
mechanics that the eigenfunctions of the operator corresponding to any physically measureable
quantity form a complete set. The eigenfunctions of such an operator are all “orthogonal” to one
another. )

X [wowaordr=0 nem
The eigenvalues of such an operator are all real.

Because of the completeness, any quantum mechanical state (e.g., of an electron) can be described
as a linear combination of eigenstates

V) = ) anal)

n
where a, are numbers that are the “expansion coefficients.”
€ _Sxpansion toetTicierus.”

In general, the energy and momentum operators for the electron can have the same eigenstate if the
_potential energy is uniform. This means that if the system is in an eigenstate of the energy operator, and
‘hence has a definite energy, it can also be in an eigenstate of the momentum operator, and hence can
also have a definite momentum. an electron can simultaneously have a definite energy and momentum.
(This is not a general property of operators and their associated measureable quantities. position and
momentum eigenstates are different. If an electron is at a definite momentum, it does not have a
definite position due to Heisenberg uncertainty principle.)

This property of momentum and energy is very useful for us

Note that” “momentum” (k) eigenstates are a natural basis set in crystals for the “envelope”
wavefunction. One can calculate band structure by calculating for the energy for each allowed state of

momentum. The k eigenstates and the energy eigenstates are the same. )

Time-dependent Schrédinger Equation:

We saw that all particles behave as probability wave. Because of duality of wave and particle all
waves also behave as particles! For example electromagnetic waves behave as a particle called photons.
In Photoelectric effect we saw that the maximum energy of photo-electrons are independent of the
intensity of light and depends linearly of the frequency. Therefore

Ephoran = how

Now, using the wave-particle duality, we try to postulate about the time-dependent Schrodinger

Eguation. Using energy conservation, we have
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The energy E is related to the angular frequency w, while the momentum p is related to the
wavevector k, thus, we have:

Chapter 2)- Review of Quantum Mechanics

Therefore, we speculate that the time-dependent Schrodinger equation should be:

. av
guess ‘hﬁ =RY
or
h? ay
g — el
( Zmuv + V(r)) ¥=ih T
For the situation where the system is in an energy eigenstate, we can see by inspection that
Hr,t) = Y(r) exp (—iEt/h)

is a solution of the time-dependent equation with y(r) as a solution of the time-independent
equation:

_&2
(—5355?21-V0j)¥(T)= Ew{ﬂ

Hr0) = ) Cnbmr)

Where &, is an eigenstate at the energy Ep,, i.€.
. ¢m = Ep®m

At an arbitrary time t, the state evolves to

[ W)= ) emel®n/ian) (< (9

m___
Therefore, by solving for the e:genstates of the time- |ndependem Schrédinger equatipn, we obtain
all the information about the time-dependent evolution of a physical state.

e

Some examples:

Free Particle:
Assuming V = 0 and considering 1-D for simplicity, Schrédinger equation becomes
d’:,b 2m£
0
dxz V=
Or like a wave equation as
d
‘b ——+ k=0
Where
i
k = J2mE/h? orequivalently E = —

Solution will be in form of
w(x) = A+eikx+A_e—Ikx

Introduction to Solid State Physics (a'“e' 2} Review of Quantum Mechanics

= -*E's/ﬁ 3 ety

Adding the time dependence I
-3»7»)’:\__)“, Lir" Ly

¥x,t) = A+e"(""§ﬂ +4Ae (‘“—r)
1

1
wave in+x direction wave in—x direction
For a free particle:

pz thI

“2m " 2m

]
Qe

Figure 7

Particle in a box:
Consider a particle in a hypothetically infinite deep potential well. Consider the simple problem of a
particle of mass m with spatially varying potential V(x) as in next the Figure

Figure 8

Schrodinger equation will be as:

h? d*1p(x)
— 4 E
“omax T (yx) = E(x)
where E is the energy of the particle, and 1(x) is the wavefunction. Cosider V(x) as
_feo for x<Oorx>L
Ve ={ for 0<x <L
As V = o outside the box there is no possibility of finding particle outside the box, hence 1 must be
zero at the walls ot the box. For0 < x < L:

h? d*(x)
T2m dx? = Eyp)

As(0) = P(L) = 0 solutions to the above equation will be as

nmx
Pn(x) = A sin——

Where 4, is a normalization constant. Eigenenergies will be as
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o] h?* nmy? _
Eﬂ = 2_1’?’1 (T) n=12-
s E
energy wavefunction _
£y !I.
n=3 = [

n=2

RR— n=1

Figure 9

Finite potential well:
Again for simpilicity we consider 1-D finite potential well, the time-indepent schrodinger equation
can be written as:

B dp(x) _
g VW) = E(x)
Now V(x) is assumed as:
_ [Ug otherwise
Vix) = [ 0 0<x<a

Solution of SE will be as
WE > Up: 89 4 f2y(x) = 0 where k = :f:“‘f'”"

Tdx?
so YP(x) = A, + A_e~™** = Asin kx + B cos kx

2 -
IfE < Upy: %—azw(x) = 0 where a E___,zm(:us)
50 Y(x) = De™% + Ee™

Needed steps for analytical solution of shrodinger equation (for N regions):

£ "bm + k*p(x) = 0 = ZN unkonwns.
Step 2. Wavefunction at inﬁmty. P(x = —e0) =h(x = +0) =0 > 2N — 2 unkonwns
Step 3. Continuity of wavefunction: for remaining N — 1 borders between N regions:

Wl =W,y and 3| =2¢ ,; > set2N - 2 equations. (DONE) \

Step 1. solve wave equation

x5 dx
Step 4. find coefficients b\r setting det{cuefﬁment matrix) =

R O ]
Step 5. Normalization f Plp()|2dx =1 K‘ "0, Rt r’glan —p )

Once Y is known, anything else can be computed by its operater as;
+o0

_f ldx]“b *

-t

e [l efve

—o
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Step 182
E o U(x)
- ke
1) v = drinks + Bcoskx 1) Boundary
conditions
w=De" £ W™
W'M\‘*-H‘Je"’ w\ \ w(x=-w)=0
,e/ p{x=+w)=0
e S
4\ 0 a
Step 3:
C=8
al = —kA

Asinka + Bcos ka = De™™®
kAcoska — kBfsinka = —aDe™""
In matrix form:

0 1 -1 0 A1 (o
ke 0 a 0 B|_ |0
sinka coska 0O —-e™ ™ [IC 0
coska —sinka 0 ae ®/k/ D 0
Step 4:
1 1 =1 0
k 0 a 0 _
det sinka coska 0 —eT®e | 0

coska —sinka 0 ae™™/k

tan(aa/T) = z—“M wheref——— a= i'i‘—?ﬂ
B

Graphic solution

tnmmmf—}-—@
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Step 5:

1 1 -1 0 A 0

k 0 a 0 B|_|0
sinka coska 0 —e™® [C] . [Dl
0 0

coska -—sinka ae” " /k/) LD
1 -1 0 B 0
0 a 0 ) cl|= —kA
coska 0 —e /LD —Asinka
B 1 -1 0\ 0
Cl= ( 0 a 0 ) —kA
D coska 0 —e™%® —Asinka

B, C, and A is written in terms of A, now A can be found as:

+ oo o a +o0
j lW3dx =1 f C2e?axgy + j (Asinkx + B cos kx)?dx + J‘ DZe~?exdyx
—w 0 a

-

Rty
[EH

CL13

no

Figure 10
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+  Crystal potential energy structure
+  Bloch theorem

+ Near free-electron model

* Kronig-Penney model

What is Electronic Band Structure?

The ranges of energy that an electron is forbidden or allowed to have, is called electronic band
structure. The material's electronic and optical properties depend on its band structure. We saw that
the electrons in the simple Bohr's model may only have certain energies. Considering Pauli Exclusion
Principle and electron’s spin at each energy level, two electrons can exist. By adding another atom, each

electron is under influence of its own nucleus and the nucleus of the next atom, hence each energy level

will split into two energy levels close to one another to accommodate 4 electrons. Similarly, set of N
atoms will make N different energy levels for 2N electrons, which are so close that can be considered as
a band of allowed energy. Between this band and the next allowed energy band there is a forbidden gap
that no electron can exist with that energy. These band energies are plotted for electrons with different
kinetic energies, in this chapter we are looking after the allowed energies for electrans for different

single atom 2 atoms I M atoms

2N senron

energies

forbidden | “l
energies b

i
T

Paul exchusion principle

Figure 1: ).\?

1-D System:

Consider and ideal lattice with no defects or imperfections. For simplicity, we examine a 1-D case
assume that N atoms in the crystal with a lattice constant a. Think of all the electrons (except the one
that we are interested in) and all the nuclel in the crystal as giving some fixed potential U(x) in the x
direction. That single electron that we are interested in moves against this essentially fixed background.
This assumption is known as Hartree-Fock approximation,

7/

e S0, ﬂ{f‘?wq’» I Hartee fosk s ®
*—H—'-.f-—-w-——;.—\_‘

.- . . - 7 /
v ‘PiL y,}p/;/.-:u ~t Wwh ests .:r#f.f &5(, Lt
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Consider atomic cores (nuclei + tightly bound electrons) as shown in the next Figure. One such core
gives rise to a potential U(x) because of the Coulomb attraction of the core, with its net charge, for the
maobile electrons.

-
" & Aty ;'{'31 i '
Figure 2

Two such cores side by side give rise to a different potential, and a large number of cores equally
spaced gives rise to a periodic potential U(x) as:

-

" s
' At son (1)
n

NN =N

Figure 3

Bloch Theorem:

For a one-dimensional case, Bloch's theorem is as:

If U/(x) is periodic such that U(x) =U(x +a)

Then  (x + a) = e™*p(x) or, equivalently, Px) = eFu(x) , Uny =R

where k can take on the values: k =\}€1/%1 whilen=0,41,42,-,£N/2

= X hit

Bloch thearem strictly applie-s_'g%-i “infinite” crystal. In studying an infinite crystal, however, a
common trick Is to consider first a finite crystal, with N atoms, and impose a periodic boundary
condition at the both ends of the crystal. So essentially we imagine connecting the right-most unit cell to
the left-most unit cell in a kind of a loop. At the end of the calculation, we will then assume N to be very
large. In this way, the infinite crystal becomes mathematically more tractable. You will encounter this
trick again in the density of state calculation in next Léctures.

We know that the crystal is periodic, having the same potential at x + na as it has at x (where n is
?Mﬂ%%}jnmv must also have the same periodicity (the crystal must look identicai
in every unit cell.)

For example, charge density p o ||? must be periodic in the same way, hence

YOI = [Yx +a)?

b ol v
c{wvae J'"""J

which means
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Ylx) = Cylx+a) the incident wave will be completely reflected back if the crystal is large enough. The eigenstate of the
—
where C is a complex number of unit amplitude. (Note that there is no reguirement that the system when Bragg condition Is satisfied should therefore be standing waves.
B -
wavefunction itself be periodic with the crystal periodicity, since it is not apparently cbsen.ratﬂeL - ‘€
Periodic boundary conditions require the wavefunction at x be the same as the wavefunction at Nearly-Free Electron Model: . | c
x + Na, hence ) Suppose we have a wave with wavevector k = tm/a,where a is the lattice constant in the
Y(x) = p(x + Na) = CV (x) | K= L direction of the wave or A = 2a will satisfy the “Bragg reflection” condition for waves along this axis =
So | 91 , 7= vo Will get “standing waves.”
V=1 \ = T ! he potential energy s very “weak”, the standing waves will be very close to sinusoidal waves (i.e., R
and so C Is one of the N roots of unity, i.e., - the electron is “nearly free”)
2ins - nx i —
CZHP(T) . §=0,1,2-,N=-1 ,)‘" Y(+) = el™/a 4 g !xx.-fa=2cos-a— l . -, 'rL(" ¢
: - e B sl b =
or 2 Y(-) = elnx/a _ g=imx/a = 2i san } !
5 “ a
C=exp (Zfﬂ(ﬁ + m)) ;o os=01, 2 N =1 and m any integer With corresponding charg densities
Replacing C into equation for y: " p(+) = [p(+)|? x cos? Eaf
Y(x +a) =e"YP(x) mx
Where P(") = W"(“)lz o Sinz_a"
2 -
= s=o12N-1 >
Na . ;’
Or .-J -
2mn
k=— ; =0, . e ENS2
Na n +1,42,-, 2N/

Which still gives essentially N states, nut now symmetrically({disposed)about k = 0.

Note the allowed k values are evenly spaced by 2 /L where L = Na is the length of the crystal in
this dimension, regardless of the detailed form of the periodic potential.

Straightforward extension of the 1-D version .

the two probability densities have their maxima at different points in the unit cel[.ﬁmm_ﬁa

Y +d) = ei;.ﬁ‘b(?) AT e /@ | =T -, 3 L_:_' K '..f at the atomic cores, where the potential energy is low and p(—) has maxima between the atomic cores,
o B, oo < o - - s where the potential energy is high. there is an “energy gap” between these two possibilities
Y@ = e*Tu(?) VS-S APy WS Y it I . ) o i i .
o o . . i L) o e More detailed calculation in this model yields the energy — momentum relationship below
Where d is any crystal lattice vectorﬁnd considering the three crystal basis vector directions, 1, 2, . ety e L / " o
i e -
and 3, with lattice constants a,, a;, and a3, and numbers of atoms Ny, N3, and N, A sl &Fe (jf,;
2nn Ny prd T
= . = e " . YR b
1“N,ﬂ ;o o n=0,%1,%2, ‘i?. Lol L,
and similarly for the other two components of k in the other two crystal basis vector directions. Ir, — 2 7 4
' L U, bt Ui);,.u (4 7J
-~ ] : —_—
Bragg scattering in one-dimension: ¢ Kitfle g, ! ) |l l “,L.:/) '
i N .2
Bragg scattering occurs when wave interacts with a periodic structure whose periodicity is -+ + " -
comparable to the wavelength. In one-dimension, assuming that we have a periodic array of scatters, “ “ » .
each scatters is characterized by a small reflectivity r. Y Y u 4,0
I emergence of “energy gap
The total reflectivity is then . -
region of energy where there are no propagating (or standing) waves possible
K - Z reitkma | R
m mn, (]
/ ~ 1 Kronig-Penney Model:
hich diverges when the B c ka = nm is satisfied. . . .
Wijeh clverg e - A Sy take non-trivial (though not necessarily very realistic) potential that we can solve completely,

Therefore, no matter how small the reflectivity of each individual scatter is, as long as the Bragg

o . ) . rectangular “Kronig-Penney” potential as:
condition is satisfied, the reflected wave from each scatter coherently interferes with one other. Thus, " &
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Previously we solved shrodinger eduation
in the "well” region: 0<x<a

i + a’ify(x) =0 where @ = ,/2mE/
In the “barrier” region: 0> x > —b
d Py (x)
dx?
Formal solution in well:

ip ;- = [2m(Uy — E)/RE (0 < E < Up)
Be Pz =y2m(E = Ug)/h? (E > Uy)

Ya(x) = Agsinax + B, cos ax

+ B2y (x) = 0 wheref = {

Formal solution in barrier:
Yp(x) = Apsin fx + By cos fx

Boundary conditions:
continuity requirment: Pa(0) = yp(0) Qo _ d¥p
. a L ! dx |g dx lg
g . d d
periodicity requirment:  y,(a) = e®@* By (~b) % = pikia+b) % ,

results from boundary conditions
B, = By
ady = ffAp
Agsinaa + By cos ea = e*(@*PI[— 4, sin §b + By, cos §b]

ady cosaa — aBy sinaea = e® @+ (g4, cos Bb + 8, sin fb]
In mmatrix vector form: -~ /"w/
(sin aa+ (a/B)e*@* W singb  cos aa — e*(@+8) cos Bb ) [Aa] _ [G]
a cos aa — ae'®@* P cos fb  —a sinaa — fe*(+) 5in gb / | Ba 0

Taking the determinant of the matrix and setting it equal to zero as usual for linear equantion, gives

the “characteristic equation” that determines the conditions under which the system has solutions:
: a?+
2a
Finding the mathematical solutions to this equation will determine the allowed energies and the

wavefunctions associated with them

s ot
sin a - sin Bb + cos aa - cos

=cosk(a + b)

fhea 1

U Oz 4 e, ) k«+

sl s

: X Siinll —»—S'm

Introduction to Solid State Physics o

A more convenient form

Chapter 3 — Energy Band Theory

_[iﬁ_ i (0<E < Up)
B=18, ;&>uy
Defining
ag = 2miy/h2 ;. = E/Ug
Such that
a=agff i fo=apT-§ ; fi=anff-1

gives
for 0 < E < Uy:

- 1{(—1 f_{) sinaga,/§ - sinh agh,/1 _'ar"'COSﬂnﬂﬁ'COSaob 1 —T=cosk(a+bh)
for £ > Uy: X

2_% sin aga\[f -sinhagh /& -1+ cnsanaﬁ.cos ﬂnb‘ﬁf_——‘l = cosk(a + b)

Left hand side of these eugations depend only on E and righ hand sides only on k, hence determins
the allowed values of E corresponing to a given k .
f (&) is the left hand side of equations above for specific choice of aga = agb = m. Values of
|f(€)] > 1 correspond to no wave solution - band gap.
1]

Tl Tomd
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s  Brillouin zone and Zone folding
« Particle motion, Group Velocity, Effective mass
* Carrier and Electron and Hole Current

Brillouin zone and Zone folding
We know that the solutions to the Schrédinger equation for our periodic potential in the crystal are
in Bloch form (in one dimension for simplicity)
Pix) = e u(x)
We could recast the Schrédinger equation in a slightly different form by substituting this form of
solution into it. Noting that

dp _qdu )
dx a+tku]e
and
d%yp  [d?u du
—_— — il — L2 ikx
- |ae + 2ik e k u]e

We should rewrite the Schrodinger equation as:
2+ 2ik = K+ Vu = Bu (°)
2m ldx? dx

The detail of this equation does not matter to us for the moment. It is however, another
eigenfunction equation; one way of proceeding to solve for the band structure would be to solve this
equation for each allowed value of k to deduce the function u and the associated energy E.

In fact, solving this equation for any given value of k will lead to several eigen solutions (actually it
will lead to an infinite set of such sclutions) with different eigenfunctions, uy ; (x) , and (generally)
different eigenvalues for the energy, Ep i (x), (where n is an integer that index
somewhat different from what we have shown so far; where for each k we only had one energy solution
graphed. In fact, there is a major simplification possible here that also reconciles these two pictures.
~—Suppose we know a solution of the above Equation for some particular value of k = kg

Yok, = uq.kn(x)eikox N

Now suppose we want to know something about the solutions for another value of k, specifically the
value k = kg + 2mj/a [where a is the lattice constant and j is any integer). Then we know that solution
must also be in Bloch form, so we can write it as

\&'(x) =u (x)ei(kn-rz:r}fa)x
and, trivially, we can rewrite this as =y “
P(x) = v(x)e'kex =7 a

Where
v(x) = u(x)e'tmx/a
Note that exp (i 2mjx/a) is also periodic with the lattice periodicity. Hence, v(x) Is also periodic with
the lattice periodicity (being the product of two functions with the lattice periodicity).

!ntroéﬁctian to Solid State Physics Chapter 4 — Brillouin Zones and Zone Folding

Hence we only need to know the solutions for a range of k of a total of 2n/a, and we automatically
know the solutions for any other k. Therefore, to solve for the eigen solutions for the case of k = kg +
211j/a, we can substitute the Y (x) = v(x)e' ** intg the Schrodinger equation, which gives us exactly
mﬁg:@m;_g;cegt with u replaced by v. Since the equations are identical, the set
of solutions must be identical. Hence, if 1y (x) is 2 solution for the case of k = ky , with associated

eigenenergy Eq x, then itis also a solution for the case of k = ky+ 2mj/a.

A specific range of size 21 /a is known as a “Brillouin zone", conventionally chosen so that the first

Hence, we have proved that the band structure is repetitive in k-space, repeatin with period 2 fa.
Therefore, we only need to know the solutions for a range of k of a total of 2m/a, and we
automatically know the solutions for any other k .

Brillouin zone Is symmetrically disposed about k = 0, 1.e. trom —m/atom/a.

Brillouin rone 1. Brillouin zone
5432 1. 234 5 \V}

_ Note that all the properties of the band structure are completely specified by specifying fa,l\l_ﬂff_h.‘f'.rlqs*
in‘ane Brillouin zone, usually called the “folded zone” representation. There are exactly N, equally-
spaced, allowed values of k in a given band in a given Brillouin zone. Note the states in this “first”
Brillouin zone account for all the possible states in the crystal. There are’_"Nd'statesﬁn each band, one for
each atom, and one band corresponding to each atomic state in the atom. The states in the other

Brillouin zones are the same states as in the first Brillouin zone — they are not distinct states.

\ -_]/,-

INAAAR

Figure 1: Energy Bands - in “Real Space"
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Figure 2 : Energy Bands - in “k-Space”, for Kronig-Penney example
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Particle Motion and Effective Mass:

Heisenberg uncertainty principle states, for example, AEAt = h, for the uncertainty AE in the
energy and the uncertainty At in the time; if we know the energy accurately, we cannot accurately
define the time at which the system has that energy. Similarly 4p,4x = h , for the uncertainty in
momentum, Ap,, in the x momentum and the uncertainty dx in the x position, i¥

ur sty deflned omenium, we oo nos ko

To understand movement of particles, we need to look at “wave packets”, superpositions of waves
that look like * = . Wave packets are not energy eigenstates, so they change (e.g., move} in
time. Specific linear combinations of waves over a range of energies (or, equivalently, In our case, k
values or (effective) momenta hk). The narrower the pulse in time, the broader the range of energies
required describing it; the narrower the pulse in space, the broader the range of spatial frequencies k or
effective momenta hk required to describe it, exactly like temporal or spatial Fourier analysis.

Group Velocity of Wave Packets, effective mass:
Classical wave theory, based on examining the behavior of linear superposition of waves, says the

velacity of the center of a wave packet or pulse is the "group velocity”

Vg = o X

where w is the frequency and k is the wavevector. For example, consider a total wave made up out
of a superposition of two waves, both propagating to the right, one at frequency w + dw/2, with a
wavevector (angular spatial frequency) k + §k/2, and one at a frequency w — fw /2 and a wavevector
k = 8k /2. Then the total wave is

= o+ e+ )] oo -2)e= (- )1

a+fi a-f
cos—

Since

sina + sinff = 2sin

then
f(t,x) = Zsin(wt — kx) cos(wt — kx) X
which can be viewed as an underlying wave 2 sin(wt — kx) modulated by an envelope cos{wt —
kx).

dw : . Jn gy { S =
¢ AFnt=vsim (E%}(M(SE:_—E:«_)(L) X L)

Introduction to Solid State Physics

The underlying wave moves at the "phase velocity”

_ @
v,, = -;-‘-
but the envelope moves at a “group velocity”
Sew
V=5 x
or, in the limit of very small w and §k,
diw
w=g X

For the quantum mechanical case, since a wave of a given energy E has a time dependence
o exp (iEt/h), w = E/h, and so
1dE
s = Rk
is the group velocity of a quantum mechanical electron wavepacket.
Suppose now we apply an "external” force F to the moving wavepacket (or equivalently to the
moving “particle”), the work done in applying the force through a distance dx is
dE = Fdx
The distance dx is equal to the group velocity, Vg, times the time, dt , for which the force is applied,
so we have
dE = Fdx = Fygdt
Or making use of v, = dE/hdk
= 400
dt
(Mote, incidentally, that, since “effective” momentum is essentially fik, we are now saying that the
force is equal to the rate of change of momentum, in agreement with the classical situation)
To find out how fast we are accelerating the wavepacket, we differentiate the group velocity with
respect to time, to obtain

dvy, 1d (dE) 1d?Edk 1 d?E d(hk)

gt T Rdt\dk) T Rdkldr  RPdk? de
Or equivalently using the expression for F from
’ dv, 1 d°E
A ——
dt  h?dk?
which we can rewrite as
dy,
F=m"—2
™ Tt

where the guantity

O);K(ﬂ)f mM* > e M*{o
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behaves like a mass, and is called the “'effectlve. r_'r'ma_s_s:",-prcportional to the inverse of the “curvature” i
of the band. (Note this agrees with the classical notion of mass and kinetic energy with £ = p?/2m)
Effective mass is a particularly meaningful and useful concept near minima or maxima (i.e., "edges”)
in the band structure, which also turns out to be where we are most likely to find electrons participating

in transport {i.e., transport of charge, or current). There

. E = Egage = (constant)(k — kedg,)z
50 {7 : o ) /
Y d?E e

‘_P -
Ji7 = constant .. when E near Eqg, — Tyt 51"3

parabolic regions In the bands correspond to particular values of effective mass
Mote effective mass is a property of the band structure in the crystal. Effective masses can differ very

L}

much from the “free electron” mass (they can be smaller or larger, they can even be negativel) i3 ™ o Fo ] '

m" is positive near the bottoms of all bands , m” is negative near the tops of all bands. " L

™ Figure 3

Carriers and Current:

Consider a band structure like the Kronig-Penney example; suppose there are two electrons per Reciprocal lattice:
“atom”, and N atoms In the linear “crystal.” There are N states per band. At low temperature, the  We can easily extend the discussion that we had for 1-d periodic system to 3-d periodic system. For a
lowest two bands would be completely filled, and the third band would be empty. At finite temperature, crystal with primitive lattice vectors dy, d,, and d3, the wavefunction should satisfy the Bloch theorem:
some of the electrons will have enough thermal energy to be thermally excited into the third band. () = e!T:.Fu(f)

Obviously, an empty band can carry no current — there are no electrons. Less obviously, a full band
can carry no current, For every electron with a particular momentum, there is one with exactly the
opposite momentum, so there is no net momentum

- n Ttie wow‘:
where u(7 + d) = u(F) for any lattice vector d (’" ¢ v
Similarly, we can show that the energy band has to be periodic in the k-space. [i.e. the reciprocal

space): /\U; /’-" ! /> ;.
Notice that E(E+5)=E(E) Vst d G Brew ""’""-'C"’" -
ad -l dE iGd = i A A s
I= L Z vny = "L Z (EE;) ny where &' 1 for any lattice vector a. The set {G} is the reciprocal lattice for the crystal. Nd’ e
T T im— "
For a filled band, n = 1 for all states, and E (k) is an even function over k'. The sum as inlciil:ated The reciprocal lattice of a Bravais lattice is the set of all vectors R such that . rJﬂ‘f ij‘
above goes to zero. Applying a force to the full band of electrons makes no difference to this situation. iR -
(The force changes the value of k for each electron as a function of time, however, at each given time, i N =1
for one eI;lron ata Ei;;r;momentum' there is still one with exactly the opposite momentum)_ for all lattice point position vectors R. This reciprocal lattice of a Bravais lattice is itself a Bravais
" Only partially e;b;_nd_;can carry current! . _1attice, and the reciprocal of the reciprocal lattice is the original lattice.
For a partially filled bands (if symmetric in k), there will be no net current in the absence of field. For an infinite three dimensional lattice, defined by its primitive vectors (d,, d, d3) , its reciprocal
Vemoshe for the electrons symmetrically occupying states in the two directions lattice can be determined by generating its three reciErccaLprimitivg vectors, through the formulas
of k. With field, the distribution of electrons is skewed by the applied field, giving net current. For nearly El = 2n= d dx '“31
full band, conduction is only possible because there are some electrons missing. (can think of the @ - _( az x‘ dy)
missing (negatively charged) electrons as (positively charged) “holes” in the electron gas. can think of ) 52 = 2= ?3:‘ 01*
them as particles with effective masses and energies). ] E fy % ;)
Need to look at everything “upside down.” e.g., effective mass associated with the empty states is by = 2p et a‘,x 024
taken to be the negative of the effective mass m" deduced previously (gives positive effective masses dz - (dy x dy)
for holes at the top of a band.) Or

I T
[B, Bybs]

There are corresponding reciprocal lattice vectors G = myb, + myby+mybs where my, my ,and my

= 2n[d; dads] ™!

are integers. The properties associated with any particular point Kin reciprocal space are the same as
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those associated with any point k+G , where G is any reciprocal lattice vector. All Brillouin zones are

equivalent, so we need only consider the properties of the first Brillouin zane. The first Brillouin zone is
conventionally chosen as the Wigner-Seitz cell of the reciprocal lattice.

Real Space
Cubic Lattice

Reciprocal Lattice Brillouin Zone

I el

LY

S SR

Follow W-5 algerithm, but
now for reciprecal lettice

Figure 4: Brillowin 10n¢ in cubic lattice

Real Space FCC
[for Si, Ge, GaAs)

Reciprocal Lattice

\0.87+2n/a
ol Cor

Note unlike cubic lattice, zone edge is not ot n/a

X ® x Figuga 5:

¥
b x .

Fl

Eac_*ué:a_irifg hkl) in the reciprocal latticé corresponds to a set of Aattice plaht (hkl) in the real space

lattice. The direction of the reciprocal latticegéctoncorresponds to the normal to the feal space planes),

o

The magnitude of the reciprocal lattice vector is given in reciprocal length and is equal to the reciprocal
of the interplanar spacing of the real space planes.

= \_..._-;ﬂ-. g HoCL ¢ !\';Pflf: o Fre
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Reciprocal space (also called "k-space”) is the space in which the Fourier transform of a spatial
function is represented (similarly the frequency domain is the space in which the Fourier transform of a
time dependent function is represented). A Fourier transform takes us from "real space" to reciprocal

space or vice versa. . ) 4‘-"‘“6:;:4‘-;::\;'6 Z
F(k)=f fre%ar el .. -

o Y )

A reciprocal lattice is a periodic set of points ians the k points that compose
the Fourier transform of a periodic spatial lattice. The Brillouin zone is a volume within this space that
contains all the unique kévectors that represent the periodicity of classical or quantum waves allowed in
a periodic structure. S T

‘We have seen by example that we can solve the Schrédinger equation, and deduce a dependence of
E on k that gives us a "band structure” for the crystalline solid, To understand some of the important
general properties and great simplifications that are possible in this problem, we need to step back and
take a more formal approach for the moment.

Wigner-Seitz unit cell:

A commaon “standardized” choice of primitive unit cell. The Wigner-Seitz cell is the region round
about a lattice point that is closer to that point than to any other point.

The Witner-Seitz unit cell can be constructed by

(i) drawing lines between the point and (in principle) all other points in the lattice (in practice only
the points reasonably close to the one of interest need be considered),

(i) bisecting each line with a plane perpendicular to the line

(iii} taking the smallest polyhedron formed by these planes about the point

emmen ey
1
t

5

cubic

centered
“subic

hY:

o e

3

1  body-certered cubic

hexagonal

In 3-D have wavevector k. Brillouin zone is volume in k-space, just as repeated zones fill all "space” on
the k-axis in one-dimension
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Lattice Real Space Lattice k-space

fee WS cell bee BZ

Brillouin zones fill all “k-space” in 3 dimensions
Brillouin zones are the “unit cells” of a “reciprocal lattice”

Brillouin zone for a fcc lattice i i -Sei it cel

Figure §

Notations:
I" - identifies zone center (k=0)
X - denotes zone end along a <100> direction
L - denotes zone end along a <111> direction

N

Introduction to Solid State Physics ':\Ter 4/"»%""'9”" Zones and Zone Folding

Note that the size of Brillouin zone is different in the different directions.
Usually we plot band structures along only a few, specific directions, because of the symmetry of

semiconductor crystals. Most interesting properties usually found along “high-symmetry” directions

(;g band maxima and r_n-inima,} Because diamond structures have a center of symmetry, only need to

plot for +ve [or —ve) k values in any particular direction

| B
N Y

£k Y]

4
Loy roaesy o x Lo o (o % L (i T (wey x
& (wave sweion)

Figure 7

& [wave yerior)
Figure B: GaAs band structure

Features:

Valence bands: essentially full of electrons ; maximum at I ; three valence bands (heavy hole, light
hole and split off hole) Lk e

Conduction bands: essentially empty of elecl‘[ons H \"’ )‘J;L(]‘J"r/’ #

Ge: minimum at L, six equivalent minlma;":" _J“: A

Si: minimum at 0.8{2n/a) along the "X direction, eight equivalent minima —= . ni

GaAs: minimum at I, one minimum

3o O gtrl
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Band gap energy: (minimum) separation between highest valence band and lowest canduction band.
At room temperature (300K): [ Ge: 0.663 eV ; Si: 1.125 eV ; GaAs: 1.422 eV (corresponds to a photon

wavelength of 871 nm))

Dlrect and Im:IIrect Bandgap Semimnductors'

minimum in conduction band. This is very important for opt|cal properties. Stro__g optlcal transitions are

“vertical” on E vs. k diagra n has relatively little momentum. This leads to strong optical
absorption and emission between band minima and maxima that are directly above one another,

Si and Ge are “indirect bandgap” semiconductors as the maximum in valence band and the minima in

conduction band are at different k which can lead to weak optical absorption for photon gnergies near

the minima at different p_mnts in the Brillouin zone. This is why_we don't have a silicon Iaser

Band Structures of Insulators and Metals:

At low temperature:

Insulator or semiconductor (in pure material} : bands either completely full or completely empty of
electrons

Metal: one band partially occupied, other bands full {e.g., Sodium)

Semimetal: bands partially occupied because of overiap of bands in energy

insulator or semisonductor sermetal metal {Kite! p 194}
Figure &

Difference between semiconductor and insulator:

band gap energy Is low enough that there is a sufficiently large number of carriers (electrons and/or
holes) thermally excited across the bandgap at, e.g., room temperature to give significant conductivity
and carrier density and type can be controlled by introduction of small amounts of impurities

Constant Energy Surfaces:
Consider a specific energy, E — E., just above the energy, E., of the minimum or minima. In general:
E —E, = Ak} + Bk3 + Ck3
because the curvature of the band structure is, in general, different in the three different crystal
directions ta?
© In_si_r‘nlle cubic symmetry, at zone center, must have the same behavior in all three directions, so
might expect somethlng like

e —— et

E—E. = A(k} + k3 + k3)

Py r’x,.», Yoaln
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reasonable “first order” description for GaAs conduction band at zone center (though can have

signlficant “warping” in valence bands)

be equal, so have something of the form

Cubic symmetry also requires, along the direction I"X and I"L, that two of the coefficients A, B, and €

E—E¢§Ak2+5{k§+k2)

SI and Geh have : multiple equivalent mlnlma in the conductlbn bands (8 for Ge, 6 for Si)

GaAs has its one canduction band mln|mum |n‘the m

Iddle of the Br|llou1n zone

[ S 001

T

-

1

Figure 10

Effective Mass in 3-D:

In general, effective mass now has to be written as a tensor

dv 1 #
dt — m
1 Mey My
= M myy
-1 -1
Mzy Mgy
where, in general ) .
1 1 @8

My
-1
Myz

=1
Mzz

=
my ~ R 5“_@_“15

Mote in general that acceleration and force are not colinear. the particle does not necessarily go in

the direction you push it!

Py e =

RIS ' 1@_‘,,‘.,___]
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4o = mi}Fd,+mLF8, + m;iFa
dt hex Fxtix yx Txty X fxlr
For conduction bands at zone center in diamond and zinc-blende semiconductors, behavior of band is
approximately Isotropic and “parabolic” ' T '
- T E-E.=A(k}+ki+k3)

e,

S0 masses are formally

j ¥
e 24 e I 1= | -V
sl m,,,}=m,.j=m,}=—hz Ale YAt == | Ay

and all “off-diagonal” terms in the effective mass tensor are (approximately) zero. hence can define
single scalar electron effective mass, mg

h?
E-E, =m(k¥+k§+k§)

for which we get back to a simple, scalar-vector relationship, with the particle accelerating in the
direction in which it is pushed

di _ K

dt  m*
Mear these minima in Ge and Si, the energy behaves approximately as 4 »’;/;.I Ay
— E—E, = Ak? + B(ki +k}) " 22 wslu) e e

where ky, k, , and kq are along the principal axis. (For Si, ky is along the <100 directions, for Ge, k,
is along the <111> directions).
so we can define

_, 24
M =37
2B
mz} = m3} =37
leading to
h? h?
— Ep= ——k? 4+ —— (k3 + k3 .
E-E, Pl * 5 (k% + k2) Ge, Si
. Of o
mi _ ( Length of the ellipsoid along the axis of revolution )2
me -

Maximum width of the ellipsoid perpendicular to the axis-of revolution
iy .

Figure 11

Valence Bands in Diamond and Zinc-Blende Crystals:

Introduction to Solid State Physics  Chapter 4 — Brillouin Zones and Zone Folding

One model (Luttinger-Kohn) useful for valence bands in diamond and zinc-blende crystals gives an
expression for the top two (heavy and light) hole valence bands

E, — E = Ak? £ [B?k* + C2(kZkZ+k2KE + k3k3)]

Note this has “cross terms” between the different directions (e.g, k2k3) and shows valence band

1/2

“warping”

mrl:‘_ turn ouwAc -':E ‘5\@?&

e T TV

Heavy Haole Listht Hede
Figure 12
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introduction to Solid State Physics Density of States Introduction to Solid State Physics

¢ Density of states in k-space (periodic boundary condition)

* Density of states in k-space (complete reflecting boundary condition)
* Density of states as a function of energy for free space

» Specific materials, such as 5i, Ge, and GaAs

Density of States:
1s needed to understand: "1 I_ o
1. Thermal occupation of band (and impurity) states by electrons and/or holes . %
/ 2. Optical absorption spectra
& Need to understand explicitly how many states there are available to an electron or hole in a given
‘energy range about some particular energy of interest
‘-/Q Density of states (in energy): number of possible electron states per unit energy per unit volume

I
Requiring the waves to be ~ zero at the walls of the box (regardless of the specific form of the unit
cell wavefunction) requires that the “envelope” be standing waves, so
Wwix,y,z) = u(x,y, z)sin k;xsink,ysln kgz

To do so we start by calculating how many states there are per unit k. where . T
+/ @) Density of states in k space {a very simple calculation) then deduce the density of states in energy ky= "‘;_‘ i ky = % P hp=—
fraom the (presumed) known relationship between k and E. This would give
Density of States in k Space:
Have already solved this problem, deduced from Bloch theorem that states are spaced by
2n 2m 2m —  devrE f by o
TET el awdp CPr 0 ®
in the three coordinate directions in k space, where a, b, c are themm the three N
directions (note: not the unit cell dimensions — we are following Pierret’s notation here, even though it /
is somewhat inconsistent) Az 'l L = NAuniteell e w & m
* 7/ Cyclic boundary conditions: correctly “counts” all the states if we consider states only in one Brillouin . solutions _abc
zone. In a total range of k, of Zfr__/feﬂmg“ . for example, we will have N, states, wher: &_ 1 ) ey UJ-I’ ? (unit volume of k-space ) T
numl;_er o_f_ umtceﬂs inthe x dl'r_eftinn, since N‘au“m'_.gq =_€ . wuniteel < negative k values correspond to the same states as positive k values in a standing wave, so should
with a spacing of states of 27 /a, the number of states per unit length (in k space is GIZJT,]-._I"IQ\’ e S not be counted twice, so should divide by 2 for each dimension, giving
density of states per unit volume in k space is abc/(2m)3. But abc is just the volume of the crystal, so i d*-‘a‘ v ( allowed energy states ) _ ﬂ
the density of states per unit k space volume is unit volume of k-space / ~ 8r3
abe Need to correct this result to-account for the fact that there are two distinct possible electron states
k= W for any given k corresponding to the two different values of electron spin, so we have
can equally well consider “hard wall” boundary conditions and get the same answer. . allowed electron energy states\  abc
actual finite crystal looks like a “box” for the exp(+ikx) waves (or similar waves in the other crystal ) ( unit volume of k-space ) ) i
directions) To convert the known density of states in k space to a density of states in energy, we need to invake
some relation between E and k. Most interesting simple case is spherically symmetric “parabolic band”
found near some band maxima and minima. There we have
-rr E= "—:5‘3 ork? = 2%5
;::l.mu For some effective mass m, where we are presuming for simplicity for the moment that E = 0 for
k = 0. (We can always change the energy origin later). Now consider a thin spherical shell in k space,
S Ny ca = the volume of the shell is 4mk*dk
uniteg st N Ny - Nunitce, _a In this spherical shell there therefore is a number of k states

ﬁ)g@&ﬂ&p-‘,,)wba‘»&' N o=

Y
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abe
(energy states with k between k and k + dk) = 4mk*dk (m)

Because, by assumption, E o¢ k? in our parabolic band, this shell also corresponds to all states with
energies between E and E + dE, where

_ Wkdk _ 1 [mdE
. dE = —— or dk = > T
50 the number of states within this energy range is
my2mE
(energy states with E between E and E + dE) = (abc) -?;fl—a—dE

It is conventional to express the density of states as the number of states per unit energy per unit
crystal volume, giving
(energy states with E between E and E + dE)
abe.dE

mv2mE
9 = "ap

g(E) =

Density of States in Energy in Conduction and Valence Bands:
For a conduction band for which the (electron) effective mass my, is positive

ml.w' Zm;,(E = Er:)

ge(E) = 2213
For a valence band for which the electron effective mass is negative, we can work instead with a
positive hole effective mass m, to obtain

E=E

_mp2my (B, = B)
gu(E) =P —p"— E<E,

Density of States in GaAs Conduction Band:

In Gahs, lowest conduction band is approximately spherically symmetric near zone center, so we can
use a simple effective mass m; = m;, (this mass is very light (~0.07m;) which corresponds to steeply
curved band, low overall density of states) :

Density of States in Si and Ge Conduction Band:
The N,; minima in conduction band, each approximately “ellipsoida
2

E E—h k2 " k2 + k3
~Ee= o ’+2m;(2 3)

Can be rewrite in form of:
k? 3 k2 + k3
al 32 -
JZm{(E = E,) JZmi(E — E)
as¥_—C ga¥te —C
h h
Can repeat density of states derivation, now using an ellipsoid in k space instead of a sphere, with

1

where

ellipsoid chosen to correspond to a surface of constant energy. Result is similar to “spherical” derivation.

total valume of ellipsoids in k space out to some specific energy is

" Chapter 5 - Density of States

Introduction to Solid State Physics

Net Gﬂa,ﬁz) = % ks,
where k, ¢ is the radius of sphere of the same volume.
A single density of state equivalent mass my, can be defined as:
(m3)>? = Noy(mim;*)!/?
Giving:
my, = 623 (mim;*)* .S
my, = 4¥3(mim;*)? - Ge

+ Valence Bands in Diamond and Zinc-Blende Semiconductors:
Have two bands, light hole and heavy hole, both with the same energy atk = 0
Presuming for simplicity that we can use a simple spherically symmetric band in each case as a first
approximation, simply add the densities of states to obtain
oolE) = m;ﬂmf(ﬁu ~E) _ Miny/2min (By — B) | Miny/2miu By, = B)
m2h3 mih3 meh3

ar
my, = [(mpa)*? + (M) 327
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Introduction to Solid State Physics &

* Vibrations in Crystals (Longitudinal/Transverse)

"= Dispersion Relation for Elastic Waves (Brillouin Zones)
*  Two atoms primitive basis: optical phonons and acoustic phonons
*  Quantization of phonon modes

The nuclei (together with the tightly bound valence electrons) can vibrate, allowing "elastic waves”
(nuclei connected by “springs” — bonds between atoms). This leads to:
o conduction of sound in the crystal :
o conduction of heat
o heat capacity (thermal energy can be stored in the vibrations)
v6  limitations on conduction of current (electrons or hales see vibrations as imperfections in
crystal lattice; nuclei not in their exact lattice positions =*leads to “scattering” of electrons
or holes)
o optical absorption phenomena (“indirect” optical absorption in “indirect” semiconductors
2.8, 5i, Ge)
o difference between low and high frequency dielectric constants

Two key steps in understanding basics of these vibrations are:
1) understand the independent “modes” of oscillation of a regular |attice of masses connected by
springs.
= classes of modes: (longitudinal and transverse ; “optical” and acoustic )
* dispersion relation between frequency, w, and wavevector k in each class (note: now
discussing wavevector of elastic waves in the crystal, not electron wavevector)
2) these vibrations are quantized. '
®  just as the photon is the “quantum” for electromagnetic waves ( the phonon is the quantum
associated with elastic waves in a crystal. energy in any particular mode of oscillation of
frequency comes in discrete amounts with energy E = hw )

Vibrations in Crystals:
Unlike sound waves in, (e.g., gases, which have no “shear” strength}, vibrations in crystals can be
both:
o “longitudinal” (like pressure waves in gases)
o “transverse” (there is a transverse restoring force also)

‘oduction to Solid State Physics e Chapter 6 - Phonons

1 H'i .
LT T {

ey 143 .

-
+

[ S— r-c---
.
- -
—
{
i

4

Figure 1: Lengitudinal vibrations

[T § ) l% | P T

Figure 2: Transverse Vibrations

Nearest neighbor interaction model {simplest model):

Suppose for simplicity that the force on a given plane of atoms is determined only by its displacement
relative to its nearest neighbor planes (note that in general this is not true, though this force is likely the
largest single contribution). Suppose also that the force is linearly proportional to those displacements
(usual Hooke's law for springs, good first approximation).

Then, force F, pushing a given plane is the balance of the forces from the two adjacent planes of
atoms:

Fe = Cugey — Ug) + CUsmq — 1y)

where ( is an effective spring constant. Hence the equation of motion of the plane of atoms of mass

M is:

d?u

M‘a'ﬁ{ = C(Ugyq + Ug—y — 2uy)

We make an intelligent guess that there are solutions to this equation that are monochromatic
oscillations of some frequency w , i.e., with some time dependent part of the form exp(+iwt) . Hence
we have

—Mw?ug = Clutgyy + sy — 2ug)

We now make the further intelligent guess that these solutions are waves of the form u; =

el(Kz2wt) with this assumption, we conclude that
Ugyy = ue'sKagtika
Replacing the above Eq
_Mmzueisﬂ'u —- Cu{e!(s+1)Ka + et{s—i)k’a L zei.ﬁm}
— 1wt

Ktt) e At

mllwt fwa
rit+e) € Af= Xf”e
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Or
Mw? = —C{etka 4 g~iKa — 2} = 2¢(1 - cos Ka)
4C | . Ka
= == |sin—
w A [50

Bk A 4

i..i

e it =]

Figure 3: The "dispersion refation”, between w and K is dearly periodic

Note that at K = +n/a we have zero slopes at the Brillouin zone edges.

Brillouin Zones for Elastic Waves, Allowed Values of K:

Note that we need only consider K values inside the first Brillouin zone —n/a < K < n/a

The waves under consideration are those of the positions of the discrete atoms. The wave in the
region between the atoms has no meaning; it does not correspond to the displacement of anything.
Hence, adding on 2m/a to the value of makes no difference to the wave.

Note that, if we impose periodic boundary conditions on the elastic wave, we obtain the same
allowed values of K as we encountered for electron waves, i.e., values spaced by 2n/Na, where N is
the number of atomic planes in the direction of interest. We can also regard this as simply defining a
Fourier basis set for describing any elastic wave in the crystal - to describe the displacement of the N
atomic planes, we only need N different (i.e., linearly independent) functions with a total of N

coefficients, hence it is reasonable to make the choice that we consider only these discrete values of K.

Group Velocity:
Transfer of elastic energy will take place at the group velocity

vy = dw/dK
this is the velocity at which pulses of elastic displacement will propagate through the crystal.

Generalizing to three dimensions gives

vy = Vgw(K)

For the simple dispersion relation of the “nearest neighbor” model, we have
Ca?

1
Y= |9 cos_Ka

which is zero at the edges of the Brillouin zone

Introduction to Solid State Physics Chapter 6 — Phonons

For long wavelengths (i.e., K very small), can expand the cosine in Eq to obtain

— CK
w=d M

which gives dispersionless propagation with a particular velocity. The “velacity of sound” a,/C /M

Optical Phonons:

So far, have considered only one atom per unit cell (all atoms identical); with two atoms per unit cell,
we can have additional, distinct kind of “mode” of vibration.

The two different atoms vibrating in opposite directions called an “optical” mode (though it is a
mechanical vibration, not an electromagnetic one. (if the two atoms had opposite net charges, then an
electromagnetic field would pull them in opposite directions, thus exciting this kind of vibration). Other
kind of mode (different kinds of atoms oscillating in the same direction as their different neighbors)
known as an “acoustic” mode, because it corresponds to conventional sound waves for small K .

Acousticsl mode
Figure 4

Now need two different wave “coordinates”: u, (for one kind of atom), and v, (for the other one}
(note: can still have both longitudinal and transverse oscillations)

e e e
S —
4

‘l‘l M,

-
° :
¢ 2]
Figure 5

Still presume, for simplicity, that forces are only from nearest neighbors. Now, have two coupled
equations since forces are, by assumption, from atoms of the other kind. Using same arguments as
before now have:

d*u
M, F; = C(Vs-'-‘] + Vs — zux)

M L .
277 (g + sy — 205)

Proposing wave equation as:
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Uy = ue[s}(ae—i'mt ; vy = vefskae—imc

S0
—Myw?u = Cv(1+e ) - 2Cu
—Maw?v = Cu(l + e*¥8) — 2¢v
In matrix form
( 2C = Myw? —C(l + e‘”“‘)) [ul _ [g]
—c(1+et®®) 20 - Myw? Jv1 L0
To have a solution the determinant should be zero
| 2C-Mw*  —C(1+e"%a)

—c(14e*Ke) 20— Muw? |0

which gives

K. i [11)] deeetion

MiMyw* — 2C(M;+M;)w? + 2C(1 — cosKa) = 0
quadratic — gives two solutions w for each K:
1. one corresponding to adjacent pairs of atoms oscillating in the same direction. (acoustic mode -
lower frequency solution)

Figure T2 Phonon Dispersion Relations in Germanium, TA - transverse acoustic , LA « longitudinal acoustic, T - transverse
optical, LO =~ longitudinal optical, One LA, one LO, two TA and two 10

L T T T
c/2 . i
2= K297 nearK =0 te Lo
“ My+M, ¢ °
252 tK = +n/ a'r i
= — atK = tnja
=M, - Y .« ™
2. one corresponding to adjacent pairs of atoms oscillating in the opposite direction. (optical mode — B * r
higher frequency solution K, has finite frequency even at zero) .
B 1 1 ne 4 LI
) "="ZC(——+—) near K =0 » .
M, M, .
2C e 4T
2 — 1= - -1
@ M, +m/
Note that at K = 0 we can see for the optical branch u/v = —M, /M, , so there is no net motion of ol L 1 1 I
the center of mass

KK, i [L11] direchion

Figure 8: Phonon Dispersion Relations in KBr
1, A el (ho o mch
[sol3+ 517
| scage
Mi> M (aCAL Quantization of Harmonic Oscillator:
" In a simple “harmonic oscillator”, i.e., some system that oscillates sinusoidally in time and space, we
e matinl can write the total energy of the oscillator as (classically)
thmn rmch _r a2 .
E= T ;Cx "
A K where M is the oscillating mass and C is the “spring constant”,
“ Note that this is a sum of kinetic and potential energies. This is the form of potential energy we get if
Figure b

the restoring force is proportional to the displacement x, as it is in a simple spring.

In considering a harmonic oscillator in general in quantum mechanics, whether we are talking about
electrons, atoms, or some other entities, we will usually assert that we can replace the classical
momentum by the momentum operator. As before, we will assert that this operator, operating on the
state of the system (e.g., the wave function), will give us the value of the momentum if we are in an
eigenstate. Taking (in one dimension)
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p=-—i x

as usual will give us an eigenvalue/eigenfunction equation instead of E:

T 2Max?

We can now solve this equation for the allowed values of E, and the associated wavefunctions ¢ (x).
If we were simply dealing with a mass M on a spring, for example, |@(x)|? would tell us the probability
of finding the mass in the vicinity of the position x.

The solutions to this mathematical equation are well known. In particular, the allowed energies are

E, = (n + %)hcu (**)

Wheren =0,1,2,--andw = J(’/_M . Note that the allowed values of energy are quantized and
egually spaced. '

The classical vibration modes of a crystal have energies that obey the same kind of equation as (*),
though the “coordinate” x is not the physical displacement of one atom, but rather the amplitude of an
entire mode or wave. Similarly, the “mass” M and the “spring constant”  are not the mass of one atom
or the spring constant of one “bond”, but are rather properties of the entire mode.

We can, however, go about quantizing the results in the same way, and so we find the allowed
energies in a given mode are guantized just as in Eq. (**). This is analogous to the situation with
electromagnetic modes. We can think of the units hew as corresponding to particles that here we call
phonons (by analogy with photons). Changing from one eigenstate to another therefore corresponds to
emission or absorption of phonons. Optical phonons typically have energies of ~10s of meV. Phonons
can also be viewed as having a “crystal” momentum hK if they have a wavevector K.

h® a2
[ s CXZ] @(x) = Ep(x)
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* loint density of states
s Absorption in direct band gap semiconductors
s Absorption in indirect band gap semiconductors

Semiconductors (and insulators) tend to be substantially transparent for photon energies below the
band gap energy (between the highest occupied valence band and the lowest (unoccupied) conduction
band) and relatively strongly absorbing for photon energies above the band gap energy.

Two broad classes of semiconductors as far as optical properties are concerned are:

1. Direct gap semiconductors

o strong optical absorption and emission above the bandgap energy
o wvery abrupt onset of optical absorption
2. Indirect gap semiconductors
o relatively weaker optical absorption and emission above the bandgap energy
o relatively smooth onset of optical absaorption

Direct Gap Optical Absorption:

Optical wavelength A is very long compared to the separation between atoms a (Typical wavelength
of interest ~1 um; Lattice constant of GaAs ~ 0.5 nm). Therefore optical wavevector ko, = 2m/1is
very small compared to the size of the Brillouin zone (~2m/a). Therefore transitions between a valence
band state and a conduction band state are essentially vertical if they are to conserve momentum fik.

Hence, simple model of direct optical absorption: absorption of a photon raises an electron in a
particular k state in the valence band “vertically” to the state of the same k in the conduction band (so-
called vertical transitions)

Presume that, when we get the energy of the photon exactly correct for the sepa ration between an
occupied valence band state and an empty conduction band state, there is a certain probability per unit
time that we will make a transition, absorbing a photon in the process, i.e., we would have a transition
rate

W = A8(E(k) — E,(k) — hw)

Here A is a constant representing the strength of the absorption corresponding to this transition,

ECU(’) is the energy in the conduction band and EV(E} the energy in the valence band corresponding to

the wavevector k , and hw is the photon energy.

The &(.) function is a mathematical abstraction of an absorption “line” that is convenient for
subsequent algebra. It is infinitely narrow and infinitely high, but has unit area. More physically, we
should choose some spectral line with a finite width and height to corresponding to the transition, but
though it gives the same answer in the limit, it is mathematically clumsy to take such finite widths. The
total transition rate is sum of the transition rates for all of the different possible k values.

Presuming that this transition rate is the same for all states (approximately true near band minima
and maxima), we obtain a relation of the form:
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Wror = A Z‘S[EE(E) - E,(k) - hw)

This formula tells us how the transition rate, and therefore the absorption coefficients for the
incident light, varies with the frequency « of the incident light. We need to change the summation ta an
integral to evaluate the mathematical answer, so, using the density of states we formally rewrite

(considering unit volume)
Y, =) st
k [

where g(E) is the density of states in k-space. Change variables in the integral to energy £; =
EC(E) - E,,(I('). Assuming parabolic bands, can define £} as
hzkz( 1 1 ) _ h%K?
g

E = E(k) - Ey(k) = ——(—+—)+E, =——+E

= 0~ B () = 5 (- ) + B = g+ B

my, is valence band effective mass, and reduced effective mass, Heff is defined as
1 1 1

Heff T me  my
hence, define “joint density of states,” g;(£;) , and write

9,(E))dE; = g(k)d*k

leading, for £; = Eg, to

1 2p\? 1/2
5(E) =55 (L) (5-5)

hence

) - ~ 1 (2pep Y2 1/2
Wror =4 ) 8(E(8) - EL(R) ~ha) =4 [ o (TL0) (5~ £,))" 68 - ha),
i Ej2Eg

i.e (for hw = Eg)

Wror & (hw — Eg)""?

E
ana o 0o
EX) =E,+ g
Fy %
w
- o
B =—""
® 2my 5
Figure 1

Optical absorption length:
Since a is the probability of absorption of a photon per unit length, if we start out with n, photons
crossing a unit area, then after a short distance dz, n, « dz photons will have been abserbed, so
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dny
E = —npa
np(2) = ny(0)e™**
or, since intensity | is proportional to the number of photons crossing a unit area per second
1(z) = I(0)e™
consequently, after a distance 1/a, the intensity has fallen to 1/e of its initial value, hence 1/a is the
“absorption length.” a is mostly commonly quoted in units of cm™. Typical value for a just above the
bandgap energy is ~10* cm™ in a direct gap semiconductor, corresponding to an absorption length of
~1 pm.

L L i i L

i L -
148 150 52 154 155
E (ev)

Figure 2: Optical absorption of GaAs at varlous temperalures

L L
142 144 146

Spectrum of direct gap semiconductor: has abrupt absorption onset near bandgap Eg, has smooth
rise above the bandgap energy, and the peak occurs below the bandgap of the bulk crystal. also have
clear appearance of a relatively strong peak near to the bandgap energy, especially at low temperatures,
absorption does nat have smoothly rising curve predicted by non-excitonic model — instead almost step-
like rise, followed by a much “straighter” increase with increasing photon energy. (explanation: excitonic
effects)

Indirect gap optical absorption:

Indirect gap material, like silicon, smallest energy separation for electrons in the conduction band
and holes in the valence band occurs for very different electron and hole momentum. In this case,
optical absorption requires participation of a phonon to conserve the overall momentum.

“two-step” process, with two different types possible

Process |:
o electron transition from the valence band absorbing a photon, followed by
o electron transition within conduction band, emitting or absorbing a phonon
Process |I:
o hole transition from conduction band to valence band, followed by
o hole transition within valence band, emitting or absorbing a phonon
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.

Energy —

4
Wave vector coordinate
Figure 3

Note: The energy is not conserved in intermediate stages of "two-step"” process necessarily, though
energy must be conserved overall. Photon energy usually is substantially less than bandgap energy
(phonon energy is also typically small {e.g., 10's of meV))

Analysis straightforward, but more complex than simple direct gap derivation:

form of result, approximately

2 ]
ax Bubs(ﬁm + Ephcmnn - Eg) + Bem(hw - Ephcmcm - 'g)
where Epponon is the phonon energy, and the factors Byps and By, correspond to absorption and
emission of a phonon, respectively. (For the case of absorption of a phonon, process depends on

temperature since there needs to be a thermal population of phonons present from which one can be
absorbed)

Photon energy (eV]
Figure 4: Absorption spectrum of Ge [plotted so that quadratic increase of absorption with energy gives a straight line)
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Figure 5: Absorption spectrum of Si

Indirect absorption spectra do not have the abruptly rising character of the direct absorption
spectrum (generally significantly weaker than direct absorption.)
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* Basic ideas of thermal physics

* Binary model systems

* Probability, average value

*  Thermal equilibrium

* Concept of entropy and temperature
e Laws of thermodynamics

* Boltzmann factor

e Partition function

*  Free energy

* Chemical potential

Motivation for us to study this in a solid state physics fundamentals course, e.g.,

a. Transport (conduction) in semiconductors is based on thermal populations of charged
particles, because conductivity depends on the thermal distributions

b. Concept of doping in semiconductors depends an thermal ionization of dopants (to deduce
number of electrons or holes in material, need to know statistical mechanics of dopants and
band levels)

c. Operation of semiconductor lasers and light-emitting diodes (totally dependent on precise
form of thermal distributions of electrons and holes in semiconductor bands)

d. General Motivation, to understand some basic concepts like temperature, entropy, second
law of thermodynamics that influence and limit all physical devices

We will introduce concepts of temperature, and entropy in their modern perspective that a system is
to be found in the statistically most likely condition (not from the thermodynamic perspective of heat
engines, deduced before the statistical nature of entropy was understood). Then we vﬁll extend and use
these concepts to look at important classes of systems such as ideal “gasses”, including: 1. Fermi gas
(represents fermions such as electrons and holes). 2. Bose gas (represents bosons such as photons and
phonons). Afterward we will apply these concepts to understand key concepts in semiconductor
statistics

Basic idea for statistical physics:
For a system with a large number of particles there are:
o Macroscopic properties (Total energy, temperature, volume, magnetization)
o Microscopic descriptions (Quantum states of many-particle system, or, equivalently, the
occupation of single particle orbitals)

A given set of macroscopic properties can correspond to a large number of microscopic states. The
basic question of statistical physics is: how can we deduce macroscopic properties of a given material
system from its microscopic description? It turns out that the answer can be found in counting the
number of microscopic states that correspond to a given set of macroscopic properties.
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Binary Model Systems:

A simple example of system that can have large number of “particles” is a system that in it each
“particle” only allowed being in one of two states :"up” or "down”, or equivalently, "1" or "0”, "full” or
“empty."” This binary model is typically choose to analyze “spin” system, magnets that are either (spin)
“up” or (spin) “down".

Microscopic descriptions: spin orientation on each lattice site.

Macroscopic descriptions: total magnetization.

e.g., consider 10 such particles, This Figure is one particular possible state of those 10 particles

TiTadaladsTeds T Ty Tyg
We could generate all possible states of the system of N such binary particles by “multiplying” out
the expression
(T DT+l (Ty+ls) - (Ty+Ly) *)
This product of terms is called a “generating function” for the system. The “multiplication rule” is as
(Ty+d)(Ta+dy) =Ty T4 L+ T+l L,

The above statement reads in words as: The possible states of a system [with a particle 1 that can be]
(“particle 1 up” OR “particle 1 down"} AND [with a particle 2 that can be] (“particle 2 up” OR "particle 2
down") ARE (“particle 1 up” AND “particle 2 up”) OR ("particle 1 up” AND “particle 2 down”) OR
(“particle 1 down” AND “particle 2 up”) OR (“particle 1 down" AND “particle 2 down").

We can use mathematical expressions with multiplications and additions since they obey the same
algebra as the logical expressions. This is a neat algebraic trick that enables us to evaluate the various
possible states of multiple particle systems

Consider we apply this to find total magnetization of binary magnet system. Assigning a magnet a
magnetic moment of +1 if it is “up” and -1 if it is “down” gives a total magnetic moment M that is the
sum of the individual magnetic moments. For N magnets, the possible values of M are

M=NN-2N-4,,-N+2,-N

In a magnetic field, the energy of a given state of a system will depend on this total magnetic
moment. We would like to know the multiplicities associated with each of these different magnetic
moment values, i.e., how many states will there be of a given energy in the presence of a magnetic field

E.g.,

there is only one state with M = N, i.e, TTTT -« TTTT

but there are N states with M = N — 2, i.e, LTTT o TTTT,TLTT o TT1T, TTLT .- TTTT, etc

Enumeration of States: For simplicity in subsequent algebra, we introduce notation. N; as number of
magnets up, and N as number of magnets down. Presume total number of magnets N is even for
simplicity. Define "spin excess”, s, as

Nr _Nl =25
so
N

M=y N
= — 5 B ==
T2 172

When considering total magnetizations or total energies, we don't care which magnets are which.
Though we do still need to count all of the possible states to get the multiplicities correct s0 we can drop
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the site labels [subscripts) as long as we still count all the possible states. The “generating function” can
be written as:
(t+0M
Like for N = 2 we have
(T +0N =11 4211 +14

This correctly counts the number of states with one magnet up and one magnet down (2}, though no
longer cares about which magnet is which. We will refer to the set of states with the same total
magnetization as a "class” of states.

For arbitrary N, we know the binomial expansion
n

=Y D)ty

t=0
Or by changing notation
N2 . -
(x +y)N = Z ﬁxi+5}_?—s
oS (749)! (7))
Or we can rewrite (T +1)V as:
Nj2 at -
(T+0¥ = Z Wﬁ“w-s
S (7+5)!(7-9)!
The coefficient
N! N1
g, s) = =
(+s)iz-s)r MM

is the number of states having Ny magnets up and N, down, or equivalently, it is the multiplicity of
the class of states with Ny magnets up and N, down, we can call g(N, s} the multiplicity function.

5 giins)

gl

10

P T PR N
]

Figure 1: Multdplicty functlon for 10 magnets

Usually, systems of interest to us will have many elements. What happens to multiplicity functions
for simple binary systems as we go to very large numbers of elements? Factorials are difficult to work
out for large numbers. Solution is to use Stirling’s approximation for factorial when N is large. For large
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numbers, more convenient to work with logarithms (entropy defined that way for example]. Stirling’s
approximation in logarithmic form
logN! = %lnngf + (N + %)lugN -N

Note: we will use a notation that “log” refers to the natural logarithm (bas e)

Gaussian Approximation to Binomial Coefficients : It can be shown that using Stirling’s
approximation, for our binary model system with magnets with two possible states

g(N,s) = g(N,0)e~2/N
where
g(N,0) = (2/nN)1/22N
Note that the Gaussian function drops to 1/e of its peak value when
s/N = (1/2N)"/?

Quantity (1/2N)%/2 is a reasonable measure of the fractional width of the distribution. For large N
this fractional width gets very narrow. (e.g., fractional width is ~1071! for N = 1022,

We could say: nearly all states of this binary model system have substantially equal numbers of
magnets up and down or the multiplicity function is very sharp for large numbers

To analyze any system statistically, we need to be able to count states. It is particularly important for
thermal physics to know number of states of a system at a given energy (or within some range of energy
about the energy of interest). For example:

o density of states in semiconductor bands gives number of states for a single electron in the
vicinity of some energy of interest.
o states of one electron in a hydrogen atom

states can have “degeneracy,” means several quantum states with identical energy. example of what
is known as “multiplicity” in thermal physics, number of different states with the same energy. For
example: states of two electron atom (lithium). This is more complicated than hydrogen (simple
example of multi-particle system)

We will have to be able to deal with system that could have very large numbers of particles, yet still
be able to count the states at or near to some energy.

Average Values:
Average value of function f(x) when probability is P(s) of the value of x being s, is

(f) = Zsf(s)P(s)

ZP(S)=1

Consider, for example, the system of N binary magnets, for the moment with no field applied. Then
all the states have the same energy, and all are equally accessible, so each state of the system should
have exactly the same probability. The total number of possible states of the magnets is 2V (each
magnet can be either up or down, so there are two ways of choosing the state of each of the N
magnets, and hence 2N states altogether). So, the probability of a given value of s for the case of N
magnets is

where by definition for a probability

P(N,s) = g(N,s)/2"
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Suppose now we want to know the mean square deviation of s from zero. Then formally, our
function is f(5) = 52, so we have

{52> (Z/HN)J-NZ]\ j dss —251,".'\'

4o
1 3 2
= (2/mN)Z(N/2)2 j dxxle™™
—on
N
(D=7 (@=N
Quantity {(25)?) is the mean square spin excess. Root mean square spin exce
{25y =N
The fractional fluctuation in 25 is
_(@9HY
N VN

Hence, If we have 1027 particles, the fluctuation F is ~107191111

Fundamental Assumption:

The fundamental assumption of thermal physics is: a closed system is equally likely to be in any of the
guantum states accessible to it. A closed system will have constant energy, constant number of
particles, constant volume, constant values of all external parameters that may influence the system,
including gravitational, electric, and magnetic fields. A quantum state is accessible if its properties are
compatible with the physical specification of the system (e.g., energy range, number of particles). The
macroscopic property of the system is determined by the most probable configuration.

Since all accessible quantum states are equally likely, the probability of being in some state g that is
one of the g accessible states is
P(g)=1/g
if some physical guantity has a value X (gq) when it is in the state g, then the so-called ensemble
average value is

X) = ZqX(q)P(q)

1
X=—§X
(X) P q(fé)

A given systern may well be in a state g, so for that system the value of our physical quantity will be
X(q), but we generally do not know in advance which of the various accessible states the system will be
in. We need a concept that tells us what “on the average” will be the value of X, so we imagine a set (an
ensemble) of g identical and separate replicas of the system, each of which is in a different one of the
(equally accessible) states. This is one example of what is called an ensemble average.

which in this case reduces to

Thermal Contact:
Bringing two systems together so they can freely exchange energy
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I

thermai conduchor
Figure 2: L: Energy, N: Number of particles, 5: System

The question is: What determines how much energy flows from one system to the other? (not simply
which system has the most energy). Most probably division of energy is that for which the combined
system has the maximum number of accessible states. Let's try to understand the characteristics of the
condition that corresponds to the maximum number of accessible states for the combined system.

Most Probable Configuration:

Consider, for example, two spin systems (binary magnet systems), one with spin excess 2s, , the
second with spin excess 25;. A configuration of this system is the set of all states with particular values
of 5, and s,. The multiplicity of this configuration is the product of the multiplicities of the individual
systems

91 (N1 s1) - g2(Nays = s)

where s = s, + s;. Since for any particular state of system 1, system 2 can be in any of the
g2(N3, 5 — 5;) states, the total multiplicity of the combined system with N = N; + N particles (but
with N and N, fixed because of the impenetrable wall between the systems) is

9N, =) Gi(Mis)- ga(Mys = 51)

There will be some value of s,, which we will call §, that corresponds to the configuration with the
highest multiplicity, i.e., the most probable configuration for which g; (N3, $;) - g2(N2, s — §;) is the
largest. We know that, for a large system, the configurations for which s, is close to §; totally dominate
the number of accessible states. Nearly all of the accessible states of the system correspond to
situations in which s, is close to §;, hence the properties of the system tend in practice to be the
properties of those configurations with s, is close to §;.

We expect to find the system in the most probable configuration (or those with very similars, ) after
we_have given sufficient time for energy to exchange back and forth between the systems. This concept
of allowing the system sufficient time for energy exchange is the concept we know as thermal
equilibration. The configuration the system has in thermal equilibrium is the maost probable
configuration or one very similar to it.

Example - Two Spin Systems in Thermal Contact:

We presume we have two, initially separate, systems, one with spin excess 2s,, the other with spin
excess 25;. We will presume we are applying a constant magnetic field, B, to these two systems. The
energy of a system with spin excess 2s, is (for a field parallel to the magnet directions)

U(sg) = —=2mBs,

where m is the “magnetic moment” of one magnet (the minus sign comes from the sign convention

for magnetic moments and field directions). The total energy of the system is
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U(s) = Uy(s1) + Uy(s,) = —2mB(s, + s;) = —2mBs
In our overall system, when we bring the two systems into thermal contact, we will conserve energy
overall, so the total spin excess 25 will be conserved (in our simple system, we are allowing no other
“degrees of freedom” (e.g., kinetic energy) in the problem that could have energy)
Now we want to understand for our given set of conditions:
i.  given total energy I/ (and hence given total spin excess 2s)
ii.  given numbers of magnets N; and N, (these remain fixed because we do not allow magnets
themselves to pass between the two systems)
what is the most likely configuration if we allow energy to pass between the systems. i.e., if we allow
spin excess to pass between the systems [ if we allow s, to change while keeping s constant, or
equivalently if we allowed s, to change while keeping s constant)
If we count the possible states for the two spin systems considered together, the multiplicity of a
given configuration is explicitly
2 2
g1(N1,51) - g2(Ny,s2) = g1(0) g, (0)exp (_zNi - iri)
1 2
Orintermsofs =5, + 5,

2sf  2(s—s,)°
G1(Ny, 51} - g2(Ng, s — 59) = g1(0) g (0yexp | —— —————
N Nz
It will be more convenient to work with the log of the multiplicity - this makes no real difference
since if the number is maximized so also is its logarithm. Hence we have
257 2(s—s;)°
Ing(m (N1,51)g2(Nao, s 51)) = |02(.¢1(0)€2(0)] TN T
1
Differentiating to find the maximum, we have at a maximum
(91 (N1, 51)g2(Nz,s —51))  4s;  4(s—s9)
== 4 -
ds N, N;
(As a check, we can evaluate the second derivative, which is —4(1/N; + 1/N;) which is negative,
confirming that we have a maximum rather than a minimum) N
Hence we find that the multiplicity is maximum for the condition
51 _S—8 5
A A

So
51 Sz §
NONCN
In our constant magnetic field, the energy is simply proportional to the value of s for the system in
question, so these ratios are essentially the average energy per magnet. we are finding that in the
configuration with the largest multiplicity (and hence the most likely single configuration), the average
energy per magnet is the same in each part of the system, and for the system overall, this is hinting at a
larger truth, to which we will return below
With §; and §; denoting the values of 5, and s; at the maximum multiplicity (i.e., in the most
probably configuration), we can rewrite
8 & s

N, N, N
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Hence at our most probably configuration
a e
(9192 max = 1(81)g2(s — §;) = g1(0)g2(0)e~5 /¥
Now let us investigate how sharp this maximum is. Consider a small deviation & from the maximum,
sothats, = §, + 85, =4, — &
hence,

45,6 262 48,6 26°
NN TN, N

G1(Ny,51)92 (N3, 52) = (9192 maxexP ('
. - 252 24°
91N, 81 + 8)g2 (N2, 33 ¢F 8) = (g192)marexp | — NN
1
If either of Ny or N is large, this is a very sharp distribution
eg, forN; =N, = 10°?and & = 10'?,i.e,, §/N; = 1077, then 262 /N, = 200, and the product
143 is reduced to e %% = 10717* of its maximum value! Note, however, we can still see substantial
relative fluctuations in very small systems, even when thermally connected to very large systems

(Important for reliability of decisions for very small transistors)

Thermal Equilibrium:
Let us generalize to any two systems in thermal contact, with constant total energy U = U, 4+ U;. The
multiplicity of the combined system will be

GNUY =) g1, Up)ga(No, U — Us)

where we are summing over all configurations for which I/; < I/ and g, and g, are the multiplicities
of the individual systems with numbers of “particles” Ny and N, respectively. In general, if we make
small (actually infinitesimal) changes in quantities such as UJ; and U;, we will make small changes in the
quantity g that depends on U; and U;. This small change is called the differential, and can be written for
this specific case as

dg = (@ﬁ) G2dUy + g4 (dﬁ] dUl,
auy/y, U,/ y,

Remember that the notation (dg, /dU; )y, means the derivative with respect to U, with N; held
constant. In our particular situation here, where total energy is conserved, we know that dUy = —dU,.
If the system is to be in the state with the largest multiplicity, then g(N, U), should be at a maximum as
far as the choice of U, is concerned. Therefore, if we were to make an infinitesimally small change in U/,
there should be no change in g(N, ).

Hence we can write that the differential of g should be zero

_ (%% g,
4g = (aul)m g4~ (auz)h,z 4

From which we can conclude
a1 6Ul Ny g2 6U2 N,

(50, = Cae),

equivalently
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Now let us define a quantity, which we will call the “entropy” as a(N, /) = log g(N, U}. Then we
have, for the configuration with the largest multiplicity (the most probably configuration)

(Bal) _(aa-,_)
Uy, N/,

This is the condition for thermal equilibrium for two systems in thermal contact. We could restate
this as saying “the rate of change of entropy with energy is the same for all systems in thermal
equilibrium with each other” (at least for the case here of conserved numbers of particles in each
system)

Temperature:

We are used to the idea that when systems in thermal are in thermal equilibrium with one another
that the temperature is the same. T; = T, . Hence we can now identify the quantities in previous Eq
with temperature. To accord with our conventional understanding of temperature, we use the
reciprocal of these quantities, and also use a constant to get the temperature into the unit with which

we are familiar, i.e.,
1 X (6‘0)
T~ “P\au/y

where kg = 1.381 x 10723 joules/Kelvin, is the Boltzmann constant. The Boltzmann constant is only
there because of our system of units. It can be more convenient to work with “fundamental
temperature”, T, which we can define as
1 rda
== ),

or T = kgT. Note that the fundamental temperature has dimensions of energy, which is the real unit
of temperature - other units (Kelvin, Celcius, Fahrenheit, Rankine) are technically redundant even if
practically convenient (300K is ~ 4.14 x 10" Joules)
In classical thermodynamics
1 _sas
T (E)N

where the (thermodynamic) entropy S corresponds with our statistical “fundamental” entropy
through
S= kB-O'
Again, units for entropy are technically unnecessary since it is really a pure number, being the
logarithm of a number

Example of bringing simple systems into thermal contact:
Systems 5, and 5, each have 2 magnets, both in same magnetic field. Magnet “up” has energy +1,
magnet “down” has energy -1. Initial conditions: §, has energy U, = 2, §; has energy U; = =2
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[ Initial ensemble of states —‘ [ Final ensemble of states
i
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Entropy and heat flow:
Suppose we allow a small amount of energy AU to flow from body 1 to body 2, then the change in
entropy overall will be
day do, 1 1
do = (—] (—AU) + (—) (aU) = mr( —)
au. N,

du, w, 2 T Ty

hence entropy increases if energy (“heat”) flows from a hot body to a colder one

Numerical example of heat flow:

Consider an object at 350 K, placed in thermal contact object at 290 K. What is the change in entropy
when 0.1) of energy has been transferred? (Presume large objects (large thermal mass) so that there has
been negligible change in temperature during the transfer.)

as, =2 _ 586 x 10~ K1
17 350K ’

AS, —ﬁ=345x10-4]|<-1
27 200K 7

AS = AS; + AS; = 0.59 x 1074 JK!
Entropy has increased in flowing heat from a hot body to a colder one. In fundamental entropy
“units”, the change in entropy is
_0.59x107*
a= *ka
i.e., the number of states accessible to the system has increased by a factor e®43%10*

= 0.43 x 10"?

Law of increase of entropy:

Proof that: total entropy always increases when two systems are brought into thermal contact. If
total energy U = U; + U, is a constant, the total multiplicity (i.e., the total number of accessible states)
after the systems are in thermal contact, is

g(U) = ZU g1 (U g (U = Uy)
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Note we sum over all possible values of energy of first system (or equivalently, all possible values of
energy of second system, or equivalently all possible ways in which energy can be divided between the
two systems). The sum, contains the original multiplicity g, (I/;,) g2 (U = U;,) of the total system before
the two parts were brought into thermal contact (where U, is the initial energy of system 1). but the
sum also contains various other terms, all of which are positive. Hence

g(U) > g1(U10)92(U — Up,)

Therefore the total entropy has increased.

s
gL = Add particies
. v’ - b .t °
e @ — |+ & | Decomposs molecsies

a ﬁle
-y T
Ao — 7/ Add energy
- rd
m,““:-n . - —— ] Lot x near potymer ce 29
COTRL e '_:-“ Increase the volame

Figure 3: Ways of increasing entropy

Relation between entropy and infarmation:
In information theory, the “entropy” of a random variable is defined as

H(X) = —pr log p;

13
where the sum is over all possible values of the random variable X. For example, could be one
alphabetic character that could take on any of the 26 values. Information theory has to deal with the
possibility that the different “states” (values of X} could have different probabilities (“e” might be more
likely than “g"). N
In a physical system, all the accessible states are equally likely. The total number of accessible states
is g = exp(o) and so, for any of the physical states i

Pa=§=8_6

and so, using the information theory definition of entropy we have

H(X) = —Ze_‘rluge_" = ae"’z 1=g
i

i
Hence the information theory definition of entropy is consistent with the thermal definition.

“Units” of information:

The only practical difference between information entropy and thermal entropy is that information is
usually measured in "bits”, which is based on taking logarithms to the base 2, whereas in thermal
entropy logarithms are usually taken to the base e. This makes no fundamental difference. We could
choose to measure thermal entropy in “bits” as well,

If we use logarithms to the base e to measure information, then the information is being measured in

“nits":
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Init = log; e bits = 1.44 bits
In information theory, the most efficient way (i.e., fewest sent characters) to send is to code the
information being sent so that all characters (i.e., all states) are equally likely. The infarmation entropy is
essentially the average number of bits that need to be sent to send a “character” given the best possible
coding. If a (thermal or information) system has entropy o, | need to give o nits = (log; e) o bits to
specify which state the system is in.

Laws of thermodynamics:

Traditionally, thermodynamics is based on four postulates (though with the statistical treatment
given here essentially contains them all)

Zeroth law:

If two systems are in thermal equilibrium with a third system, they must be in thermal equilibrium
with each other. This follows automatically from our statistical definition of the most likely condition
after thermal contact. If

(%) = %) and %) = %)
N, N; N, N

au, ) N au, au, ) ERNFTS
Then
(a Ioggi) _ (6 loggz)
avy “\au, "
Orifry = 13 and 13 = 13 then 1y = 13,
First law:

Common form: Heat is a form of energy [and energy overall is conserved)

Second law:

Statistical form: entropy is increased when a constraint internal to a closed system is removed

Common form: if a closed system is in a configuration that is not the equilibrium configuration, the
most probable consequence will be that the entropy of the system will increase monotonically in
successive instants of time

Thermodynamic (Kelvin-Planck) form: It is impossible for any cyclic process to occur whose sole effect
is the extraction of heat from a reservoir and the performance of an equivalent amount of work

Clausius form: A transformation whose only result is to transfer heat from a body at a given
temperature to a body at a higher temperature is impossible

Third law:

Common form: The entropy of a system approaches a constant value as the temperature approaches
zero

Nernst form: At absolute zero, the entropy difference disappears between all those configurations of
a system which are in internal thermal equilibrium

Principle of unattainability of absolute zero: It is impaossible to accomplish a process as a result of
which the temperature of a body is reducedto T = 0K

The third law is obvious from the statistical approach as long as the system has a definite multiplicity
in its ground state (and hence a definite entropy)

Calculating properties as a function of temperature:
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Concept of reservoir: reservoir R is a very large system, so large that bringing it into equilibrium with
another smaller system § of interest makes no substantial difference to its properties (such as
temperature) (though there may be transfer of, e.g., energy and entropy into and out of the reservair).
The total system R + 5 is a closed system, total energy Uy = Uy + Us is constant. e.g., if system S has
energy &£, then the reservoir has energy U, — &.

Total system Reservoir R
Constant Energy L7, Ly—e¢
System
S
£
Figure 4

Boltzmann Factor:

We want to know the probability that the system 5 is in some particular quantum state given that we
have a particular temperature T for the total system. Consider two possible states of the system S, state
1 and state 2, with associated energies £, and &; . The probability that the system § is in state 1 s
proportional to the multiplicity of the reservoir R when it has energy [J, — £. This multiplicity is simply
the number of ways the total system can exist in which system S is in state 1. So, with a similar
argument for state 2, we have

Py Multiplicity of R at energy Uy — &
P, ~ Multiplicity of R at energy Uy — &,

where P, (or P;) is the probability of § being in state 1 (or state 2).

Note: we are not calculating the probabilities that the system § has energy £, or energy £;, we are
calculating probabilities of the system being in a specific state of energy £, or energy £;.

Now we know that

Multiplicity of R at energy Uy — g, = e"tUo=¢1)
and so we have
P, e Wome)
P, eonllo-e)
By expanding o, (Uy — £) about the paintl,

_ dog £
op(Up — €) = ap(ly) — € (‘rﬁ};) = ag(Us) -7
U=y
i = e—ffl_-ﬂzjﬁ'
Py

A term of the form e ~*/T s called a Boltzmann factor. It tells us the relative occupation probability of
two quantum states separated by energy £ in thermal equilibrium.

Partition function:
The Boltzmann factor also can be viewed as telling us the probability of occupation of a state relative
to the occupation of some, possibly hypothetical, state at energy 0, in which case, we can view the
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Boltzmann factor as an "unnormalized” occupation probability. We can normalize the probabilities by
dividing by the sum of all such “unnormalized” probabilities. That sum is called the “partition function”

Z(1) = qu‘sm"r

where the sum is over all possible states g of the system 5.
Hence the (normalized) probability of finding the system in a particular state g of energy g is
E*Eg.-"t
P(E‘T) = 7z
Nate that the partition function has some useful properties. For example, the ensemble average
energy, denoted by (£}, of the system is

1 _ dlogZ
() = zqqu(E,‘,) = Ezqrqe /T = IZT

It is a useful expression for solving many thermal physics problems, below we will see an example.

Example: calculating average energy in a two-state system

We treat a system of one particle with two states, one of energy 0 and one of energy E, the particle
is in thermal contact with a reservoir at temperature 7, we want to find the energy of the system as a
function of 1. The partition function for the two state system of the particle is:

Z=e T 4o T =1 48/t

The average energy is:

=)= l.Ee‘”’r = E'—e o
Z 1+e/T

Helmholtz free energy:

Prior to considering systems in thermal contact with a reservoir, we have been dealing with closed
systems that have fixed energy, U, and particle number, N. (We have also implicitly assumed all other
parameters, such as volume and magnetic field are fixed.) Under these conditions, entropy was the
guantity that was an extremum (@ maximum in this case) in thermal equilibrium. In considering systems
in contact with a thermal reservoir, instead of fixing the energy of the system of interest, we will be
fixing the temperature. (For the moment, we will still consider the total particle number to be fixed, as
well as other parameters such as total volume and magnetic field.)

What quantity now will be an extremum in thermal equilibrium?

Answer: the Helmholtz free energy F = U — 10

It is at a minimum in equilibrium at constant temperature T and volume V.

Proof that Helmholtz energy is minimized at constant 7, V, N:

Suppose we consider a small transfer of energy from the reservoir R to the system S at constant
temperature and constant volume. The change in the Helmholtz free energy in the system 5 will be the
differential

dF = dUs — 1 doy
where we have used the constancy of the temperature to eliminate the term a.d1 from the

differential. But
1 arrs)
T (au, v
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50
dFg=0
Under these conditions, showing that is an extremum. Further arguments can prove this extremum is
a minimum rather than a maximum (though we omit these here). Hence we know that F is at a
minimum in a system at constant temperature and constant volume.

Minimum property of free energy of a paramagnetic system:

Consider the model system considered before, with Nt magnets up and N, down, with N = Ny + N,
and spin excess 2s = Ny — Ny, and magnetic moment (per magnet) m . We could evaluate the entropy
of this system to be (using Stirling’s approximation simplified somewhat further for very large N)

a(s —
§)08 2 v~z lelz—y
The energy of this system in a magnetic field B is U = —2smB. so the Helmholtz free energy is

F=U 25mB + (& log(2+2)+ (¥ log (2%
— 1o = —2sm +( +S)T ug(2+ﬁ)+(3——-s)r ng(i—ﬁ)

Now let us find the configuration (i.e., the value of s) for which F is extremum (minimum). To do this,
we differentiate w.r.t. s while holding T and N constant, giving

(HF) =0=—2mB + 1l N+ 25
s )ong | cmETTIBRTHS

Hence the thermal equilibrium value of 25, which we denote by (25}, is the value that satisfies the
above equation, i.e,,

N+ (25) = g2mB/t
N=(2s5)
or, after some rearrangement
BZmR;’r _ mB
(25) = Nm = Nlanh—

Hence the total magnetization and total energy (which are proportlonal to {2s)) follow a hyperbohc
tangent function as a function of the ratio mB /7.

Relative importance of energy and entropy:

We have therefore solved the problem of the total magnetization of this system as a function of
temperature. Note that, as temperature rises, it is more difficult to obtain nearly complete
magnetization of the system in one direction or the other. At low temperatures, the minimization of the
energy dominates in minimizing F. As temperature rises, the influence of entropy becomes more
important in minimizing F - the system no longer merely wants to remain in its lowest energy state since
that has very low entropy

Chemical Potential:

We have so far considered systems in which the number of particles is fixed within the system, but if
we remove some barrier between two systems with different numbers of particles, we may expect
particles to flow one way or another (“diffusion”) even if the two systems are at the same temperature.
lust as temperature governs the flow of energy from one system to another, chemical potential governs
the flow of particles. In equilibrium, the (total) chemical potentials of the two systems will be equal.
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Figure 5: gy servoir, and in diffusive contact if valve is opened, and

alve s opened

Diffusive and thermal equilibrium:

In this problem, the total volume is fixed as is the temperature (and total number of particles), so the
total Helmholtz free energy will be a minimum in equilibrium. Total Helmhaltz free energy

F=FR+F=U+U;—1(c, —a3)

for systems 1 and 2 together. Now suppose we consider infinitesimal changes in the numbers of

particles in the systems. Then the change in F is
aF aF,
dF = (am) N, + (aN ) an,

But the total number of particles is conserved, i.e.,, N = N; + N; = constant, so, in diffusive
equilibrium, losses of particles by one system corresponds to gains by the other, or §N; = —8N;

Hence

dF =

) = (32) [am =0 ()
any /g aNz

(GFJ) _ (M‘z)
an,/, "~ \anN,/,

Hence we have found a quantity that must be the same in the two systems if they are in diffusive
equilibrium at a given temperature (and a given volume). This quantity is the chemical potential u, i.e.,

u(t,V.N) = (g_;)f.v

M1 = Hz

so that at equilibrium

sa that, in diffusive equilibrium

Direction of particle flow:
Rewriting Eqg. (*}, but considering a condition away from diffusive equilibrium so that dF is not zero,
we see that
dF = (py — puz)dN,
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Hence, if ity > u; , a positive dN, leads to an increase in F. Hence, since F is a minimum at
equilibrium, with gy > u5, we have to see a decrease in N, to approach equilibrium. i.e., particles flow
from high chemical potential to low chemical potential.

Chemical potentials for several species:
If we have several species of particles, each species has its own chemical potential. For species j,

_ (ﬂF)
K= \aN oy om,...

where in the differentiation the numbers of all particles are held constant except for the species j.
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* Chemical potential and entropy
* Chemical potential and potential energy change
* Gibbs sum and Gibbs factor

Chemical Potential and Entropy:

So far, we have defined chemical potential in terms of the change of Helmholtz free energy F with
respect to particle number N. There are other equivalent definitions possible, and we need one of these
for a subsequent derivation, so we derive it here. The relation we will derive is
u(U.V.N) (60)

uy

T aN

Note the similarity of this relation to the definition of temperature as:
1 (60
T @N NV

Just as we originally did for temperature, we are currently considering entropy as a function of U, V,
and N. Hence we can write the differential

do da da
do = (Eﬁ)N,v du + (ﬁ)w v + (ﬁ)w dN
which is the change in entropy for arbitrary changes dlJ, dV, and dN.
We are interested in the situation where the volume is held constant, so we set dVV = 0,
Now we make the restriction that we will choose a combination of dS, dU/, and dN such that the
temperature change dt is zero, and we denote this restricted combination by (8a),, (§U), , and (6N),.
Then dt = 0 when

a a
6o = (55), G0+ (55), @
Dividing by (6N),

(60), _sdoy (8U), (da
6N, ~ (E)N N, + (W)u
The ratio (80),/(8N), is (30/N),, and (8U),/(8N), is (8U/dN),,all at constant volume.

Hence, using 1 ™! = (d0/dU)y y, we have

(Ba) 1 (au) +(ag
aN/y T \aN/.p aN)Uy

(ag B au) (ﬂo)
ot aN)U_V = (aN v \ONJ.y

But we know from our original definition of chemical potential that

w=(),, = Gr),, @),

Hence we have
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da

w(U,V,N) = —1 (ﬁ)w

Chemical potential and potential energy changes:

The two most important applications of the chemical potential for semiconductor devices are in
understanding what happens to the “gas” of electrons and/or holes when we join dissimilar materials
and when we apply voltages. In both cases, we have situations where one part of the structure has one
value of energy for the lowest state, and the other part has another value of energy for the lowest state.
This difference in energies for the lowest state in different parts of the whole structure is a potential
energy difference (i.e., a difference in energy associated only with position).

If we change the overall energy of a system of N particles, e.g., by lifting it up in a gravitational field,
or changing the electrical potential seen by a set of charged particles, we change the chemical potential.
Here we will calculate just what this change is. Suppose for example, we change the energy per particle
by an amount g4V by applying change in voltage AV to a set of particles each of which has charge
q (e.g., we have the set of particles in an electric field, and we lift them “up”). The change in energy of
the set of particles is therefore Al = NgAV, Simply making this change in potential energy does not in
itself affect the entropy or the temperature. For example, lifting a balloon up (slowly so it does not get
heated by air friction!) will not affect its temperature, and the entropy of the gas molecules inside the
balloon is not changed — there are still the same number of states available for the molecules inside the
balloon. This change in potential energy does, however, change the Helmhaoltz free energy through the
energy term U, i.e., the total change in free energy is

AF = AV = NqaV

(where we have noted that the entropy and temperature are not changed in this process). Before we
made this change in Helmholtz free energy, we had an initial Helmholtz free energy for our system of F,,
so we had a chemical potential

aF,
wo= (5,

After this change as in AF, we have a new chemical potential

aF aF, dAF
w=Gw),, = )., + (i), = o+ oov

This has a very simple interpretation: changes in potential energy {per particle) add an equal amount
to the chemical potentiall.

Note this means that: the actual value of chemical potential depends on the energy origin chosen,
but this does not matter in practice since we are only concerned about differences in chemical potential
since it is those differences that drive movement of particles.

Note that it is still true that the chemical potential is constant throughout the system in thermal
equilibrium, despite any changes in potential energy we may make in different parts of the system.

Internal and Total Chemical Potential:
Sometimes for convenience a distinction is made between:
1. “internal” chemical potential, u;y,,: chemical potential neglecting externally imposed changes in
the energy of all particles of a given species. e.g., neglecting gravitationally, electrostatically, or



Chapter 9 — Statistical/Thermal Physics 2

Introduction to Solid State Physics

magnetically induced energy changes. would include all effects from, e.g., temperature, volume,
number of particles p
2. "external chemical potential”, u,,,: the contribution to chemical potential arising solely from

externally imposed changes in the energy of all particles of a given species. e.g., all the potential
energies (gravitational, electrostatic, magnetic)

With this approach, we have a total chemical potential, yor = Hine + Hext

The total chemical potential is the quantity that is the same throughout at system at thermal

equilibrium

Semiconductor Heterostructures and Chemical Potential:

The most important situation for this course is that in which two different semiconductor materials
are joined. The materials could be different in the chemical compasition of the material, e.g., GaAs and
Al,Ga,.As or the doping type or concentration of the material (e.g., p-n junction)

Suppose we take two different, large pieces of semiconductor material and join them together. We
do not at the moment know what happens in the region near to where they are joined, but we can
presume that, far enough away from this junction, the materials will look the same as they did before.

conduction band

?
chamical N " _ e
otential . conduction ban
P ~
valence band
7
valence band
P n

Figure §: Chemical potentials and dissimilar joined materials

In a p-type material (far away from the junction), the chemical potential is near the valence band
edge, and in an n-type material (far away from the junction) it is near the conduction band edge {we will
deduce this explicitly later). We have not yet deduced what happens near the junction, but we do know
that the chemical potential must be constant throughout the system if it is in thermal equilibrium. This is
the starting point for the further analysis of semiconductor diodes

Chemical potentials and applied voltage:

Note we are also assuming for the moment that there is no applied voltage on the structure. If we
apply a voltage, we will raise the chemical potential at one side compared to that at the other, which
(certainly for forward bias) can cause flow of particles from one material to the other (This is the normal
forward current of a diode (so-called "diffusion current”)). However, the flow of particles across the
junction is (in a steady state situation) balanced by the flow of particles into or out of the materials
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through the electrical wire that connects them. Hence with an applied voltage the diode is not in
thermal equilibrium, though it may be in a steady state situation with a steady current

Gibbs factor and Gibbs sum:

To derive one of the most useful relations for semiconductor physics, the Fermi-Dirac distribution
function, and another important relation for semiconductor physics and optics, the Bose-Einstein
distribution, we need first to discuss the Gibbs factor and Gibbs sum. The Gibbs factor is the extension of
the Boltzmann factor to the case where particles can also be exchanged with the reservoir. The Gibbs
sum is the extension of the partition function to include states with different numbers of particles.

Note: The ensemble of systems (or set of states) that are counted in the partition function is
sometimes called the canonical ensemble. The ensemble of systems (or set of states) that are counted in
the Gibbs sum is sometimes called the grand canonical ensemble.

Consider now a system 5 in thermal and diffusive contact with a large reservoir R. i.e., in addition to
being able to transfer energy between the system and the reservair, we can also now transfer particles.
Now the entire closed system of reservoir and system S has Ny identical particles, and energy Uy. When
the system 5 has N particles, the reservoir has N — Ny, particles, When the system § has energy &, the
reservoir has energy U — £5.

Just as for the derivation of the Boltzmann factor, we consider the system 5 to be in a particular state
in which it has energy £; and N particles.

State 1 is a state in which system has energy & and N, particles.

State 2 is a state in which system § has energy £; and N, particles.

The ratio of the probabilities of § being in state 1 or state 2 is

P(Np.e1) _ g(No— Ny, Up — £1)
P(Ny,e2)  g(No— Np,Up — £2)
Now we know that, by definition, the multiplicity g is just the exponential of the entropy, 7, i.e.,

g=e?
50
Np=Ny =€
P(Ny, &) =e°( 0=N1lly F1J=EM
P(Ny, £2) T Ng= Nz Ug—£,)
where

Ao = a(Ny — Ny, Uy — 1) — a(Ng — Ny, Uy — €3)
Just as for the Boltzmann factor derivation, we expand a(Ny — N, Uy — €), in a Taylor series about
the values Ny and [/, with the difference that this time we need to expand in two variables, N and ¢, to
obtain

No/ ;. aN,
On the assumption that the reservair is very large, we may neglect all higher order terms in the
expansion, just as in the Boltzmann factor derivation, to obtain

Ao = —(N; — Ny) (;_":’)U — (&1 — &) (B_J)N

o(Ny = N, Up — ) =a(Nu.Uu)—N(a”) —z(a”) +
Ny

AN
and so, using the relations
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1 ( do ) d u
T ally No an T
we have

Ag

Hence
P(Ny,&,) _ eMunmenr
A factor of the form exp ((Nu — £)/7) is called a Gibbs factor, and represents an unnormalized
probability that the system S can be in a state of energy £ and particle number N.
To normalize the probabilities, we need to sum over all the possible unnormalized probabilities. This
sum is now over all possible numbers of particles in S, and all possible states of § for each possible
number of particles, i.e., we construct the “Gibbs sum” {or grand partition function) Z.

< Ny — Ny —
2w =y > ew(F70) = ) ew ()
ASN

N=05(N)
where ASN means the sum over all possible numbers of particles in S, and all possible states of S for
each possible number of particles. Note that the state with zero particles (N = 0) is included in this sum.
Hence, the absolute probability of finding the system 5 in a state with N particles and energy &, is

1
P(Ny,8) = Ee(Nm-h)f’r

Fermi-Dirac Distribution Function:

We are interested in “fermions” — particles (technically those with half-integer spin) that obey the
Pauli exclusion principle (e.g., electrons). A particular quantum-mechanical state (e.g., a -state in a band
in a semiconductor, or an orbital in an atom) can only be occupied by one fermion of a given species; by
species here we mean a particle of a particular spin. We can have both a spin-up electron and a spin-
down electron in the same “state”, the spin-up and spin-down electrons being different “species.” we
might want to avoid confusion by pretending we had a slight magnetic field on, which would make spin-
up states and spin-down states have slightly separate energy, so that there are more obviously different
states.

Let us now imagine that we have a single quantum mechanical state that can either be full (N = 1) or
empty (N = 0). If the state is full (N = 1), it has an energy &, otherwise (N = 0) it has energy 0. This is
the situation in the simplest model of a semiconductor, where the state in question is a spin-up (or spin-
down) k-state in a band. The Gibbs sum for this state is

Z=exp((0x p—0xe)/T) +exp((1xp—1xe)/1) =1+elk8/7T
so we have for the probability that the quantum mechanical state in question is occupied

elu-e)/r
P(I.E) = f(E) = m
where we have introduced the more usual notation f(¢), i.e.,

1
&) =1 won
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This is called the Fermi-Dirac distribution function, and gives the occupation probability of an electron
level {of given spin) of energy £ for temperature T and chemical potential p.

In a more common notation for semiconductor problems, this expression is usually written as

1
fle) = 1 oG- TkaT

where the term Eg is known as the “Fermi energy”, and we have reverted to the conventional
notation for temperature. The “Fermi energy” in this relation is rigorously identical to the chemical
potential. We will use this definition of Fermi energy.

Note: The use of the term “Fermi energy” in this expression is somewhat unfortunate, since Fermi
energy is also used in solid state physics to describe the level up to which electrons occupy all states in a
metal at zero temperature. This gives the impression that the Fermi level is a constant for a given
density of electrons. Though the chemical potential is the level up to which all electron states are

occupied at zero temperature, as temperature is increased, even for a constant average number of
particles, the chemical potential is dependent on temperature for anything other than a constant
density of states, and hence the impression that the Fermi level is a constant is misleading and confusing
here. The concept that we are actually dealing with a chemical potential, which may vary with
termperature or other parameters, is always correct.
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* Fermi-Dirac distribution

* Fermi Gas in three dimensions: ground state and specific heat
* Classical carrier distribution in semiconductors

* Law of mass action

*  Extrinsic semiconductors

* Fermilevels in extrinsic semiconductors

¢ Degenerate semiconductors

Fermi-dirac distribution:
Electrons in thermal equilibrium have a Fermi-Dirac distribution, probability f.(E, T) of electron in
state of energy E at temperature T is

fe(E,T) =

1

. E-m
1+ex
v (57)
u is the chemical potential, kg is Boltzmann's constant. note kg ~ 25 meV at room temperature.
Chemical potential (Fermi energy) corresponds to energy for which f = ¥%. At zero temperature Fermi-
Dirac distribution is step function, with all states up to energy Eg (Fermi energy) totally full.

= T T T
.
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Figure 1:

Free electron gas at zero temperature:

The free eletron gas model represents the starting point for describing the properties of metals. As in
many solid-state physics problem, the first step is to figure out what the ground state is in the system.
Consider a single electron moving in a box of volume V = L?, The orbital of the free particle
wavefunction

N,MX | MW ngnz
'J'J(x,}'.z)=Asinszin yLys'n ‘1

The energy values are
h? o2
— 2 2 2
Eq = m (E) (?’i.x+ﬂ,y + ?’lz)
Far an N-fermion system, the ground state should correspond to the scenario where each orbitals are
filled with two electrons (one spin up, one spin down) up the Fermi energy
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h? (mng?
o =3 (1)

Here ny is the radius of sphere (in the space of the integers n, n,, n,) that separates filled and
empty orbitals. For the system to hold N-electrons the orbitals must be filled up to ny determined by

N=2x 1 x n ni
g8 3
ie.
np = (3N/m)'/3

Here the factor 2 arises because an electron has two possible spin orientations. The factor 1/8 arises
because only triplets ny, ny, n, in the positive octant of the sphere in n space are to be counted.

Thus, we may calculate the Fermi energy as:

h? N

o =2 ("7)

This relates the Fermi energy to the electron concentration. The total energy of the system in the
ground state is:

2/3

1 ny
Uy =2 Z & = Zxaxmj dnn?e,
(1]
ﬂsﬂf

which, after taking into account ng, gives

3
Uy =5 Ney

Free electron gas at finite temperature:
For the case of finite temperature, for an electron gas that are kept at a constant temperature 7 and
a constant chemical potential i, the occupation number for each orbital is:

1

Therefare, the thermal averages for the independent particle problems have the form:
)= flent )Xy
n

where n denotes the quantum orbital; X, is the value of the quantity X in the orbital n; and
f(&,, 1, 1) is the thermal average occupancy, called the distribution function, of the orbital n. We often
express {X) as an integral over the orbital energy £, Then above Eq becomes:

) = [ deD(e) fem.0X(e)
where the sum over orbitals has been transformed to an integral. D (&) is the density of state that we

have discussed extensively before. The density of state for free electron (including spins) is:

v o2m3?
D(e) = ———(—-—) gl/2
© 2n2 \ h?
Heat capacity of degenerate electron gas:
We derive a quantitative expression for the heat capacity of a degenerate Fermi gas of electrons in
three dimensions. This calculation gives excellent agreement with the experimental results for the heat
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capacity of metals. The increase in the total energy of a system of N electrons when heated from Oto t
is denoted by

Al = fdeD(E)f(é‘) - J’Erdezﬂ(z)
0 0

Here f (&) is the Fermi-Dirac function, and D (&) is the density of states. Notice that:

(L£F+£:°)des,,f(s)o(s) = f:idszpﬂ(z)

AU = j de(e - ep)D(e)f(E) + f "deCe - ep)(1 - FE)DE)
£ 0

hence:

The first integral on the right-hand side of gives the energy needed to take electron from &g to the
orbitals of energy £ > &£, and the second integral gives the energy needed to bring the electrons to &g
from orbitals below £¢.

The heat capacity of the electron gas is found on differentiating ALl with respect to r. The only
temperature-dependent term in equation above is f(£). Therefore, we can group terms to abtain:

du - (@ df
Cu= = fo dee = er) 2 D)

In a typical metal, the concentration of electron is such that £z /kg = 50000 K. Thus, the typical
temperature of interest in metals is /&z < 0.01 . Since f is like a step function, the derivative df /dt is
large on at energies near £¢. It is a good approximation to evaluate the density of orbitals D(¢) at
energy £ and take it outside of the integral:

@ df
Coy = D(E;)J:) de(e — EF)E

One could typically ignore the temperature dependence of the chemical potential in the Fermi-Dirac

distribution and replace m by the constant £¢. We have then
df €—¢p ele=eplit
dar - 1z [1 + ele—erdiT]2

We set
x = (g—ge)ft
o ex o ex
Cey = 1D(E dxx* ————=1D(¢ B ————
et = tD(er) e T e " (&) J:m a+e?

Therefore, in the region T << 77 , we have
Cor = 52D ()t
The key results are the linear dependence of the heat capacity on temperature, and the dependence
of the heat capacity on the density of states at the Fermi energy. Both of these results are confirmed by
experimental observations. The strong dependency of properties of metals on the density of states at
Fermi surface is in fact, a rather general result.

Electron distribution:
Electrons in thermal equilibrium have a Fermi-Dirac distribution, probability f.(E, T)of electron in
state of energy E at temperature T is
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fe(E,T) =

1

1+ exp (ia—;‘)

Hole distribution:
Holes correspond to the absence of an electron, hence the probability f,, of finding a hole in a given
state is the probability that there is not an electron in that state. hence f, = 1 — f., and so

E—qu
‘”‘"( fegT ) B 1
E—uwy "~ —(E —
l+exp(—k—BT) 1 +exp( T )
Hence the holes also have a Fermi-Dirac distribution. can look at holes this way, in which hole

energies are increasingly negative as they acquire kinetic energy, or can look at hole energies “upside
down”, changing —(E — u) to (E — p).

fe(E-T) =

Pure semiconductors, donors and acceptors:

Let n, denote the concentration of conduction electrons, and ny,, denote the concentration of holes.
In a pure semiconductor the two will be equal: n, = n,

Most semiconductors as used in devices have been intentionally doped with impurities that may
become thermally ionied in the semiconductor at room temperature. Impurities that give an electron to
the crystal (and become positively charged in the process) are called donors. Impurities that accept the
electron from the valence band (and become negatively charged in the process) are called acceptors.

Let n} be the concentration of positively charged donors and n; the concentration of negatively
charged acceptors. The electrical neutrality condition becomes

n,—ny =An=n} -nz

This specifies the difference between electron and hole concentration.

Group V elements (e.g, P} are usually donors in silicon.

Group |l elements (e.g. Al) are usually acceptors in silicon.

In I1I-V semicanductors, the donors are often Group VI materials (e.g., tellurium, tin), and acceptors
often Group Il materials (e.g., zinc, beryllium). Often Group IV materials are used. Their behavior is less
obvious. One way of rationalizing their behavior is to note that Group IV atoms might occupy either
Group |Il or Group V sites in the lattice. In the first case they might be expected to behave more like
donars, in the second case more like acceptors. For example, silicon is a commonly used n-type dopant
in GaAs, carbon is sometimes used as a p-type dopant in GaAs, and germanium is often used as an n-
type dopant in forming contacts to GaAs (e.g., by depositing Ge-doped gold metal and “alloying” it into
the n-type materials being contacted). Under some circumstances, silicon can become a p-type dopant
in GaAs.

n-typed and p-typed semiconductars:

A semiconductor in which the added number of donors dominates is called an “n-type”
semiconductor, and “majority carrier” conduction takes place through electrons in the conduction band.

A semiconductor in which the added number of acceptors dominates is called a “p-type”
semiconductor, and “majority carrier” conduction takes place through holes in the valence band.
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Semiconductor statistical mechanics - classical limit:

For energies far above the chemical potential, the Fermi-Dirac distribution behaves like classical
Maxwell-Boltzmann distribution, fy;_g, i.e., for electrons,

fu-s(E.T) = Ae=E/ksT

where A = exp(u/kgT). This is to be expected, since: at these high energies occupation probabilities
are small. Hence little influence of the Pauli exclusion restriction that no mare than one electron may
occupy a state.

If fo << 1 for all conduction state, and f,, << 1 for all valence states, the semiconductor is said to be
in a nondegenerate regime. (i.e classical regime). This corresponds to the case when the chemical
potential is deep inside the gap, far from both the conduction band edge and the valence band edge.
The total number of conduction electrons in the form. .

N, = Z e/t = p—(ecmi/r Z emle-ea/t
CB

7]
N, = Noe~(ec-r)/t
Here

N, =J de VD(e) e (FEliT
Ee

Where as we have discussed before

D(e) = eV 2me (e — &)

mw2h3
And my, is the density of state effective mass for the conductor band. Evaluating the integral we have
e =2 ()™
€7 "\2nh?

Defining the quantum concentration n, for the conduction electrons as:
N. m.T 3fz N
= -2
v 2h
The conduction electron concentration n, = N,/V becomes
n, = nre_{.sc_ﬁ)f"f
Similarly, for the concentration of holes in the valence band, we have
ny = nye” Wt

PN V]
_ [ mit
Me = (2;:;:2)

where

Law of Mass Action:

If we are dealing with semiconductors in the Maxwell-Boltzmann limit, i.e., any of the criteria
* large effective masses
+ orlow doping densities
* orvery high temperatures
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but not llI-V semiconductors with large numbers of electrons, we have, ngny = n;”‘ where
n = (ncnv)‘l,.’ze—Eg,n'ZkgT‘

This equation is called the Law of Mass Action (the term comes from chemistry)

n; is known as the “intrinsic concentration.” with no doping (i.e., an “intrinsic” semiconductor), the
number of electrons, n,, and the number of holes, n,, must be equal by charge neutrality. since
n,ny, = nf, the number of each must be n;.

Intrinsic concentrations become large in narrow gap semiconductors or at high temperature. E.g.,

for silicon at 0C, n;=1.04x10" cm™

for silicon at 50C, n;=7.06 x10" cm™

for GaAs at 0C, n;=1.02 x105° cm

for GaAs at 50C, n;=2.18 x10” cm™

Fermi level in intrinsic semiconductors:
In an intrinsic semiconductor, the number of electrons is equal to the number of holes. Thus,

n; = n e H-EWksT = (n_n,)1/2e~Fa/2kaT

By rearranging ,we have

or, after some algebra,
E kgT E 3kgT my,
g B v 8 B h
=—=+—1Io (n—)=—+—]n —
K B\n/ "2 T2 Blm
so that the Fermi level in an intrinsic semiconductor is always very close to the middle of the
bandgap, since kT <« E; for most semiconductors.

Simple, fully ionized, non-degenerate case:
Consider one simple, limiting case. Suppose we have n, donors per unit volume, and n, acceptors

per unit volume. We assume that each acceptor atom takes away an electron and each donor atom adds

an electron (we may have to be at high temperature to assure that this is the case); this is called the
approximation of fully ionized impurities. Hence the net excess number of electrons is
An=n,—np==ng-n,

Assume also that all the carrier distributions can be approximated as non-degenerate. Hence we can
use the law of mass action. Also, assumes An > 0 , i.e, n-doped semiconductor

Since, from the law of mass action,

ny = nf/n,
Or
nZ —n.An = nf
Therefore, we have
ne = %([ﬂn?‘ + 4nf]”2 + ﬂ?’l)
And
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1 - 1/2
ny = 1 ([an? + 4n?]'"* - an)
For most practical situations, the intrinsic concentration, n; , is a very small number relative to any

doping concentration or resulting carrier concentration. Presuming for the moment that n; it is indeed
negligibly small (we may check this a posteriori), we have
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ne = An
n, = nf/An
In other words, as long as the difference in doping concentrations is much larger than the intrinsic
concentration, the resulting net number of electrons in the conduction band (or, if negative, the net
number of holes in the valence band) is simply the difference in the doping concentrations, An. A
semiconductor where An > n; is called an “extrinsic” semiconductor.

Note this analysis is not necessarily valid at low temperatures where the dopants would not be fully
ionized, nor is it valid at high concentrations where the distributions were degenerate.

Fermi Level in Extrinsic Semiconductor:
From our previous expressions, in the non-degenerate limit
ny =n,e #/keT
Or
ne = ncefﬁg—#)a’kn?

where we have chosen the energy origin at the top of the valence band for convenience. Hence we
have

u = Ey — kyTlog(n/n,)
or, equivalently

= kgTlog(nv./ny)

Semiconductor statistical mechanics - degenerate case:
When one of the carrier concentrations is increased and approaches the quantum concentration, we
may no longer use the classical distribution for that carrier. Instead, the calculation of the carrier

concentration now follows the treatment of the Fermi gas. (except the chemical potential is now related
to both the electron, and the hole concentration). The number of electrons or holes, is written as an
integral over the density of states times the distribution function

N= j deD(e)f (&)
Use the density of state effective mass for electrons, we have
1 2aminY? e (e — )P
m‘ﬁﬂ?ﬂ Lr@@mrz
c

let x = (¢ —¢g.)/rand = (u— £.)/T We have

n, 2 = xU?

—=IN=—=| ——=d
n. m \.I'EJ; 14 elx-1 *
where [(n) is known as the Fermi-Dirac integral.

Fermi integral F(n) = |

0 14elx-m

w  xlE

dx
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Formi Integral

6.1

=2 G 2 4
Chernical Potential {dimensionless
Figure 2
Two useful analytical limits to the Fermi integral:
o low-temperature and/or high-density

o high-temperature and/or low density

Low-temperature and/or high-density “degenerate” limit:

As temperature goes towards zero, Fermi function tends towards being 1 up to the chemical
potential (Fermi energy), and zero above, leading to, formally,

2
F(n)= 51'?3’(2

limit of low temperature is also essentially the limit at high densities, where kT becomes small

compared to the chemical potential, useful for chemical potentials above about 4k T, and becomes
relatively accurate above about 6kgT.

Femm Integral

2 4 & ] 10
Chenical Potential (dimeazionless o

Figure 3: sofid Hine - exact result, dashed ling - low-temperature and/or high density approximation {energy units kg T}

High-temperature and/or low-density “non-degenerate” limit:
Fermi-Dirac becomes like Maxwell-Boltzmann because u (i.e. ) is very negative

; = p(n-x}
1+ elx-m
So Fermi integral becomes

oo
F(m) = e‘TJ‘ xM2e > dx
0
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Knowing that J'Um xW2e~* dx = /2 s0

Is useful for chemical potentials about kg T below the bandgap energy, and accurate from about
2kgT below. Therefore,
n

—£ = plu—ge)ft
nC
1 =
. -
E
bed
#
ool = -
: =2
0.01 :

4 3 =2 1 0
Chenmical Potential (kT)

Figure 4: exact value - salid line, high-temp. flow-density approx. - dashed line

Fermi integral = approximations:
transport in semiconductors - usually take Maxwell-Boltzmann approx:
a. ingermanium and silicon: good approx. because electron and hole masses are large
b. in direct bandgap semiconductors used for optoelectronic devices: conduction band effective
mass is relatively small, so often n-doped semiconductors have degenerate distributions. in
laser diodes degenerate distribution essential to device operation. in most diodes, n-doped
contact regions typically doped ~ 10'® cm™ or higher, putting electron Fermi energy in the
conduction band. so Maxwell-Boltzmann approx. not strictly valid for optqelect'rcnic diodes

In the range between the two extreme physical approximations of the non-degenerate (Maxwell-
Boltzmann) case and the degenerate case, it is sometimes useful to have approximations to the Fermi
integral and its inverse.

One approximation to the Fermi integral is the Aymerich-Humet approximation (X. Aymerich-Humet,
F. Serra-Mestres, and J. Millan, Solid State Electronics 24, 981 (1981)), which is

r 1
Fex) = 2er+ £(x)
Where
5 1-3/2
x) = 3ﬁ [x + 213 + (Jx — 2.13)>* + 9.6)ﬁ]

This approximation is accurate to about 0.5% in the transitional range —5 < x < 10 (and
asymptotes relatively well outside those regions). It is also useful to have approximations that enable us
to calculate the Fermi energy (chemical potential) from the carrier density, which is the inverse of the
Fermi integral. One such approximation is the loyce-Dixon approximation. For the conduction band,
with the energy of the edge of the conduction band as E,, defining a “reduced” chemical potential as
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n= (u—E.)/t and a “reduced” carrier concentration as r = N/N_ . (where N, is the effective density
of states at the conduction band edge previously defined, the Joyce-Dixon approximation (W.B. Joyce
and R. W. Dixon, Appl. Phys. Lett. 31, 354 (1977)) is

N 1 3 V3,
n= lcgr+ﬁr— (E_?)r +
i.e.,

n=logr +3.53553 x 1071 — 495009 x 10732 + 1.48386 x 10™*r? — 4.42563 x 10~ °r*
The Joyce-Dixon approximation is valid for all negative values of 1 since it asymptotes to the low
density limit, but is not valid for positive values greater than about 5.

Another approximation, which asymptotes to both the low-density (non-degenerate) and high-
density (degenerate) limits (and hence is valid for all ) is an approximation due to Nilsson (N. G. Nilsson,
Phys. Sta. Solidi (a) 19, K75 (1973)), which is accurate within about 1%

r 2/3
e B ()
3(4 ++nr)
This approximation limits quite obviously to the low density (logr) and high density

nr
n

(3\/Fr/4j2fglimits, and adds “joining function” terms chosen to give an empirically good fit.

Various approximations are discussed by J. 5. Blakemore, “Approximations for Fermi-Dirac Integrals,
Especially the Function F, ;,(n) Used to Describe Electron Density in a Semiconductor,” Solid-State
Electronics, 25, pp1067-1076 (1982).
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* Example for calculating the Fermi level
* Dopant ionization consideration

® PN junction

* Concept of quasi Fermi level

As a starting point we have
1 (Zm;)a,rz ® (g — g )2

e = m hZ . 1 + ele—ul/T dE_
mt T A2
N =283 x 10" (——) F(Ep/kgT -3
g 300 (Ep/kpT) cm

where we are expressing Er relative to the bottom of the conduction band. For the case of a
degenerate distribution, from last section we had
F(x) = :i;xm

so then we have
3/2

N= ; % 2.83 x 101 (:703%) (Ep/kgT)*?
Or
Ex 3N/2 \mg300 m,300 N 2/3
kaT (2.33 x 1019) m T F?(l.sg x 101‘?)
For the case of a nondegenerate distribution, we have
N =2.51x10" (EL)BREE(EPMT) .
m, 300 2
Er _ .n(L) _ Eln(ﬁi)
kepT 251 x 109/ 27 \m, 300
Example

Consider 10" cm™ electrons in InP at room temperature. Find the Fermi level and state whether the
distribution is degenerate or nondegenerate.

Solution

This concentration is large and the electron effective mass is small, so we guess the electron
distribution is degenerate and try to check that.

We use m* = 0.079, and use T = 300 K for simplicity. From Eq. , we have 2/3

Er  mg300 N\ 10 P
kT m T (tasxiom) = ﬁfoﬁ(il,sg x 101‘?) =828

This number is >>4, i.e., the calculated Fermi level based on this guess is many kT above the bottom
of the band, so the degenerate assumption is valid. Completing the calculation, at 300 K in electron-
volts.
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ET) =——g—
e )
g
u is the chemical potential, kg is Boltzmann’s constant. note kg ~ 25 meV at room temperature.
Chemical potential (Fermi energy) corresponds to energy for which f = }. At zero temperature Fermi-
Dirac distribution is step function, with all states up to energy F (Fermi energy) tatally full.
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Figure 1:
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Free electron gas at zero temperature:

The free eletran gas model represents the starting paint for describing the properties of metals. As in
many solid-state physics problem, the first step is to figure out what the ground state is in the system.
Consider a single electron moving in a box of volume V = [?, The orbital of the free particle
wavefunction

N,X | My n,nz
Y(x,y,2) = Asin———sin YL ysinzT
The energy values are
Rt it o, 2
= ﬁ(z) (nx+ny + ﬂ.z)
For an N-fermion system, the ground state should correspond to the scenario where each orbitals are
filled with two electrons (one spin up, one spin down) up the Fermi energy
h? mney?
g =—||—
! ZM( L )

Here ny is the radius of sphere (in the space of the integers n,, ny, n;) that separates filled and

En

empty orbitals. For the system to hold N-electrons the orbitals must be filled up to n; determined by
1 4m .
N=2x ﬁ k3 ?"‘F

np = (AN/m)'/?
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Here the factor 2 arises because an electron has two possible spin orientations. The factor 1/8 arises
because only triplets n,, ny, n, in the positive octant of the sphere in n space are to be counted.
Thus, we may calculate the Fermi energy as:
h? N
o =2 (")
This relates the Fermi energy to the electron concentration. The total energy of the system in the
ground state is:

2/3

1 nf 5
[IL,:ZZE‘(:ZXéxd;frJ- dnn‘e,
0

TlSI'llf
which, after taking into account ng, gives
3
Uﬂ — ENE‘F
Free electron gas at finite temperature:
For the case of finite temperature, for an electron gas that are kept at a constant temperature 1 and
a constant chemical potential i, the occupation number for each orbital is:
1
f@) =2 x ——7
En— 1
1+ exp ( T )
Therefore, the thermal averages for the independent particle problems have the form:

0= flentmX,

where n denotes the quantum orbital; X, is the value of the quantity X in the orbital n; and
f(£,, T, 1) is the thermal average occupancy, called the distribution function, of the orbital n. We often
express {X) as an integral over the orbital energy ¢, Then above Eq becomes:

(0 = [ depe) fle.r. X (e)
where the sum over orbitals has been transformed to an integral. D (&) is the density of state that we
have discussed extensively before. The density of state for free electran {including spins) is:

Voo2my?
D =53 (77) £

Heat capacity of degenerate electron gas:

We derive a quantitative expression for the heat capacity of a degenerate Fermi gas of electrons in
three dimensions. This calculation gives excellent agreement with the experimental results for the heat
capacity of metals, The increase in the total energy of a system of N electrons when heated fromOto 1
is denoted by

AU = [m deD(£)f(e) — fgrdEED(E)
1] ]

Here f (&} is the Fermi-Dirac function, and D (&) is the density of states. Notice that:

(J:F + Lm )dsst(s)o(s) = f:rdzepﬂ(é‘)

hence:
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AU = f de(e — eg)D(e)f(e) + f Fds(s —ep)(1 = f(e))D(&)
£ 0

The first integral on the right-hand side of gives the energy needed to take electron from &5 to the
orbitals of energy £ > &g, and the second integral gives the energy needed to bring the electrons to £¢
from orbitals below gf.

The heat capacity of the electron gas is found on differentiating AU with respect to 7. The anly
temperature-dependent term in equation above is f(€). Therefore, we can group terms to obtain:

dau = df
Cg=—= de(e — gg)—D(e
=G = | dee - G0
In a typical metal, the concentration of electran is such that £z /kg = 50000 K. Thus, the typical
temperature of interest in metals is /gp < 0.01. Since f is like a step function, the derivative df /dt is

large on at energies near £g. It is a good approximation to evaluate the density of orbitals D(g) at
energy £ and take it outside of the integral:

= d
Cop = D(E;)L de(e — EF)d_{

One could typically ignore the temperature dependence of the chemical potential in the Fermi-Dirac
distribution and replace m by the constant £z. We have then
df £—&p gle=epl/t

dr = 12 ’ 1+ e(:—zp),a’r]z

We set

x=(g—ge)fT
oo B ex (<=3
Cop = TD(gf) dxx‘m = 1D(ep) J_mdxxz

—&r/T

EX

(1+e¥)?

Therefore, in the region T << 1 , we have
Co = 3n2D(e6)t
The key results are the linear dependence of the heat capacity on temperature, and the dependence
of the heat capacity on the density of states at the Fermi energy. Both of these results are confirmed by

experimental observations. The strong dependency of properties of metals on the density of states at
Fermi surface is in fact, a rather general result.

Electron distribution:
Electrons in thermal equilibrium have a Fermi-Dirac distribution, probability f,(E, T)of electron in
state of energy E at temperature T is

felE.T) = ———F— ¢
1+exp (%Q—T#)

Hole distribution:
Holes correspond to the absence of an electron, hence the probability fy, of finding a hole in a given
state is the probability that there is not an electron in that state. hence f, = 1 — f,, and so
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E—p
e () 1
E—py "~ —(E—w
1+exp (-Jgg._TE) 1+ exp (-——m—)
Hence the holes also have a Fermi-Dirac distribution. can look at holes this way, in which hole

energies are increasingly negative as they acquire kinetic energy, or can look at hole energies “upside
down"”, changing —(E — u) to (E — ).

fe(E,T) =

Pure semiconductors, donars and acceptors:

Let n, denote the concentration of conduction electrons, and n;,, denote the concentration of holes.
In a pure semiconductor the two will be equal: n, = ny

Most semiconductors as used in devices have been intentionally doped with impurities that may
become thermally ionied in the semiconductor at room temperature. Impurities that give an electron to
the crystal (and become positively charged in the process) are called donors. Impurities that accept the
electron from the valence band (and become negatively charged in the process) are called acceptors.

Let n} be the concentration of positively charged donors and n the concentration of negatively
charged acceptors. The electrical neutrality condition becomes

n,—ny =An=nj —ng

This specifies the difference between electron and hole concentration.

Group V elements (e.g, P) are usually donors in silicon.

Group lll elements (e.g. Al) are usually acceptors in silicon.

In I1I-V semiconductors, the donors are often Group VI materials (e.g., tellurium, tin), and acceptors
often Group Il materials (e.g., zinc, beryllium). Often Group IV materials are used. Their behavior is less
obvious. One way of rationalizing their behavior is to note that Group IV atoms might occupy either
Group |Il or Group V sites in the lattice. In the first case they might be expected to behave more like
donars, in the second case more like acceptors. For example, silicon is a commonly used n-type dopant
in GaAs, carbon is sometimes used as a p-type dopant in GaAs, and germanium is often used as an n-
type dopant in forming contacts to GaAs (e.g., by depositing Ge-doped gold metal and “alloying” it into
the n-type materials being contacted). Under some circumstances, silicon can become a p-type dopant
in GaAs.

n-typed and p-typed semiconductors:
A semiconductor in which the added number of donors dominates is called an “n-type”

semiconductor, and “majority carrier” conduction takes place through electrons in the conduction band.

A semiconductor in which the added number of acceptars dominates is called a “p-type”
semiconductor, and “majority carrier” conduction takes place through holes in the valence band.

Semiconductor statistical mechanics - classical limit:
For energies far above the chemical potential, the Fermi-Dirac distribution behaves like classical
Maxwell-Boltzmann distribution, fy_g, i.e., for electrons,
fu-g(E.T) = Ae~E/kaT
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where 4 = exp(u/kgT). This is to be expected, since: at these high energies occupation probabilities
are small. Hence little influence of the Pauli exclusion restriction that no more than one electron may
occupy a state.

If f, << 1 for all conduction state, and f, << 1 for all valence states, the semiconductor is said to be
in a nondegenerate regime. (i.e classical regime). This corresponds to the case when the chemical
potential is deep inside the gap, far from both the conduction band edge and the valence band edge.
The total number of conduction electrons in the form.

N, = Ze—(s—wf - e—(s;—»);rz e=(e=e/t

[V [#:

N, = N e ~(Eci)/T
Here

an
N.= j de VD (g) e~ (E-Eclit
Ec

Where as we have discussed before

Mg/ 2mg(e — g.)

D(g) = 2R3
And my, is the density of state effective mass for the conductor band. Evaluating the integral we have
No=2 (mér )m
¢ “\2nh?
Defining the quantum caoncentration n, for the conduction electrons as:
N, 2 (m;"c )312
n.=—= —
Ty 2nh?
The conduction electron concentration n, = N,/V becomes
ne = ncg_(fc_ﬂ).l'lf

Similarly, for the concentration of holes in the valence band, we have
Ry = nye-B-en/t

. 32
_(mT
ne =2 (Znhz)

where

Law of Mass Action:
If we are dealing with semiconductors in the Maxwell-Boltzmann limit, i.e., any of the criteria
* large effective masses
* or low doping densities
* orvery high temperatures
but not IlI-V semiconductors with large numbers of electrons, we have, ngny = nf where
n = (ncn,,)”""e";s“'z"ﬂ""

This equation is called the Law of Mass Action (the term comes from chemistry)
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n; is known as the “intrinsic concentration.” with no doping (i.e., an “intrinsic” semiconductor), the
number of electrons, n,, and the number of holes, ny, must be equal by charge neutrality. since
Ny = nl-z, the number of each must be n;.

Intrinsic concentrations become large in narrow gap semiconductors or at high temperature. E.g.,

for silicon at 0C, n;=1.04x10% cm™

for silicon at 50C, n;=7.06 x10" cm™

for GaAs at 0C, n;=1.02 x105° cm™

for GaAs at 50C, n;=2.18 x10" cm?

Fermi level in intrinsic semiconductors:
In an intrinsic semiconductor, the number of electrons is equal to the number of holes. Thus,
n = n{_ew—‘ws?‘ = (ncn‘,)’f'ze‘sﬂ*'z"ﬂ

By rearranging ,we have

(9" - £
a = exp T

or, after some algebra,

2 4 -
so that the Fermi level in an intrinsic semiconductar is always very close to the middle of the
bandgap, since kyT <« E, for most semicanductors.

E, kgT ny\ E; 3kgT :
u=—g+L1og(:—)=—g+—E1og(ﬂ)

Simple, fully ionized, non-degenerate case:

Consider one simple, limiting case. Suppose we have ny donors per unit volume, and n, acceptors
per unit volume. We assume that each acceptor atom takes away an electron and each donor atom adds
an electron (we may have to be at high temperature to assure that this is the case); this is called the
approximation of fully ionized impurities. Hence the net excess number of electrons is

An=n,—np==n4—n,

Assume also that all the carrier distributions can be approximated as non-degenerate. Hence we can
use the law of mass action. Also, assumes An > 0 , i.e, n-doped semiconductor

Since, from the law of mass action,

Np = niz/ne

Or

2

ng — n.an = nj

Therefore, we have
ne = %([L‘.nz + 411?]”2 + ﬂn)
And

({ﬂnz + 4nf]”z - ﬂn)

_1
np =3
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For maost practical situations, the intrinsic concentration, n; , is a very small number relative to any
doping concentration or resulting carrier concentration. Presuming for the moment that n; it is indeed
negligibly small {we may check this a posteriori), we have

n, = an
np =n#/on

In other words, as long as the difference in doping concentrations is much larger than the intrinsic
concentration, the resulting net number of electrons in the conduction band (or, if negative, the net
number of holes in the valence band) is simply the difference in the doping concentrations, An. A
semiconductor where An 3 n; is called an “extrinsic” semiconductor.

Note this analysis is not necessarily valid at low temperatures where the dopants would not be fully
jonized, nor is it valid at high concentrations where the distributions were degenerate.

Fermi Level in Extrinsic Semiconductor:
From our previous expressions, in the non-degenerate limit
np =n, e #ksl
Or
n, = nge Ea—M/kaT

where we have chosen the energy origin at the top of the valence band for convenience. Hence we

have
1= Ey— kpTlog(n,/n,)
or, equivalently
i = kgTlog(nv./np)

Semiconductor statistical mechanics - degenerate case:

When one of the carrier concentrations is increased and approaches the quantum concentration, we
may no longer use the classical distribution for that carrier. Instead, the calculation of the carrier
concentration now follows the treatment of the Fermi gas. (except the chemical potential is now related
to both the electron, and the hole concentration). The number of electrons or holes, is written as an
integral over the density of states times the distribution function

N =jd£D(£]f(£)

Use the density of state effective mass for electrons, we have

o de

let x = (£ — g.)/Tand n = (u — £.)/T We have

1 (Zm;)m ® (e— g )2

Me = ot . 14 elemit
(4

2 oa xl,-‘z
—=] = —[ —_—
n o IM=7) i
where [(1) is known as the Fermi-Dirac integral.

dx

o X2
Fermi integral F(n) = J'D e
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Chemical Potential {dimensionle
Figure 2

Two useful analytical limits to the Fermi integral:

o low-temperature and/or high-density
o high-temperature and/or low density

Low-temperature and/or high-density “degenerate” limit:
As temperature goes towards zero, Fermi function tends towards being 1 up to the chemical
potential (Fermi energy), and zero above, leading to, formally,

2 .
Fm=gn*?
limit of low temperature is also essentially the limit at high densities, where kgT becomes small

compared to the chemical potential, useful for chemical potentials above about 4k5T, and becomes
relatively accurate above about 6kgT.

Femmi Tnegral

2 4 & k3 ig
Chemical Potential {dimenvonless m

Figure 3: solid line - exact result, dashed s - fow-temperature and/or high density approxbmation [energy units kg T}

High-temperature and/or low-density “non-degenerate” limit:
Fermi-Dirac becomes like Maxwell-Boltzmann because u (i.e. i) is very negative
;_ = pln-7)
1+elx=m
S0 Fermi integral becomes

F(m)y =e" J x1/2e~% dx
1]
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Knowing that _[om xMie~F dx = \m/2 50

F(n)z?e”

Is useful for chemical potentials about kgT below the bandgap energy, and accurate from about
2k T below. Therefore,

n
—£ = plu-eft
nC

Fermi Imtcgral

W= o

Chemical Potential (kT)
Figure 4: exact value - solid line, high-temyp. flow-density approx. - dashed line

Fermi integral — approximations:
transport in semiconductors - usually take Maxwell-Boltzmann approx:
a. in germanium and silicon: good approx. because electron and hole masses are large
b. indirect bandgap semiconductors used for optoelectronic devices: conduction band effective
mass is relatively small, so often n-doped semiconductors have degenerate distributions. in
laser diodes degenerate distribution essential to device operation. in most diodes, n-doped
contact regions typically doped ~ 10*® cm™ or higher, putting electron Fermi energy in the
conduction band. so Maxwell-Boltzmann approx. not strictly valid for optoelectronic diodes
In the range between the two extreme physical approximations of the non-degenerate (Maxwell-
Boltzmann) case and the degenerate case, it is sometimes useful to have approximations to the Fermi
integral and its inverse.
One approximation to the Fermi integral is the Aymerich-Humet approximation (X. Aymerich-Humet,
F. Serra-Mestres, and J. Millan, Solid State Electronics 24, 981 (1981)), which is
Fex) = Vo1
O

Where

5
E(x) = 3J§ [x + 213+ (]x — 2.13)** + 9.6)12

This approximation is accurate to about 0.5% in the transitional range —5 < x < 10 (and
asymptotes relatively well outside those regions). It is also useful to have approximations that enable us
to calculate the Fermi energy (chemical potential) from the carrier density, which is the inverse of the
Fermi integral. One such approximation is the Joyce-Dixon approximation. For the conduction band,
with the energy of the edge of the conduction band as E,, defining a “reduced” chemical potential as

]as,rz
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n= (u—E.)/t and a "reduced” carrier concentration as r = N /N, . {where N, is the effective density
of states at the conduction band edge previously defined, the Joyce-Dixan approximation (W.B. Joyce
and R. W. Dixon, Appl. Phys. Lett. 31, 354 (1977)) is
N 1 3 W3,
n= iogr+VT§r—(—1-é-~§-)r +
i.e.,
n = logr + 3.53553 x 101y — 4.95009 x 107%r? + 1.48386 x 10~*r? — 4.42563 x 10~ %r*
The Joyce-Dixon approximation is valid for all negative values of n since it asymptotes to the low
density limit, but is not valid for positive values greater than about 5.

Another approximation, which asymptotes to both the low-density (non-degenerate) and high-
density (degenerate) limits (and hence is valid for all i) is an approximation due to Nilsson (N. G. Nilsson,
Phys. Sta. Solidi (a) 19, K75 {1973)), which is accurate within about 1%

logr 2/3 ByTr
1 & + Gﬁr) R r—
T 3(4+ var)
This approximation limits quite obviously to the low density (log r) and high density

n=

(3&:’/4)”3Iimits, and adds “joining function” terms chosen to give an empirically good fit.

Various approximations are discussed by J. 5. Blakemore, “Approximations for Fermi-Dirac Integrals,
Especially the Function Fy;;(n) Used to Describe Electron Density in a Semiconductor,” Solid-State
Electronics, 25, ppl067-1076 (1982).



